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Abstract We discuss the variability in the performance of multiple runs of branch-
and-cut mixed integer linear programming solvers, and we concentrate on the one
deriving from the use of different optimal bases of the linear programming relaxations.
We propose a new algorithm exploiting more than one of those bases and we show that
different versions of the algorithmcanbeused to stabilize and improve the performance
of the solver.
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1 Introduction

We consider a general mixed integer linear program (MIP) in the form

min{cT x : Ax ≥ b, x ≥ 0, x j ∈ Z ∀ j ∈ I } (1)

where the knowledge of the structure of matrix A (if any) is not directly exploited and
I �= ∅. Thus, the algorithmic approach relies on the solution, through general-purpose
techniques, of the linear programming (LP) relaxation

min{cT x : Ax ≥ b, x ≥ 0}, (2)

i.e., the same as problem (1) above but with the integrality requirement on the x
variables in the set I dropped.

State-of-the-artMIP solvers use LP computation as a tool by integrating the branch-
and-bound and the cutting plane algorithms [20] within a general branch-and-cut
scheme (see, e.g., [15,16] for an overview of the computational framework and the
MIP software, respectively).
Performance variability In a highly influential talk in 2008, Danna [7] analyzed for
the first time in an explicit manner some variability in performance of MIP solvers
apparently unrelated to algorithmic reasons, and gave this phenomenon the name of
performance variability. Danna’s running example was the solution of a classical MIP
instance called 10teams: by using exactly the same release of IBM ILOG CPLEX
(namely, version 11) the instance was solved in 0 branch-and-bound nodes and 2731
Simplex iterations on a Linux platform, while it needed 1426 nodes and 122,948
iterations on an AIX one.

That severe and unexpected variability in performance was later explained in [14]
essentially as imperfect tie-breaking. Many crucial decisions within the branch-and-
cut framework implemented by all MIP solvers are guided by the computation of
scores for several candidates and the selection among those candidates is based on
the score. Of course, such a score is generally far from “perfect”, whatever perfect
could mean, and variability is often observed, when, in case of ties in the score,
secondary criteria are used to break it. In these cases, the selection can be made
arbitrarily (although deterministically), e.g., based on the order inwhich the candidates
are considered, or can be influenced by (tiny) rounding errors that are different in
different computing environments. Note that the above discussion highlights the fact
that performance variability is not restricted to running the same code on different
machines/computing platforms but might appear on the samemachine if, for example,
seemingly neutral changes of the mentioned order of the candidates (or variables) are
performed. (The reader is referred to [18] for a recent tutorial on the mechanisms and
effects of performance variability in MIP.)
Optimal simplex bases and variability Among all possible sources of variability, a
somehow “obvious” one is associated with the degeneracy of the optimal basis of the
(initial) LP relaxation. It is well known that many LPs are indeed highly dual degen-
erate, i.e., many equivalent optimal bases can be enumerated within the optimal face
by randomly pivoting on variables with zero reduced cost. To the best of our knowl-
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Improving branch-and-cut performance by random sampling 115

edge, all current implementations of the simplex algorithm (of any type) as well as the
crossover phase of interior point algorithms for LP, return an arbitrary basis among
those that are optimal. That means, for example, that a random permutation of the vari-
able order used to express a MIP instance might then very likely determine a different
optimal basis to be returned by the LP solver in case degeneracy exists. Although all
theoretically equivalent, these alternative bases have instead a huge and rather unpre-
dictable impact on the solution of the MIP because they do affect immediately three
of the main ingredients in MIP computation, namely cutting plane generation, primal
heuristics and, of course, branching. Recall indeed that cutting plane generation highly
depends on the basis of the simplex tableau at hand (e.g., Mixed-Integer Gomory cuts,
see, e.g., [6]), and most of the cheap and extensively used primal heuristics perform
rounding operations on the LP fractional solution(s) (see, e.g., [1]). As a matter of fact,
the selection of the optimal basis, even the first one, i.e., that within the optimal face
of the very first LP relaxation, appears as a crucial decision for the evolution of the
whole MIP enumeration. In addition, because it is encountered at the beginning of the
whole branch-and-cut algorithm (after preprocessing only), that source of variability
seems to be the first one that needs to be understood.
Our contribution Of course, one can optimistically think of performance variability
as an opportunity. More precisely, the execution can be opportunely randomized so as
to exploit variability, especially within a parallel algorithm. This is essentially what
has been tried within the Constraint Programming and Satisfiability communities,
see, e.g., [11], in which restart strategies are proposed for the solution of satisfiability
instances. The basic idea is to execute the algorithm for a short time limit, possibly
restarting it from scratch with some changes (and possibly with an increased time
limit), until a feasible solution is found. In a similar spirit, within MIP, a heuristic way
to take advantage of erraticism has recently been suggested in [10], where the proposed
algorithm executes for a short time limit a number of different sample runs, and some
criteria are then applied to select a single run that will be executed for a long(er)
computing time. The existence of alternative optimal LP solutions—which is a main
source of variability—is also used to improve cut filtering in [2]: given the current
optimal LP solution x∗ along with a collection of cuts violated by x∗, an alternative
optimal solution x ′ is first constructed through “pump-reduce” (a light version of the
feasibility pump heuristic [9]), and then used to discard the cuts that happen not to be
violated by x ′. Finally, in [5] multiple threads are used to exploit variability by running
a different parameters’ configuration in each of them and allowing various degrees
of communication. In one of the proposed implementations (named CutsComm) the
pool of cutting planes generated at the root node by each thread is shared with the
other threads—in the concluding remarks of the paper, however, it is observed that the
communication of cutting planes seems not to be very helpful to improve the overall
computing time, at least in the proposed setting. Similar ideas were already introduced
in [19], and have recently been used for the racing ramp-up phase of ParaSCIP (see
[21] for details).

