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The concept of dominance among nodes of a branch-and-bound tree, although known for a long time, is
typically not exploited by general-purpose mixed-integer linear programming (MILP) codes. The starting

point of our work was the general-purpose dominance procedure proposed in the 1980s by Fischetti and Toth,
where the dominance test at a given node of the branch-and-bound tree consists of the (possibly heuristic)
solution of a restricted MILP only involving the fixed variables. Both theoretical and practical issues concerning
this procedure are analyzed, and important improvements are proposed. In particular, we use the dominance
test not only to fathom the current node of the tree, but also to derive variable configurations called “nogoods”
and, more generally, “improving moves.” These latter configurations, which we rename “pruning moves” so
as to stress their use in a node-fathoming context, are used during the enumeration to fathom large sets of
dominated solutions in a computationally effective way. Computational results on a testbed of MILP instances
whose structure is amenable to dominance are reported, showing that the proposed method can lead to a
considerable speedup when embedded in a commercial MILP solver.
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1. Introduction
The mixed-integer linear programming (MILP)
paradigm is among the most powerful and most
used methods for modeling and solving both real-
life and theoretical optimization problems; see, e.g.,
Papadimitriou and Steiglitz (1982), Schrijver (1998),
and Garfinkel and Nemhauser (1972). Almost 50
years of active research in the field has produced
huge improvements in the solving capability of MILP
codes, as reported in, e.g., Bixby et al. (2000).
A concept playing a potentially relevant role in try-

ing to keep the size of the branch-and-bound tree
as small as possible is that of dominance. Following,
e.g., Papadimitriou and Steiglitz (1982), a branching
node � is said to be dominated by another node �
if every feasible solution in the subtree of � corre-
sponds to a solution in the subtree of � having a better
cost (tie breaks being handled by a suitable lexico-
graphic rule). This concept seems to have been stud-
ied first by Kohler and Steiglitz (1974) and has been
developed in the subsequent years, most notably by
Ibaraki (1977). However, although known for a long
time, dominance criteria are not exploited in general-
purpose MILP codes because of a number of impor-
tant limitations of the classical definition. In fact, as
stated, the dominance relationship is too vague to be

applicable in a generic MILP context—in principle,
every node not leading to an optimal solution could
be declared as being dominated.
In this paper we build on the general-purpose

dominance procedure proposed in the late 1980s by
Fischetti and Toth (1988), where the dominance test at
a given node consists of the (possibly heuristic) solu-
tion of an auxiliary MILP involving only the fixed
variables. As far as we know, no attempt to actu-
ally use the above dominance procedure within a
general-purpose MILP scheme is reported in the lit-
erature. This is because the approach tends to be
excessively time consuming—the reduction in the
number of nodes does not compensate for the large
overhead introduced. In an attempt to find a viable
way to implement the original scheme, we found
that the concept of nogood, borrowed from con-
straint programming (CP), can play a crucial role for
the practical effectiveness of the overall dominance
procedure. Roughly speaking, a nogood is a partial
assignment of the variables such that every com-
pletion is either infeasible (for constraint satisfaction
problems) or nonoptimal (for constraint optimization
problems). Nogoods are widely used by the CP com-
munity (Dechter 1990; Katsirelos and Bacchus 2003,
2005; Lecoutre et al. 2007) and proved to be crucial
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for the effectiveness of last-generation SAT solvers
(Moskewicz et al. 2001, Zhang et al. 2001, Eén and
Sörensson 2004). However, the concept of nogood is
seldom used in mathematical programming. One of
the first uses of nogoods in ILP was to solve veri-
fication problems (Hooker and Yan 1995) and fixed-
charge network flow problems (Kim and Hooker
2002). Further applications can be found in Codato
and Fischetti (2006), where nogoods are used to gen-
erate cuts for a MILP problem. Recently, attempts
to apply the concept of nogood to MILPs, deriv-
ing nogoods from nodes discarded by the branch-
and-bound (B&B) algorithm, have been presented in
Achterberg (2007) and Sandholm and Shields (2006),
with mixed results. In the present paper, we depart
from the “classical” use of nogoods—namely, the rep-
resentation of the result of some conflict analysis
algorithm—and we derive them from dominance con-
siderations. In particular, in the context of dominance,
a nogood configuration is available, as a by-product,
whenever the auxiliary problem is solved successfully.
More generally, we show how the auxiliary problem
can be used to derive “improving moves” that cap-
ture in a much more effective way the presence of
general integer (as opposed to binary) variables.
Improving moves are the basic elements of test sets.

For an integer programming problem, a test set is
defined as a set T of vectors such that every fea-
sible solution x to the integer program is nonopti-
mal if and only if there exists an element t ∈ T (the
“improving move”) such that x + t is a feasible solu-
tion with strictly better objective function value; see,
e.g., Scarf (1986), Graver (1975), and Thomas and
Weismantel (1996). Test sets are often computed for a
family of integer linear programs, obtained by vary-
ing the right-hand-side vector. This makes test sets
useful for sensitivity analysis or for solving stochastic
programs with a large number of scenarios. Improv-
ing moves are meant to be used to convert any feasi-
ble solution to an optimal one by a sequence of moves
maintaining solution feasibility and improving in a
strictly monotone way the objective value. Computing
and using test sets for NP-hard problems is, however,
far too expensive in practice. In our approach, instead,
improving moves are exploited heuristically within a
node-fathoming procedure—hence, the name “prun-
ing moves.” More specifically, we generate pruning
moves on the fly and store them in a move pool that
is checked in a rather inexpensive way at each node
of the branch-and-bound tree. Computational results
show that this approach can be very successful for
problems whose structure is amenable to dominance.
The rest of this paper is organized as follows.

In §2 we describe the Fischetti-Toth technique in more
detail and address some issues related to the tie-
break rule to be used to get a mathematically cor-
rect overall method. In §3 we introduce the concepts

of nogood and pruning move, and show how to
derive them in an effective way. In §4 we deal with
some extensions of the basic scheme, and important
implementation issues are addressed in §5. Compu-
tational results obtained on hard knapsack and net-
work design instances are given in §6. We show that
for those problems, the proposed method can lead
to a significant speedup when embedded within a
general-purpose MILP solver (e.g., ILOG CPLEX 11).
Some conclusions are finally drawn in §7.

2. The Fischetti-Toth Dominance
Procedure

In the standard B&B or branch-and-cut (B&C) frame-
work, a node is fathomed in two situations:
1. The LP relaxation of the node is infeasible, or
2. The optimal value of LP relaxation is not better

than the value of the incumbent optimal solution.
There is, however, a third way of fathoming a node:

by using the concept of dominance. According to
Papadimitriou and Steiglitz (1982), a dominance rela-
tion is defined as follows: If we can show that a
descendant of a node � is at least as good as the best
descendant of a node �, then we say that node �
dominates node �, meaning that the latter can be fath-
omed (in case of ties, an appropriate rule has to be
taken into account to avoid fathoming cycles). Unfor-
tunately, this definition may become useless in the
context of general MILPs, where we do not actually
know how to perform the dominance test without
storing huge amounts of information for all the pre-
viously generated nodes—which is often impractical.
Fischetti and Toth (1988) proposed a different

dominance procedure that overcomes many of the
drawbacks of the classical definition, and resembles
somehow the logic cuts introduced by Hooker et al.
(1994) and the isomorphic pruning introduced recently
by Margot (2002, 2003). Here is how the procedure
works.
Let P be the MILP problem

P� min �cT x� x ∈ F �P��	

whose feasible solution set is defined as

F �P� �= �x ∈�n� Ax ≤ b	 l ≤ x ≤ u	

xj integer for all j ∈ J �	 (1)

where J ⊆ N �= �1	 
 
 
 	n� is the index set of the inte-
ger variables. For any J ′ ⊆ J and for any x′ ∈�J ′ , let

c�J ′	x′� �=∑
j∈J ′

cjx
′
j

denote the contribution of the variables in J ′ to the
overall cost. Now, suppose we are solving P by an
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enumerative (B&B or B&C) algorithm whose branch-
ing rule fixes some of the integer-constrained vari-
ables to certain values. For every node k of the
branch-and-bound tree, let J k ⊆ J denote the set of
indices of the variables xj fixed to a certain value xk

j

(say). Every solution x ∈ F �P� such that xj = xk
j for all

j ∈ J k (i.e., belonging to the subtree rooted at node k)
is called a completion of the partial solution associated
at node k.
Definition 1. Let � and � be two nodes of the

branch-and-bound tree. Node � dominates node � if
1. J � = J �;
2. c�J �	 x�� ≤ c�J �	 x��, i.e., the cost of the partial

solution x� at node � is not worse than that at node �,
namely, x�;
3. Every completion of the partial solution x� asso-

ciated with node � is also a completion of the partial
solution x� associated with node �.
According to the classical dominance theory, the

existence of a node � unfathomed that dominates
node � is a sufficient condition to fathom node �.
A key question at this point is given the current
node �, how can we check the existence of a dominat-
ing node �? Fischetti and Toth (1988) answered this
question by modeling the search of dominating nodes
as a structured optimization problem, to be solved
exactly or heuristically. For generic MILP models, this
leads to the following auxiliary problem XP�:

min
∑
j∈J �

cjxj

∑
j∈J �

Ajxj ≤ b� �= ∑
j∈J �

Ajx
�
j 	 (2)

lj ≤ xj ≤ uj	 j ∈ J �	 (3)

xj integer	 j ∈ J �
 (4)