In this paper we concentrate on the variability associated with the selection of the
optimal basis. We propose an algorithm that essentially samples the optimal face of
the initial LP relaxation(s), and for each of the samples, executes the solver’s default
cutting plane loop and applies the default primal heuristics. At the end of this process,
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116 M. Fischetti et al.

for each sample (i.e., every different initial optimal basis) cutting planes and feasible
solutions are collected and used as input for a final run.

This sampling scheme can be implemented in parallel by feeding K threads with K
alternative optimal bases. By changing the value of K we can push in two somehow
opposite directions.

– On the one hand, we are interested in reducing variability by stabilizing the run of a
MIP solver. By using a relatively large value of K we are able to empirically show
the strong correspondence between the high variability in performance of multiple
runs of a MIP solver and the degree of degeneracy of the optimal bases on the MIP
instances from the benchmark and primal sets of the MIPLIB 2010 [14] testbed.
The algorithm has a much more stable computational behavior and is able to:
1. strongly reduce the variability of the root node of MIP executions both in

terms of primal and dual percentage gap closed (value and standard deviation),
and

2. significantly reduce the deterministic time and the number of branch-and-
bound nodes of the same MIP executions.

The stability is also testified by the fact that the algorithm solves to optimality
within the time limit more instances than the reference MIP solver. Finally, as a
byproduct, the algorithm is able to (optimally) solve at the root node, i.e., without
enumeration, a significant number of difficult instances in the primal set of the
MIPLIB 2010 testbed, thus showing a quite interesting behavior as a heuristic for
instances in which the challenge is to find the primal solution while the dual bound
is already tight.

– On the other hand, the above “stabilized” algorithm might not be so effective in
terms of pure running times because of an unavoidable overhead due to synchro-
nization and to the fact that the threads used by our algorithm are subtracted from
other (crucial) operations performed by a MIP solver. In other words, the comput-
ing time reduction obtained during the enumeration phase may be outweighed by
the root node overhead. A compromise can be obtained by a small value of K ,
thus achieving the aim of exploiting variability and getting an algorithm whose
performance in terms of running time compares favorably with the state-of-the-art
of MIP solvers. Indeed, while we started our study on performance variability with
IBM ILOGCPLEX (CPLEX for short) version 12.5.0, the preliminary results were
so encouraging that a commercial implementation of this second option was made
and is now included in the default of the latest IBM ILOG CPLEX version 12.5.1.

Organization of the paper The next section is devoted to a detailed analysis of the
variability showing that such a variability is independent of theMIP solver considered.
Section 3 describes our algorithm and the computational setting we use to assess the
results. Section 4 reports the computational experiments aimed at showing how the
scheme can be used to substantially improve the stability of the solver. In Sect. 5
we describe the implementation of the algorithm within the commercial MIP solver
CPLEX and the improved performance that is achieved. Finally, in Sect. 6 we draw
some conclusions and outline open questions and future research directions.
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Improving branch-and-cut performance by random sampling 117

2 Cross-solver performance variability

A good variability generator can be obtained by permuting columns and rows in the
original model. This affects all types of problems and all components of a typical
MIP solver. For each instance in the benchmark and primal sets of the MIPLIB 2010
testbed, we generated ten different row/columns permutations and tested the 3 major
commercial solvers, namely IBM ILOG CPLEX 12.5.0 [13], GUROBI 5.1 [12] and
XPRESS 23 [8]. Indeed, as already mentioned, changing the order of the variables and
constraints of a MIP instance has a quite direct effect on the optimal basis of the first
LP relaxation in case of dual degeneracy (which is usually the case). For each instance,
we computed the variability score [14] of computing time and branch-and-cut nodes,
which is defined as the ratio between the standard deviation and the arithmetic mean
of the n performance measures obtained with n different permutations of the same
instance.

Scatter plots of the variability scores for all pairwise comparisons between solvers
can be found in Fig. 1, whereas detailed results are shown in Table 8 in the “Appendix”.

According to the plots, performance variability is clearly not specific to only a
given solver. In particular, all commercial solvers exhibit a comparable performance
variability on our testbed, both in terms of running times and enumeration nodes. As
far as a possible correlation is concerned, the result is less clear: while there are quite
a few instances that are either unstable with all solvers or with none, many of them
behave quite differently with different solvers. This is not surprising, as performance
variability is affected by many factors including:

– Problem difficulty: if a problem is consistently easy (or too hard) for a given solver,
then no performance variability can be measured on that solver. However, the same
instance can be easy for a solver and difficult for another.

– Preprocessing: different solvers apply different preprocessing reductions, which
greatly affect the actual model to be solved. As such, any piece of information
that we can collect on the original formulation (the only one that is common to all
solvers) can be quite uninformative of the formulation that is actually solved.

3 The algorithm

A natural and mathematically sophisticated question to be asked about LP degeneracy
within the branch-and-cut algorithm concerns the existence of a “best” basis among
all optimal ones. Although this seems a reasonably well-posed question, there are a
number of reasons why we are far away from being able to answer it directly. First, the
selection of a basis impacts multiple ingredients of the enumerative algorithm: cutting
plane generation and primal heuristics somehow immediately, as already mentioned,
but branching is also involved later on. Hence, it is conceivable, and actually likely,
that a “good” basis for cutting planes might be not so “good” for primal heuristics
and vice versa. Moreover, the heuristic nature of many components of the algorithmic
framework (see, e.g., [17] for a extensive discussion on the topic), row aggregation in
cutting plane generation just to mention one, makes the characterization of the best
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118 M. Fischetti et al.