If a solution x� (say) of the auxiliary problem hav-
ing a cost strictly smaller than c�J �	 x�� is found, then
it defines a dominating node � and the current node �
can be fathomed.
It is worth noting that the auxiliary problem is

of the same nature as the original MILP problem
but with a smaller size, and thus it is often easily
solved (possibly in a heuristic way) by a general-
purpose MILP solver. In a sense, we are using here
the approach of “MIPping the dominance test” (i.e., of
modeling it as a MILP; see Fischetti et al. 2009) in a
vein similar to the recent approaches of Fischetti and
Lodi (2003) (the so-called local branching heuristic,
where a suitable MILP model is used to improve the
incumbent solution) and of Fischetti and Lodi (2007)
(where an ad hoc MILP model is used to generate
violated Chvátal-Gomory cuts). Also note that, as dis-
cussed in §4, the auxiliary problem gives a sufficient
but not necessary condition for the existence of a

dominating node, in the sense that some of its con-
straints could be relaxed without affecting the validity
of the approach. In addition, inequalities (2) could be
converted to equalities to reduce the search space and
get a simpler, although possibly less effective, auxil-
iary problem.
The Fischetti-Toth dominance procedure, called LD

(for local dominance) in the sequel, has several useful
properties:
• There is no need to store any information about

the set of previously generated nodes;
• There is no need to make any time-consuming

comparison of the current node with other nodes;
• A node can be fathomed even if the correspond-

ing dominating one has not been generated yet;
• The correctness of the enumerative algorithm

does not depend on the branching rule; this is a valu-
able property because it imposes no constraints on the
B&B parameters—although an inappropriate branch-
ing strategy could prevent several dominated nodes
to be fathomed; and
• The LD test needs not be applied at every node;

this is crucial from a practical point of view, because
the dominance test introduces some overhead and
it would make the algorithm too slow if applied at
every node.
An important issue to be addressed when imple-

menting the LD test is to avoid fathoming cycles
arising when the auxiliary problem actually has a
solution x� different from x� but of the same cost,
in which case one is allowed to fathom node � only if
a tie-break rule is used to guarantee that node � itself
is not fathomed for the same reason. To prevent these
“tautological” fathoming cycles, the following crite-
rion (among others) has been proposed in Fischetti
and Toth (1988): in case of cost equivalence, define as
unfathomed the node � corresponding to the solution
found by the deterministic1 (exact or heuristic) algo-
rithm used to solve the auxiliary problem. However,
even very simple “deterministic” algorithms may lead
to a wrong result, as shown in the following example.
Let P be the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min −x1 − x2 − x3 − x4 − 99x5

s.t. x1 + x2 ≤ 1	

x3 + x4 ≤ 1	

x4 + x5 ≤ 1	

x ∈ �0	1�5	

whose optimal solutions are �1	0	1	0	1� and
�0	1	1	0	1�, and let us consider the branch-and-
bound tree depicted in Figure 1. The deterministic

1 In this context, an algorithm is said to be deterministic if it always
provides the same output solution for the same input.
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x1 = 0

x2 = 1

x3 = 1

x5 = 1 x5 = 1

x4 = 0 x4 = 0

x3 = 1

x2 = 0

x1 = 1

β

β′

α

α′

Figure 1 A Nasty Situation for LD Test

algorithm used to perform the LD test is as follows:
If the number of variables in the auxiliary problem
is smaller than 3, use a greedy heuristic trying to fix
variables to 1 in decreasing index order; otherwise,
use the same greedy heuristic but in increasing index
order.
When node � (that corresponds to the partial solu-

tion x1 = 1	x2 = 0 with cost −1) is processed, the fol-
lowing auxiliary model is constructed:

⎧⎪⎪⎨
⎪⎪⎩

min −x1 − x2

s.t. x1 + x2 ≤ 1	

x1	 x2 ∈ �0	1�	

and the deterministic heuristic returns the partial
solution x2 = 1, x1 = 0 of cost −1 associated with
node �, so node � is declared to be dominated by �
and node � is fathomed assuming (correctly) that
node � will survive the fathoming test. However,
when the descendant node �′ (that corresponds to
the partial solution x1 = 0, x2 = 1, x3 = 1, x4 = 0 with
cost −2) is processed, the following auxiliary model
is constructed:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min −x1 − x2 − x3 − x4

s.t. x1 + x2 ≤ 1	

x3 + x4 ≤ 1	

x4 ≤ 1	

x1	 x2	 x3	 x4 ∈ �0	1�	

and our deterministic heuristic returns the partial
solution x1 = 1, x2 = 0, x3 = 1, x4 = 0 of cost −2 asso-
ciated with node �′, so node �′ is declared to be
dominated by �′ and node �′ is fathomed as well.

Therefore, in this case the enumerative algorithm can-
not find any of the two optimal solutions; i.e., the LD
tests produced a wrong answer.
In view of the considerations above, in our imple-

mentation we used a different tie-break rule, also
described in Fischetti and Toth (1988), that consists
in ranking cost-equivalent solutions in lexicographi-
cal order (≺). To be more specific, in case of cost ties
we fathom node � if and only if x� ≺ x�, meaning
that the partial solution x� associated with the dom-
inating node � is lexicographically smaller2 than x�.
Using this tie-break rule, it is possible to prove the
correctness of the overall enumerative method.

Proposition 1. Assuming that the projection of the
feasible set F �P� on the integer variable space is a bounded
set, a B&B algorithm exploiting LD with the lexicograph-
ical tie-break rule returns the same optimal value as the
classical B&B algorithm.

Proof. Let x∗ be the lexicographically minimal opti-
mal solution, whose existence is guaranteed by the
boundedness assumption and by the fact that ≺ is
a well-order. We need to show that no node � hav-
ing x∗ among its descendants (i.e., such that x∗

j = x�
j

for all j ∈ J �) can be fathomed by the LD test.
Assume by contradiction that a node � dominating �
exists, and define

zj �=
⎧⎨
⎩

x�
j j ∈ J ∗	

x∗
j j 	∈ J ∗	

where J ∗ �= J � �=J ��. In other words, z is a new solu-
tion obtained from x∗ by replacing its dominated part
with the dominating one. Two cases can arise:
1. c�J ∗	x�� < c�J ∗	x��: We have

cT z = ∑
j∈J ∗

cjx
�
j + ∑

j 	∈J ∗
cjx

∗
j <

∑
j∈J ∗

cjx
�
j + ∑

j 	∈J ∗
cjx

∗
j = cT x∗

and
n∑

j=1

Ajzj = ∑
j∈J ∗

Ajx
�
j + ∑

j 	∈J ∗
Ajx

∗
j ≤ ∑

j∈J ∗
Ajx

�
j + ∑

j 	∈J ∗
Ajx

∗
j ≤ b


so z is a feasible solution with a cost strictly smaller
than x∗, which is impossible.
2. c�J ∗	x�� = c�J ∗	x��: using the same argument

as in the previous case, one can easily show that z
is an alternative optimal solution with z ≺ x∗, also
impossible. �

It is important to notice that the above proof of cor-
rectness uses just two properties of the lexicographic
order, namely,

2 We use the standard definition of lexicographic order on vectors
of fixed size over a totally ordered set.
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P1 �well-order�: Required for the existence of a min-
imum optimal solution;
P2 �inheritance�: If x� and x� are two partial assign-

ments such that x� ≺ x�, then the lexicographic order
is not changed if we apply the same completion to
both of them.
This observation will be used in §4 to derive a more
efficient tie-break rule.

3. Nogoods and Pruning Moves
The computational overhead related to the LD test can
be reduced considerably if we exploit the notion of
nogoods taken from CP. A nogood is a partial assign-
ment of the problem variables such that every com-
pletion is either infeasible (for constraint satisfaction
problems) or nonoptimal (for constraint optimization
problems). The key observation here is that when-
ever we discover (through the solution of the auxil-
iary problem) that the current node � is dominated,
we have in fact found a nogood configuration �J �	 x��
that we want to exclude from being reanalyzed at a
later time.
Actually, when the LD test succeeds we have not

just a dominated partial assignment (x�) but also a
dominating one (x�). Combining the two, we get a
pruning move (� = �J �	 x� − x��), i.e., a list of variable
changes that we can apply to a (partial) assignment to
find a dominating one, provided that the new values
assigned to the variables stay within the prescribed
bounds. For binary MILPs, the concept of pruning
move is equivalent to that of nogood, in the sense that
a pruning move can be applied to a partial assign-
ment if and only if the same assignment can be ruled
out by a corresponding (single) nogood. For general-
integer MILPs, however, pruning moves can be much
more effective than nogoods. This is easily seen by
the following example. Suppose we have two integer
variables, x1	x2 ∈ �0	U �, and that the LD test produces
the pair

x� = �1	0�	 x� = �0	1�


It is easy to see that, in this case, all the following
(dominating, dominated)-pairs are valid:

���a	 b�	 �a − 1	 b + 1��� a ∈ �1	U �	 b ∈ �0	U − 1��


The standard LD procedure would need to derive
each such pair by solving a different auxiliary
problem, whereas they can be derived all together by
solving a single MILP leading to the pruning move
�−1	1�. As such, pruning moves can be seen as com-
pact representations of sets of nogoods, a topic also
studied in Katsirelos and Bacchus (2005).
In our implementation, we maintain explicitly a

pool of previously found pruning moves and solve
the following problem (akin to separation for cutting-
plane methods) at each branching node �: find, if

any, a move � = �J ′	�� stored in the pool such that
J ′ ⊆ J � and lj ≤ x�

j + �j ≤ uj for all j ∈ J ′. If the test
is successful, we can of course fathom node � with-
out needing to construct and solve the correspond-
ing auxiliary problem XP�. In our implementation,
pruning moves are stored in sparse form, whereas
the pool is simply a list of moves sorted by length.
It is worth noting that we are interested in minimal
(with respect to set inclusion) pruning moves so as
to improve effectiveness of the method. To this end,
before storing a pruning move in the pool we remove
its components j such that x�

j = x�
j (if any).