Fig. 1 VariabilityComparison across solvers. Each point represents the variability scores of a given instance
in the testbed w.r.t. two solvers and a given performance measure (time on the left and nodes on the right).
For readability, values have been clipped to the range [0, 2]

basis impossible in the practical setting we are interested in, i.e., within a real MIP
solver.

Thus, the basic idea guiding our algorithm is that, in presence of LP degeneracy
and in the practical impossibility of characterizing the best basis, a good strategy is to
sample the optimal face of the (initial) LP relaxation and collect both cutting planes
and feasible solutions while executing the cut loop for each of the sampled bases.
(The actual sampling procedure we use will be described in Sect. 4.1). All collected
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cuts and solutions are then put together in a (hopefully) stabilized and enriched root
node from which the enumeration is started in a subsequent run. Formally, the above
scheme is turned into Algorithm 1.

Algorithm 1: ksample
Input: a MIP instance
Output: an optimal solution
preprocess the MIP instance and store it;1
// root-node sampling, with default cut separators and primal heuristics
for i = 1, . . . , K − 1 do2

sample an optimal basis Bi of the (initial) LP relaxation;3
while executing the default root-node cut loop starting from Bi do4

collect cutting planes in a local cut pool Pi ;5
collect feasible solutions in a local solution pool Si ;6

// final run
solve the stored MIP instance (without any further preprocessing) by using the aggregated pools7

P := ∪K−1
i=1 Pi and S := ∪K−1

i=1 Si ;

For multiple reasons discussed in the introduction, there is a tradeoff between
stabilization and (improved) performance. We use a unique parameter to push for
different goals, namely the number K of root nodes processed (K − 1 in sampling,
and one in the final run). Roughly speaking, a higher value of K guarantees a more
stable behavior, while a small one allows one to exploit variability by getting improved
performance. The computational setting in which the above simple scheme is used to
obtain those somehow competing goals is described in the next section with special
emphasis to stability, whereas in Sect. 5 the performance emphasis is given.

4 Implementation

We implemented our codes in C++, using IBM ILOGCPLEX 12.5.0 [13] as black-box
MIP solver through the CPLEX callable library APIs. All tests in this section have
been performed on a cluster, where each node is equipped with an Intel Xeon E3-1220
V2 CPU running at 3.10 GHz and 16 GB of RAM.

We tested our codes on the problem instances from the benchmark and primal sets
in the MIPLIB 2010 testbed, for a total of 121 instances.

4.1 Sampling procedure

Having assessed that performance variability is common to all commercial solvers,
we will now try to exploit it to improve the stability and performance of the solution
process. From now on, we will only use CPLEX as our testing framework. Because
controlling the load of the nodes of our computational cluster is not trivial (the cluster
being shared), we are not reporting wall clock running times but rather deterministic
times which are an abstract unit, based on counting memory accesses [3], used by
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CPLEX to report a deterministic measure of the computational effort that is indepen-
dent of the current load of the machine. Each process was given a deterministic time
limit of 107, which corresponds approximately to a real wall clock time limit of 3 h
on our machines. As far as performance measures are concerned, we always report
shifted geometric means, with a shift of 103 for deterministic times and of ten for node
numbers. The shifted geometric mean of values t1, . . . , tn with shift s is defined as
n
√∏

(ti + s)−s, see, e.g., [1]. Further, using a geometricmean prevents hard instances
at or close to the time limit from having a huge impact on the measures, while the
shift is used to reduce the effect of very easy instances in the mean values. Thus, the
shifted geometric mean has the advantage that it reduces the influence of outliers in
both directions.

A possible way to obtain K different root nodes would be to exploit LP degeneracy
and to load into CPLEX K different optimal bases of the first LP relaxation, obtained
by applying some random pivots on the optimal face of the LP relaxation; see [10] for
details. However, for the sake of simplicity, we decided to mimic this random pertur-
bation by using the “random seed” CPLEX parameter (CPX_PARAM_RANDOMSEED
in the CPLEX callable library), which is publicly available since version 12.5.0. The
random seed parameter controls the initialization of the random number generator that
CPLEX uses in some of its internal operations with the purpose of breaking ties in
candidate selection and speeding up the computation. The random number generator
affects several components of the solver (e.g., heuristics), and in particular it is used to
deal with LP degeneracy and accelerate the converge of the LP solvers. As discussed
in Danna [7], changing the random seed is almost a perfect way to enforce random
variability, because it introduces a seemingly neutral change to the solution process
that in reality can have a major and unpredictable impact on the path taken by the
solver.

By using the above random seed parameter, our sampling procedure was imple-
mented as follows. All instances were preprocessed once at the very beginning,
independently of the random seed used, in order to have feasible solutions and cutting
planes expressed in the same space. Then, we ran CPLEX with K − 1 different ran-
dom seeds, stopping each run at the end of the root node, and collecting all the cutting
planes generated in these K − 1 root nodes and the primal feasible solutions (if any,
usually found by CPLEX primal heuristics).

Finally, we used these pieces of information for a final branch-and-cut run. Both
the sampling phase and the final enumeration were done with traditional branch and
cut (no dynamic search), no preprocessing, and by using 1 thread only. In order to
simulate a real-world implementation, in which the sampling root nodes are executed
in parallel and sampling information is available only at the end of the root node
processing, we implemented the final run in the following way:

– all warm starting information is discarded and the final run is started from scratch;
– at the end of the root node, we use CPLEX callbacks to provide all the pieces of
information collected by sampling, i.e., the best feasible solution and cutting planes;

– the run continues without any further action from callbacks.

We denote with ksample the above procedure, with K > 1. It is easy to see that
we can “simulate” a traditional CPLEX run just by setting K = 1 (in the following,
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we will call this method cpxdef). Note that preprocessing the instances once at the
very beginning and disabling presolve in the final run is only an approximation of a
standard default CPLEX run: one side effect, for example, is that probing is disabled
in this way. The effect is usually minor, but a few pathological instances that are easy
with CPLEX default turn out to be very time consumingwith our codes (both cpxdef
and ksample): for these reasons, we removed instances bley_xl1, ex9 and ex10
from our testbed.

4.2 Root node stability

We ran cpxdef and ksample, with K = 10, on all the instances in our testbed,
except for instance glass4 because of numerical issues (slightly different optimum
objectives were reported with different random seeds), and the 3 infeasible instances
ash608gpia-3col, ns1766074 and enlight14 as they have no integrality
gap.

In order to measure the performance variability at the end of the root node, each
instance was solved by each method with 10 different random seeds. To be more
specific, we first randomly generated 10 nonnegative integers S0, . . . , S9, to be used
as random seed for each final run, for both cpxdef and ksample. In addition,
ksample also uses the current seed associated with the final run to generate nine
additional random seeds, which are used to process the additional nine root nodes
during the sampling phase. For each execution, we recorded the final primal and dual
bounds at the end of the root node of the final run, indicated with z and z, respectively.
Given those values, we compute the integrality gap igap as

igap(z, z) =

⎧
⎪⎨

⎪⎩

0 if z = z = 0

1 if z · z < 0
|z−z|

max(|z|,|z|) otherwise.

A similar formula was used in [4] for measuring the impact of primal heuristics in
MIP solvers. Finally, since we know the optimal value z∗ of all the instances we can
compute in a similar fashion also the primal gap pgap and the dual gap dgap. For
each measure, we computed the average over the ten runs and the standard deviation.
As to standard deviation, we first computed the standard deviation of each instance
across the ten different seeds, and then took the average.

Average results for the remaining testbed of 117 instances are reported in Table 1;
split results for the benchmark (79 instances) and primal (38 instances) sets are given
as well.

According to Table 1, the average integrality gap is significantly reduced, in both
testbeds. As far as stability is concerned, ksample turns out to be consistently more
stable than cpxdef, with the only exception of pgap in the benchmark set, where it
is roughly equivalent. Interestingly, the behavior of the method is not much different
between the primal and the more general benchmark set (of course, in the primal case
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Table 1 Root node comparison on the whole testbed

Testbed Instance igap pgap dgap

Avg (%) St.dev (%) Avg (%) St.dev (%) Avg (%) St.dev (%)

Benchmark cpxdef 53.80 5.66 45.20 6.35 22.32 0.89

ksample 37.74 4.63 25.88 6.49 21.61 0.84

Primal cpxdef 63.37 10.05 63.37 10.05 0.00 0.00

ksample 31.79 3.28 31.79 3.28 0.00 0.00

All cpxdef 56.91 7.08 51.10 7.55 15.07 0.60

ksample 35.81 4.19 27.80 5.45 14.59 0.57

dgap is always 0 by definition). For this reason, in the following we will not split the
results between primal and benchmark.

4.3 Branch-and-cut stability

According to the previous section, ksample proves to be effective in reducing the
integrality gap and improving the stability at the root node. In the current section, we
evaluate if such improvements carry over to the overall solution process. Note that the
result is not obvious, since the sampling phase can do nothing about the variability
induced by branching.

We report three performance measures, namely: number of instances solved and
shifted geometric means of deterministic times and nodes. Note that some care must
be taken in order to report deterministic times for ksample: ideally, since the overall
idea is to mimic a possible implementation where the sampling phase is performed
in a parallel fashion by solving the K root nodes concurrently in a multi-thread envi-
ronment, we would not report the deterministic time spent in the sampling phase, but
the one related to the final branch and cut only. However, this would give an unfair
advantage to ksample, as the method would be accounted for 0 ticks whenever it can
solve an instance during sampling. At the same time, removing those instances from
the testbed would be unfair as well, as on those ksample is by design superior to
cpxdef. For the above reasons, the deterministic time reported for ksample refers
to the final branch-and-cut run when the instance is not solved during sampling, and
to the sampling root node that solved the instance if the instance is solved during
sampling.1

Table 2 reports these aggregated results on the whole testbed for five different
random seeds. Again, we discarded instance glass4 for numerical reasons. Thus,
we are left with 120 instances. The table is split into two sections: all refers to the

1 Note that even a parallel implementation of the sampling phase would introduce some unavoidable
overhead in the method. Such overhead is disregarded in the results reported in this section, but is instead
taken into account in Sect. 5, where a real parallel implementation of the sampling phase is evaluated.
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Table 2 Branch-and-cut performance comparison on the whole testbed

Seed Method All Opt

Solved Det.time Solved Det.time Nodes

1 cpxdef 107 172,584 104 109,569 2175

ksample 108 151,004 104 96,370 1765

2 cpxdef 105 172,022 102 102,103 1871

ksample 104 153,985 102 85,571 1296

3 cpxdef 107 170,467 104 104,152 2171

ksample 106 142,778 104 84,352 1581

4 cpxdef 106 182,415 106 118,001 2314

ksample 109 154,826 106 104,730 1816

5 cpxdef 105 199,470 104 119,466 2415

ksample 111 148,777 104 100,566 1780

whole testbed, while opt reports the results only for the subset of instances solved to
optimality by both methods. Note that nodes are reported only for the latter case.