It is also worth noting that a move �1 = �J 1	�1�
implies (absorbs) a move �2 = �J 2	�2� in case

J 1 ⊆ J 2	 and ��1
j � ≤ ��2

j � ∀ j ∈ J 1


This property can be exploited to keep the pool
smaller without affecting its fathoming power.
At first glance, the use of a move pool resembles

classical state-based dominance tests, but this is really
not the case because the amount of information stored
is much smaller—actually, it could even be limited to
be of polynomial size by exploiting techniques such as
relevance- or length-bounded nogood recording (see
Bayardo and Miranker 1996).

4. Improving the Auxiliary Problem
The effectiveness of the dominance test presented in
the previous section heavily depends on the auxiliary
problem that is constructed at a given node �. In par-
ticular, it is advisable that its solution set is as large
as possible so as to increase the chances of finding a
dominating partial solution. Moreover, we aim to find
a partial solution different from (and, we hope, lexi-
cographically better than) the one associated with the
current node—finding the same solution x� is of no
use within the LD context. For these reasons, we next
propose a number of improvements over the original
auxiliary problem formulation.

4.1. Objective Function
The choice of the lexicographic order as a mean to
resolve ties, although natural and simple, is not well
suited in practice.
In the most naïve implementation, there is a good

chance of not finding a lexicographically better solu-
tion even if this exists, because we do not convey to
the solver in any way the information that we are
interested in lexicographically minimal solutions. This
is unfortunate, because we risk wasting a great com-
putational effort.
Moreover, the lexicographic order cannot be

expressed as a linear objective without resorting to
huge coefficients: the only way to enforce the dis-
covery of lexicographically better solutions is through
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ad hoc branching and node selection strategies, which
are quite intrusive and greatly degrade the efficiency
of the solution process.
The solution we propose is to use an alternative

randomly generated objective function, according to
the following scheme:
• An alternative random objective function for the

auxiliary problems is generated at the beginning of
the computation and is kept unchanged for the whole
search so as to satisfy the two properties P1 and P2
of §2 needed for the correctness of the algorithm.
• To guarantee that the optimal solution of the aux-

iliary problem will be not worse than the original
partial assignment, we add the following optimality
constraint: ∑

j∈J �

cjxj ≤ ∑
j∈J �

cjx
�
j 


• After having solved the auxiliary problem with
the alternative objective function, we compare its
solution x� (if any) with the original partial assign-
ment x�, first by using the original objective function,
then by using the alternative function, and finally,
in the unlikely case that both functions yield the same
value, by lexicographic order.

4.2. Local Branching Constraints
As the depth of the nodes in the B&B increases, the
auxiliary problem grows in size and becomes harder
to solve. Moreover, we are interested in detecting
moves involving only a few variables, because these
are more likely to help prune the tree and are more
efficient to search. For these reasons one can heuristi-
cally limit the search space of the auxiliary problem to
alternative assignments not too far from the current
one. To this end, we use a local branching (Fischetti
and Lodi 2003) constraint defined as follows.
For a given node �, let B� ⊆ J � be the (possibly

empty) set of fixed binary variables, and define

U = �j ∈ B� � x�
j = 1�	 L = �j ∈ B� � x�

j = 0�


Then we can guarantee a solution x of the auxil-
iary problem to be different from x� in at most k
binary variables through the following local branch-
ing constraint:

∑
j∈U

�1− xj� +∑
j∈L

xj ≤ k


A similar reasoning could be extended to deal with
general integer variables as well, although in this
case the constraint is not as simple as before and
requires the addition of certain auxiliary variables
(Fischetti and Lodi 2003). According to our computa-
tional experience, a good compromise is to consider a
local branching constraint involving only the (binary

or general integer) variables fixed to their lower or
upper bound, namely,∑

j∈U

�uj − xj� +∑
j∈L

�xj − lj � ≤ k	

where

U = �j ∈ J � � x�
j = uj�	 L = �j ∈ J � � x�

j = lj �


4.3. Right-Hand-Side Improvement
One could observe that we have been somehow
overly-conservative in the definition of the auxiliary
problem XP�. In particular, as noticed already in
Fischetti and Toth (1988), in some cases the condition∑

j∈J �

Ajxj ≤ b�

could be relaxed without affecting the correctness of
the method.
To illustrate this possibility, consider a simple knap-

sack constraint 4x1 + 5x2 + 3x3 + 2x4 ≤ 10 and sup-
pose we are given the partial assignment �1	0	1	∗�.
The corresponding constraint in the auxiliary prob-
lem then reads 4x1 + 5x2 + 3x3 ≤ 7. However, because
the maximum load achievable with the free variables
is 2, one can safely consider the relaxed requirement
4x1 + 5x2 + 3x3 ≤ 10 − 2 = 8. Notice that the feasible
partial solution �0	1	1	∗� is forbidden by the origi-
nal constraint but allowed by the relaxed one; i.e., the
relaxation does improve the chances of finding a dom-
inating node. Another example arises for set-covering
problems, where the ith constraint reads