According to Table 2, starting from a “better” root node can indeed improve the
performance of the subsequent branch-and-cut run. Indeed, ksample consistently
improves upon cpxdef, with a significant reduction in deterministic time (approxi-
mately 15%) and nodes (approximately 25%), consistent across seeds. As for stability,
results aremixed: if we considerall, the standard deviation of the deterministic times
is indeed reduced considerably, by more than a factor of two. However, this does not
carry over to the opt subset. This confirms that reducing variability during enumer-
ation is still an open issue.

5 Tuning for performance: CPLEX implementation

The ksample algorithm illustrated in the previous sections has been successfully
implemented within the default of the latest IBM ILOG CPLEX 12.5.1 version [13]
for the case K = 2. Precisely, after solving the initial LP relaxation, two different cut
loops are concurrently applied in a parallel fashion (if enough threads are available),
possibly rooted at two different LP bases (both optimal for the initial LP relaxation).
Each cut loop is performed by enforcing some random diversification in the solution
process, in order to explore different regions of the solution space, to collect more
cutting planes and (possibly) better primal solutions. Along the process, the two cut
loops are synchronized on a deterministic basis by sharing feasible solutions and
cutting planes. At the end of the root node, a final synchronization step is applied to
collect and filter the solutions and the cuts generated by the two cut loops, and then
the subsequent branch and cut is started.

The performance impact of the implementation highlighted above is reported in
Sect. 5.1. It is worth noting that an attempt to implement the ksample idea with
K > 2 concurrent cut loops has been made. However, the computational experiments
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conducted for the cases K > 2 have shown a performance degradation over the
case K = 2. On the one hand, the addition of any concurrent cut loop introduces
some unavoidable overhead in the whole solution process, and the overhead clearly
increases with K . On the other side, the key advantage of ksample is to enforce
random diversification, with the aim of producing more information (i.e., feasible
solutions and cutting planes). However, such a positive effect quickly saturates as K
increases. As a matter of fact, for the specific case of CPLEX and for the specific
way we implemented the ksample idea on it, the benefit obtained by applying more
than two concurrent cut loops was not worth the additional overhead introduced in the
whole root node.

5.1 Computational results

The testbed used in this section consists of 3221 problem instances coming from a
mix of publicly available and commercial sources. A time limit of 10,000 s was used
for all the tests. Additionally, we employed a tree memory limit of 6 GB. If this tree
memory limit was hit, we treated the model as if a time limit was hit, by setting the
solve time to 10,000 s and scaling the number of processed nodes accordingly. All
tests in this section were conducted by running IBM ILOGCPLEX 12.5.1 on a cluster
of identical 12 core Intel Xeon CPU E5430 machines running at 2.66 GHz and being
equipped with 24 GB of memory.

Tables 3, 4, 5, 6 and 7 report the performance impact of our ksample algorithm
embedded within IBM ILOG CPLEX 12.5.1 for K = 2. The tables compare case
K = 2 where two different cut loops are concurrently run in a parallel fashion (this
method is denoted 2-sample in the following) against case K = 1 where only the
standard cut loop is run (this method is named no-sample in the following).

Table 3 Performance impact of parallel cut loop in IBM ILOG CPLEX 12.5.1 (seed 1)

Class All models Affected

#models #tilim Time Nodes #models Time Nodes

All 3157 84/82 0.99 0.96 1312 0.98 0.92

[0,10k] 3086 13/11 0.99 0.96 1312 0.98 0.92

[1,10k] 1870 13/11 0.98 0.97 1090 0.97 0.94

[10,10k] 1092 13/11 0.97 0.96 678 0.96 0.94

[100,10k] 559 13/11 0.95 0.92 367 0.92 0.88

[1k,10k] 219 13/11 0.90 0.86 154 0.86 0.81

[0,10k) 3062 0/0 1.00 0.97 1288 0.99 0.93

[1,10k) 1846 0/0 0.99 0.98 1066 0.99 0.96

[10,10k) 1068 0/0 0.99 0.98 654 0.98 0.97

[100,10k) 535 0/0 0.98 0.95 343 0.97 0.93

[1k,10k) 195 0/0 0.97 0.94 130 0.96 0.91
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Table 4 Performance impact of parallel cut loop in IBM ILOG CPLEX 12.5.1 (seed 2)

Class All models Affected

#models #tilim Time Nodes #models Time Nodes

All 3164 86/82 0.99 0.97 1345 0.97 0.94

[0,10k] 3094 16/12 0.99 0.97 1345 0.97 0.94

[1,10k] 1875 16/12 0.98 0.96 1106 0.96 0.93

[10,10k] 1099 16/12 0.96 0.94 696 0.94 0.90

[100,10k] 575 16/12 0.94 0.92 377 0.91 0.88

[1k,10k] 223 16/12 0.93 0.90 154 0.91 0.85

[0,10k) 3066 0/0 0.99 0.98 1317 0.97 0.94

[1,10k) 1847 0/0 0.98 0.96 1078 0.97 0.94

[10,10k) 1071 0/0 0.97 0.95 668 0.95 0.92

[100,10k) 547 0/0 0.95 0.94 349 0.93 0.90

[1k,10k) 195 0/0 0.96 0.94 126 0.94 0.92

Table 5 Performance impact of parallel cut loop in IBM ILOG CPLEX 12.5.1 (seed 3)

Class All models Affected

#models #tilim Time Nodes #models Time Nodes

All 3159 81/78 0.97 0.93 1340 0.92 0.85

[0,10k] 3091 13/10 0.97 0.93 1340 0.92 0.85

[1,10k] 1864 13/10 0.95 0.90 1098 0.91 0.84

[10,10k] 1089 13/10 0.92 0.87 689 0.88 0.80

[100,10k] 565 13/10 0.86 0.81 370 0.80 0.73

[1k,10k] 215 13/10 0.85 0.80 146 0.79 0.72

[0,10k) 3068 0/0 0.97 0.94 1317 0.94 0.87

[1,10k) 1841 0/0 0.96 0.92 1075 0.93 0.86

[10,10k) 1066 0/0 0.94 0.89 666 0.90 0.83

[100,10k) 542 0/0 0.89 0.85 347 0.84 0.77

[1k,10k) 192 0/0 0.93 0.90 123 0.90 0.85

All the tables have the same structure, each giving aggregated results over the whole
testbed obtained with a different random seed. For each seed, the instances are divided
in different subsets, based on the hardness of the models. To avoid any bias in the
analysis, the level of difficulty is defined by taking into account the two solvers that
are compared, namely, no-sample and 2-sample. First, the set “all” is defined
by keeping all the models but the ones for which one of the solvers encountered a
failure of some sort or where numerical difficulties led to different optimal objective
values for the two solvers (both values being correct due to feasibility tolerances).
Then, the set “all” is divided in subclasses “[n, 10k]” (n = 1, 10, 100, 1k), containing
the subset of “all” models for which at least one of the solvers took at least n seconds
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Table 6 Performance impact of parallel cut loop in IBM ILOG CPLEX 12.5.1 (seed 4)

Class all models Affected

#models #tilim Time Nodes #models Time Nodes

All 3162 89/95 0.99 0.97 1323 0.98 0.93

[0,10k] 3084 11/17 0.99 0.97 1323 0.98 0.93

[1,10k] 1856 11/17 0.99 0.96 1094 0.97 0.93

[10,10k] 1089 11/17 0.98 0.95 686 0.97 0.92

[100,10k] 557 11/17 0.97 0.93 369 0.95 0.89

[1k,10k] 217 11/17 0.96 0.87 146 0.94 0.82

[0,10k) 3056 0/0 0.99 0.97 1295 0.98 0.93

[1,10k) 1828 0/0 0.99 0.96 1066 0.98 0.94

[10,10k) 1061 0/0 0.98 0.96 658 0.97 0.93

[100,10k) 529 0/0 0.97 0.95 341 0.96 0.92

[1k,10k) 189 0/0 0.97 0.92 118 0.95 0.88

Table 7 Performance impact of parallel cut loop in IBM ILOG CPLEX 12.5.1 (seed 5)

Class All models Affected

#models #tilim Time Nodes #models Time Nodes

all 3161 94/97 0.99 0.97 1339 0.97 0.94

[0,10k] 3077 10/13 0.99 0.97 1339 0.97 0.94

[1,10k] 1856 10/13 0.98 0.96 1112 0.97 0.93

[10,10k] 1077 10/13 0.98 0.95 681 0.96 0.93

[100,10k] 569 10/13 0.98 0.95 377 0.96 0.92

[1k,10k] 203 10/13 0.95 0.92 137 0.93 0.89

[0,10k) 3054 0/0 0.99 0.97 1316 0.98 0.94

[1,10k) 1833 0/0 0.99 0.96 1089 0.98 0.94

[10,10k) 1054 0/0 0.98 0.96 658 0.97 0.94

[100,10k) 546 0/0 0.99 0.96 354 0.98 0.95

[1k,10k) 180 0/0 0.99 0.98 114 0.98 0.96

to solve and that were solved to optimality within the time limit by at least one of the
solvers. Finally, the subclasses “[n, 10k)” (n = 1, 10, 100, 1k) contain all models in
“[n, 10k]” but considering only the models that were solved to optimality by both the
compared solvers (i.e., models for which any of the solvers hit a time or memory limit
are disregarded).

Table 3 has the following structure: the first column, “class”, identifies the group of
models. The first group of four columns (i.e., columns from 2 to 5) under the heading
“all models” reports for each class of models, the results on all models contained in
the class. Column “#models” reports the number of problem instances in each class.
Note that only 3157 out of the 3221 problem instances are listed for the class “all” due
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to the exclusion rules explained above. Column “#tilim” gives the number of models
for which a time (or memory) limit was hit by the two solvers no-sample and
2-sample, respectively. For instance, the values 84/82 for the class “all” indicate
that the number of time limit hitswas overall 84 and82 for the two solversno-sample
and2-sample, respectively, while the values 13/11 for all classes “[n, 10k]” indicate
that no-sample hit the time limit for 13 models that were solved to optimality by
2-sample, while 2-sample hit the time limit for 11 models that were solved to
optimality by no-sample. Observe that it is not accidental that there are no time
limits in the last 5 rows, because they are disregarded on purpose for the classes “[n,
10k)”. Column “time” displays the shifted geometric mean of the ratios of solution
times between 2-sample and no-sample with a shift of s = 1 s. A value t < 1
in the table indicates that 2-sample is by a factor of 1/t faster (in shifted geometric
mean) than no-sample. Note that time limit hits are accounted with a value of
10,000 s for classes “[n, 10k]”, which it is likely to introduce an unavoidable bias
against the solver with fewer timeouts. Column “nodes” is similar to the previous
column but shows the shifted geometric mean of the ratios of the number of branch-
and-cut nodes needed for the problems by each solver, using a shift of s = 10 nodes.
When a time limit is hit, we use the number of nodes at that point, which again
introduces a bias. Finally, the second group of three columns (i.e., columns from 6 to
9) under the heading “affected”, repeat the same information for the subset of models
in each class where the two compared solvers took a different solution path. For the
sake of simplicity, we assume that the solution path is identical if both the number of
nodes and the number of simplex iterations are identical for the two solvers. Models
that are solved to optimality by only one of the compared solvers are always included
in the set of “affected” models, while models for which both solvers hit the time
(or memory) limit are never included in this set, regardless the number of nodes and
simplex iterations. For this reason, we did not report the column “#tilim” for the
affected models, because the numbers of time limit hits are the same as for the set
containing all models of each class.