∑
j∈Qi

xj ≥ 1
for some Qi ⊆ �1	 
 
 
 	n�. Suppose we have a partial
assignment x�

j (j ∈ J �) such that k �=∑
j∈J �∩Qi

x�
j > 1. In

this case, the corresponding constraint in the auxiliary
problem would be

∑
j∈J �∩Qi

xj ≥ k, although its relaxed
version

∑
j∈J �∩Qi

xj ≥ 1 is obviously valid as well.
The examples above show, however, that the im-

provement of the auxiliary problem may require
some knowledge of the particular structure of its
constraints. Even more important, the right-hand-
side strengthening procedure above can interfere and
become incompatible with the postprocessing proce-
dure that we apply to improve the moves. For this
reason, in our implementation we decided to avoid
any right-hand-side improvement.

4.4. Local Search on Incumbents
A drawback of the proposed scheme is that node fath-
oming is very unlikely at the very beginning of the
search. Indeed, at the top of the tree only few vari-
ables are fixed, and the LD test often fails (this is
also true if short moves exist, because their detection
depends on the branching strategy used) while the
move pool is empty.
To mitigate this problem, each time a new incum-

bent is found we invoke the following local search
phase aimed at feeding the move pool.
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• Given the incumbent x∗, we search the neigh-
borhood Nk�x

∗� defined through the following
constraints:

∑
j∈J

Ajxj =∑
j∈J

Ajx
∗
j 	 (5)

∑
j∈J � x∗

j =uj

�uj − xj� + ∑
j∈J � x∗

j =lj

�xj − lj � ≤ k	 (6)

∑
j∈J

cjxj ≤∑
j∈J

cjx
∗
j 	 (7)

lj ≤ xj ≤ uj	 j ∈ J 	

xj integer	 j ∈ J 


In other words, we look for alternative values of the
integer variables xj (j ∈ J ) using each constraint—
variable bounds excluded—in the same way as x∗

(constraint (5)), having a Hamming distance from x∗

not larger than k (constraint (6)), and with an objec-
tive value not worse than x∗ (constraint (7)).
• We populate a solution list by finding multiple

solutions to the MILP

min
{∑

j∈J

cjxj � x ∈ Nk�x
∗�
}

by exploiting the multiple-solution mode available in
our MILP solver (ILOG 2007).
• Given the solution list L = �x1	 
 
 
 	 xp�, we com-

pare the solutions pairwise and generate a pruning
move accordingly, to be stored in the move pool.
• If we find a better solution during the search, we

use it to update the incumbent.
It is worth noting that the use of equalities (5)

allows us to generate a pruning move for every pair of
distinct solutions in the list, because for every pair we
have a dominating and a dominated solution whose
difference produces the pruning move.

5. Implementation
The enhanced dominance procedure presented in the
previous sections was implemented in C++ on a
Linux platform and applied within a commercial
MILP solver. Here are some implementation details
that deserve further description.
An important drawback of LD tests is that their use

can postpone the finding of a better incumbent solu-
tion, thus increasing the number of nodes needed to
solve the problem. This behavior is quite undesirable,
particularly in the first phase of the search, when we
have no incumbent and no nodes can be fathomed
through bounding criteria. Our solution to this prob-
lem is to skip the dominance test until the first feasible
solution is found.
The definition and solution of the auxiliary prob-

lem at every node of the branch-and-bound tree can

become too expensive in practice. We face here a sit-
uation similar to that arising in B&C methods, where
new cuts are typically not generated at every node—
although the generated cuts are exploited at each
node. A specific LD consideration is that we had
better skip the auxiliary problem on nodes close to
the top or the bottom of the branch-and-bound tree.
Indeed, in the first case only a few variables have been
fixed; hence, there is little chance of finding dominat-
ing partial assignments. In the latter case, instead, it
is likely that the node would be fathomed anyway by
standard bounding tests. Moreover, at the bottom of
the tree the number of fixed variables is quite large
and the auxiliary problem may be quite hard to solve.
In our implementation, we provide two thresholds on
tree depth, namely, depthmin and depthmax, and solve
the auxiliary problem for a node � only if depthmin ≤
depth��� ≤ depthmax. Moreover, we decided to solve the
auxiliary problem at a node only if its depth is a mul-
tiple of a given parameter, say, depthinterval.