As already stated, Tables 4, 5, 6 and 7 have the same structure as Table 3, but it
is worth noting that the size of the subclass of models, as well as the models in each
class, are different for each table, because the level of difficulty of a given model may
change with the random seed.

The results reported in Tables 3, 4, 5, 6 and 7 clearly show that the addition of a
parallel cut loop at the root node of the branch-and-cut algorithm yields a performance
improvement that is consistent across the 5 random seeds considered, both in terms
of computing time and number of branch-and-bound nodes. Moreover, the results on
the different classes of problems indicate that the harder the models, the larger the
performance improvement achieved, and even this information is consistent across
the 5 seeds. Finally, a closer look at the results of classes “[100,10k]” and “[1k,10k]”
also shows the impact of performance variability. Indeed, the improvement on those
subclasses, although consistent, may vary quite substantially by changing the random
seed. Precisely, the improvement on class “[100,10k]” varies from 1/0.98 = 1.02×
with seed 5 to 1/0.86 = 1.16×with seed 3,while the improvement on class “[1k,10k]”
varies from 1/0.96 = 1.04× with seed 4 to 1/0.85 = 1.18× with seed 3. Those
quite large differences are not surprising, because (i) the number of models in those
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subclasses is pretty small, if compared with the number of models in the class “all”,
and thus these classes of models are less robust to outliers, and (ii) the hardest models
are typically those exhibiting the largest performance variability.

6 Conclusions

High sensitivity to initial conditions is a characteristic of MIP solvers, that leads to a
possibly very large performance variability of multiple runs performed when starting
from slightly-changed initial conditions. A primary source of variability comes from
dual degeneracy affecting the root node LPs, producing a large number of alternative
choices for the initial (optimal) LP basis to be used to feed the cutting plane/primal
heuristic/branching loops.

In this paper we have studied the above source of variability and proposed a new
sampling scheme that solves—through parallel independent runs—the root node with
diversified initial conditions (random seeds) and uses all the collected primal and
dual information to feed the final complete run to the same MIP solver. By simply
adjusting the number of simultaneous samples, we can either emphasize stabilization,
i.e., devise an algorithm that stabilizes the MIP solver by reducing its sensitivity to
initial conditions, or exploit variability to gain on performance, namely significantly
reducing computing times.

More precisely, computational results on the primal and benchmark sets of the
MIPLIB 2010 testbed clearly show the stabilization effect of our algorithm when a
large number of samples is taken. Namely, the algorithm

1. produces significantly improved primal solutions at the root node;
2. reduces the root-node variability in terms of integrality gap;
3. consistently reduces the average computational effort spent in the final run.

In addition, on the internal CPLEX testbed composed of 3221 problem instances,
a version of our algorithm implemented within the commercial solver IBM ILOG
CPLEX 12.5.1 which uses only two samples obtains a consistent reduction in both
computing times and number of nodes that appears to be significant on non trivial
models requiring at least 10 s to be solved. These impressive results led to the inclusion
of the algorithm as default in the release of the commercial solver.

Many questions concerning the stabilization of the entire framework remain open,
the main one being the stabilization of the branching tree.
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Appendix: detailed results

See Table 8.
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Table 8 Cross-solver performance variability

instance vsTime vsNodes

CPLEX GUROBI XPRESS CPLEX GUROBI XPRESS

30_70_45_095_100 0.11 0.10 0.51 0.00 0.00 1.55

30n20b8 0.71 0.57 0.91 0.48 0.46 1.07

acc-tight4 0.39 0.29 0.50 0.72 0.45 0.59

acc-tight5 0.88 0.75 0.92 0.87 0.89 0.97

acc-tight6 0.82 0.54 0.74 0.96 0.72 0.80

aflow40b 0.23 0.30 0.32 0.26 0.27 0.31

air04 0.57 0.19 0.12 0.62 0.45 0.38

app1-2 0.68 0.51 0.65 0.34 0.89 0.70

ash608gpia-3col 0.77 0.43 0.30 3.16 1.19 2.11

beasleyC3 0.12 0.41 1.41 0.31 0.62 1.43

biella1 0.25 0.34 0.54 0.25 0.29 0.52

bienst2 0.07 0.11 0.16 0.05 0.14 0.19

binkar10_1 0.34 0.76 0.38 0.34 1.00 0.41

bley_xl1 0.17 0.06 0.08 0.00 0.00 0.00

core2536-691 0.35 0.51 2.89 0.34 0.66 3.11

cov1075 0.76 0.16 0.87 0.82 0.20 0.74

csched010 0.48 0.33 1.02 0.86 0.38 0.97

danoint 0.17 0.26 0.12 0.19 0.20 0.11

dfn-gwin-UUM 0.15 0.16 0.11 0.17 0.13 0.11

eil33-2 0.14 0.35 0.25 0.22 0.50 0.24

eilB101 0.34 0.27 0.22 0.26 0.49 0.22

ex10 0.03 0.07 0.44 0.00 0.00 1.33

ex9 0.03 0.03 0.73 0.00 0.00 0.00

gmu-35-40 3.16 3.16 3.16 3.16 3.16 3.16

iis-100-0-cov 0.29 0.13 0.04 0.23 0.15 0.05

iis-bupa-cov 0.25 0.13 0.05 0.20 0.13 0.05

iis-pima-cov 0.53 0.42 0.45 0.60 0.50 0.50

lectsched-2 0.13 0.38 0.56 0.41 0.00 2.07

lectsched-3 1.25 1.15 1.47 0.98 1.53 1.35

lectsched-4-obj 0.42 0.16 1.61 0.48 1.05 1.71

map18 0.12 0.07 0.23 0.16 0.12 0.20

map20 0.17 0.22 0.25 0.26 0.16 0.35

mcsched 0.64 0.11 0.48 0.72 0.17 0.39

mik-250-1-100-1 0.08 1.02 0.20 0.09 1.06 0.21

mine-166-5 0.22 0.20 0.10 0.27 0.28 0.22

mine-90-10 0.50 0.50 0.47 0.44 0.60 0.44

mspp16 0.37 0.07 0.93 2.05 0.00 1.48

mzzv11 0.30 0.24 0.34 0.56 0.94 0.60

n4-3 0.34 0.37 0.28 0.41 0.67 0.29
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Table 8 continued