In addition, because it is undesirable to spend a
large computing time on the auxiliary problem for a
node that would have been pruned anyway by the
standard B&B rules, we decided to apply our tech-
nique just before branching—applying the LD test
before the LP relaxation is solved turned out to be
less effective.
To avoid spending too much computing time on

pathologically hard auxiliary MILPs, we also set a
node limit (say) N1 for the auxiliary problem solu-
tion, and a node limit (say) N2 for the local search on
incumbents.
Finally, because the discovery of new pruning

moves decreases as we proceed with the search, we
set a upper bound M on the number of times the LD
test is called: after this limit is reached, the pruning
effect is left to the move pool only.
It is important to stress that although the auxiliary

problem is solved only at certain nodes, we check the
current partial assignment against the move pool at
every node, because this check is relatively cheap.

6. Computational Results
In our computational experiments we used the com-
mercial solver ILOG CPLEX 11.0 (ILOG 2007) with
default options. All runs were performed on an Intel
Q6600 2.4 GHz PC with 4 GB of RAM, under Linux.
The definition of the test bed for testing the potential

of our approach is, of course, a delicate issue. In fact,
one cannot realistically expect any dominance rela-
tionship to be effective on all types of MILPs. This is
confirmed by a preliminary test we performed on the
MIPLIB 2003 (Achterberg et al. 2006) test bed, where
pruning moves are seldom generated. We here face
a situation similar to that arising when testing tech-
niques designed for highly symmetric problems, such
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as the isomorphic pruning proposed recently by Margot
(2002, 2003)—although remarkably effective on some
classes of problems, the approach is clearly of no use
for problems that do not exhibit any symmetry.
Therefore, we looked for classes of practically rele-

vant problems whose structure can trigger the dom-
inance relationship, and measured the speedup that
can be achieved by using our specific LD procedure.
In particular, we next give results on two combinato-
rial problems: knapsack problems (Martello and Toth
1990) and network loading problems (van Hoesel
et al. 2002, Atamtürk and Rajan 2002). Whereas the
first class of problems is quite natural for dominance
tests (and could in principle be solved much more
effectively by using specialized codes), the second
one is representative of very important applications
where the dominance property is hidden well inside
the solution structure.

6.1. Knapsack Problem
We generated hard single knapsack instances accord-
ing to the so-called spanner instance method in
combination with the almost-strongly correlated profit
generation technique; see Pisinger (2005) for details.
The parameters of our LD procedure were set to
depthmin: 5,
depthmax: 0.8 times the number of integer variables,
depthinterval: 6,
k: 0.2 times the number of integer variables,
N1: 10,
N2: 5,000,
M : 1,000.
The results on hard single knapsack instances

with 60 to 90 items are given in Table 1, where
labels “Dominance” and “Standard” refer to the

Table 1 Computational Results for Hard Knapsack Instances

Standard Dominance Ratio

Problem Nodes Time (s) Gap Nodes Time (s) Gap Nodes Time

kp60_1 311�490 14�70 0�00 1�793 3�45 0�00 173�73 4�26
kp60_2 831�319 43�72 0�00 3�718 3�05 0�00 223�59 14�35
kp60_3 865�469 45�32 0�00 3�995 2�15 0�00 216�64 21�11
kp60_4 1�012�287 47�54 0�00 19�720 6�42 0�00 51�33 7�41
kp70_1 >12�659�538 >1�200�00 0�41 1�634�517 138�68 0�00 7�75 8�65
kp70_2 783�092 41�21 0�00 4�466 6�43 0�00 175�35 6�41
kp70_3 830�794 41�97 0�00 6�396 4�93 0�00 129�89 8�51
kp70_4 >13�226�464 >1�200�00 0�48 27�591 4�49 0�00 479�38 267�18
kp80_1 403�396 18�71 0�00 2�599 9�41 0�00 155�21 1�99
kp80_2 559�447 28�11 0�00 3�118 1�87 0�00 179�42 15�04
kp80_3 576�885 23�46 0�00 2�962 3�40 0�00 194�76 6�90
kp80_4 277�981 13�35 0�00 5�690 3�29 0�00 48�85 4�06
kp90_1 >16�013�282 >1�200�00 0�07 803�333 65�57 0�00 19�93 18�30
kp90_2 18�330�528 863�77 0�00 5�024 3�56 0�00 3�648�59 242�74
kp90_3 >15�273�264 >1�200�00 0�27 37�017 5�61 0�00 412�60 213�78
kp90_4 2�136�389 116�21 0�00 8�056 3�82 0�00 265�19 30�46