instance vsTime vsNodes

CPLEX GUROBI XPRESS CPLEX GUROBI XPRESS

neos-1109824 0.45 0.39 0.29 0.42 0.54 0.48

neos-1171692 0.35 0.14 0.11 3.16 0.00 0.47

neos-1224597 0.32 0.23 0.33 0.00 0.00 0.00

neos-1396125 0.55 0.92 1.37 0.64 0.83 1.05

neos-1440225 0.61 0.82 1.63 0.39 0.94 1.78

neos-1601936 0.83 1.82 3.01 1.09 2.48 2.95

neos-476283 0.24 0.15 0.21 0.38 0.38 0.46

neos-506422 0.56 0.38 0.65 0.80 0.60 0.71

neos-686190 0.19 0.34 0.29 0.22 0.41 0.31

neos-738098 0.33 0.26 0.38 1.95 0.00 2.35

neos-777800 0.32 0.34 0.28 0.00 0.00 0.00

neos-824661 0.29 0.18 0.18 0.00 0.00 0.00

neos-824695 0.69 0.21 0.56 2.42 0.00 0.00

neos-826694 0.53 0.43 0.27 0.00 0.00 0.00

neos-826812 0.14 0.12 0.38 0.00 0.00 0.00

neos-849702 1.28 1.75 1.57 1.31 1.75 1.53

neos-885086 0.65 0.39 2.10 2.04 0.00 2.10

neos-885524 0.75 1.96 0.51 2.11 2.65 0.86

neos-932816 0.18 0.06 0.33 0.00 0.00 0.00

neos-933638 0.68 0.26 0.59 1.24 0.00 1.16

neos-933966 0.07 0.29 0.16 0.00 0.00 0.46

neos-934278 0.28 0.28 0.38 0.73 0.00 0.57

neos-935627 0.61 0.48 1.61 1.20 1.28 1.83

neos-935769 0.26 0.38 0.38 0.78 0.00 0.81

neos-937511 0.23 0.18 0.15 0.85 0.00 0.41

neos-941313 0.36 0.16 0.51 0.96 0.00 1.84

neos-957389 0.03 0.26 0.03 0.00 0.00 0.00

neos13 0.29 0.32 0.07 0.46 0.45 0.76

neos18 0.28 0.38 0.56 0.28 0.42 0.49

neos6 0.61 0.24 1.47 0.89 0.00 1.47

neos808444 0.41 0.22 0.20 1.17 0.00 0.32

net12 1.31 0.55 0.49 0.78 0.42 0.44

netdiversion 0.78 1.49 0.93 1.07 1.04 1.18

noswot 1.45 0.52 1.02 1.21 0.53 1.18

ns1116954 1.46 1.75 1.93 1.28 2.61 1.88

ns1688347 0.52 0.32 0.43 0.88 0.11 0.40

ns1758913 0.95 0.35 0.23 0.00 0.00 0.00

ns1766074 0.02 0.05 0.04 0.01 0.03 0.05

ns1830653 0.15 0.40 0.80 0.23 0.56 0.83
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Table 8 continued

instance vsTime vsNodes

CPLEX GUROBI XPRESS CPLEX GUROBI XPRESS

ns1952667 1.18 1.68 1.34 1.55 2.00 1.29

opm2-z7-s2 0.15 0.32 0.21 0.15 0.20 0.24

pg5_34 0.13 0.10 1.52 0.12 0.09 1.45

pigeon-10 0.13 0.19 0.26 0.06 0.06 0.21

qiu 0.38 0.23 0.38 0.46 0.29 0.54

rail507 0.62 0.32 0.96 0.53 0.58 0.73

ran16x16 0.11 0.24 0.21 0.11 0.38 0.23

reblock67 0.12 0.29 0.24 0.13 0.38 0.29

rmatr100-p10 0.06 0.36 0.47 0.06 0.28 0.47

rmatr100-p5 0.22 0.29 0.38 0.23 0.29 0.40

rmine6 0.37 0.39 0.19 0.22 0.39 0.19

rocII-4-11 0.73 0.44 0.57 0.38 0.50 0.60

rococoC10-001000 0.21 0.53 0.44 0.20 0.53 0.40

roll3000 0.54 0.86 1.53 0.84 1.42 1.47

satellites1-25 0.40 0.13 1.36 0.62 0.05 1.21

sp98ic 0.26 0.35 0.46 0.26 0.43 0.47

sp98ir 0.18 0.19 0.26 0.20 0.27 0.29

tanglegram1 0.05 0.08 0.55 0.28 0.40 0.44

tanglegram2 0.07 0.08 0.29 0.45 0.84 0.84

timtab1 0.38 0.85 0.67 0.35 0.89 0.70

triptim1 0.68 0.16 0.21 0.00 0.00 0.99

unitcal_7 0.23 0.23 0.18 0.33 0.15 0.97

zib54-UUE 0.31 0.24 0.23 0.35 0.22 0.24

Average 0.44 0.44 0.63 0.60 0.49 0.76
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