Average >5�255�727 >381�13 — 160�165 16�63 — 398�89 54�45
Geom. mean >1�761�164 >98�78 — 11�625 6�00 — 151�50 16�47

performance of the B&C scheme with and without
the LD tests, respectively, and label “Ratio” refers to
the ratios Standard/Dominance. For a fair compar-
ison, the same seed was used to initialize the ran-
dom generator in all runs. The performance figures
used in the comparison are the number of nodes of
the resulting branch-and-bound tree and the comput-
ing time (in CPU seconds). For these problems, the
LD tests provided an overall speedup of 23 times
and with substantially fewer nodes (the ratio being
approximatively 1:33). Note that, in some cases, the
ratios reported in Table 1 are just lower bounds on the
real ones, because the standard algorithmwas stopped
before completion because of the time limit.
Additional statistics are reported in Table 2, where

we provide, for each instance, the final size of the
move pool, the percentage of the whole solution time
spent either on pool management (Pool time) or LD
tests (LD time) along with their success rates (Pool
success and LD success, respectively). The statistics in
Table 2 indicate that the number of pruning moves
stored in the pool is always manageable. In addition,
the pool checks and the LD tests are rather successful
because they both allow for node fathoming approxi-
matively 1/3 of the times they are applied—the total
effect being of fathoming approximately 2/3 of the
nodes where the test is applied, which results in a
dramatic reduction of the total number of branch-and-
bound nodes because we often fathom early nodes
and hence large subtrees. Although the relative over-
head introduced by the LD procedure is significant
(because of the fact that node relaxations are particu-
larly cheap for knapsack problems), the overall benefit
is striking, with an average speedup of about one to
two orders of magnitude.

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.



Fischetti and Salvagnin: Pruning Moves
INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2009 INFORMS 9

Table 2 Internal Statistics for Hard Knapsack Instances

Pool Pool Pool LD LD
Problem size time (%) success (%) time (%) success (%)

kp60_1 404 20�08 38�95 13�82 35�00
kp60_2 196 1�61 34�97 29�82 47�06
kp60_3 360 14�86 37�66 24�45 16�67
kp60_4 148 3�48 38�18 58�24 16�80
kp70_1 330 26�00 29�62 1�10 50�50
kp70_2 464 18�62 39�97 20�67 40�59
kp70_3 299 15�11 40�58 25�28 30�43
kp70_4 324 16�61 29�31 37�60 59�90
kp80_1 384 20�67 42�89 4�99 37�05
kp80_2 286 8�45 37�87 35�88 25�45
kp80_3 833 24�78 43�96 9�54 35�50
kp80_4 294 15�95 43�02 28�13 25�13
kp90_1 268 22�32 37�55 2�08 28�70
kp90_2 705 17�76 38�56 34�19 58�15
kp90_3 286 16�55 34�20 20�88 41�20
kp90_4 181 3�85 33�97 44�78 42�20

Average 360�13 15�42 37�58 24�47 36�90
Geom. mean 326�24 12�49 37�33 16�80 34�59

6.2. Network Loading Problem
Network loading problems arise in telecommunica-
tions applications where demand for capacity for
multiple commodities has to be realized by allocating
capacity to the arcs of a given network. Along with
a capacity plan, a routing of all commodities has to
be determined, and each commodity must be routed
from source to destination on a single path through
the network. The objective is to minimize the cost of
the installed capacity in the network, ensuring that all
commodities can be routed from source to destination
simultaneously.
Given a directed graph G = �V 	A�, a set of com-

modities K (each commodity being described by a
source node sk, a destination node tk, and a demand

Table 3 Computational Results for Network Loading Problems

Standard Dominance Ratio

Problem Nodes Time (s) Gap Nodes Time (s) Gap Nodes Time

g_15_17_43 1�954�292 797�01 0�00 242�693 163�80 0�00 8�05 4�87
g_15_17_45 >8�711�335 >3�600�00 0�34 1�544�646 845�00 0�00 5�64 4�26
g_15_17_51 >8�022�870 >3�600�00 0�29 963�576 545�14 0�00 8�33 6�60
g_15_18_35 3�764�325 1�559�38 0�00 286�539 172�48 0�00 13�14 9�04
g_15_18_37 3�959�652 1�525�63 0�00 567�899 279�64 0�00 6�97 5�46
g_15_18_39 752�035 251�52 0�00 303�667 146�55 0�00 2�48 1�72
g_15_18_40 >10�156�564 >3�600�00 0�48 1�071�922 493�57 0�00 9�48 7�29
g_15_19_43 1�609�434 886�51 0�00 415�472 294�61 0�00 3�87 3�01
g_16_18_48 581�268 226�13 0�00 122�824 86�65 0�00 4�73 2�61
g_16_18_53 6�425�061 3�183�84 0�00 6�489 56�14 0�00 990�15 56�71
g_16_19_51 >7�222�780 >3�600�00 0�43 3�774�093 2�158�96 0�00 1�91 1�67
g_16_20_47 5�593�517 3�436�69 0�00 587�773 449�83 0�00 9�52 7�64
g_16_20_51 2�229�792 1�394�58 0�00 272�355 257�26 0�00 8�19 5�42
g_16_21_40 >6�187�221 >3�600�00 0�37 2�334�537 1�524�71 0�00 2�65 2�36
g_16_21_44 1�079�588 717�43 0�00 151�869 182�00 0�00 7�11 3�94
g_16_21_52 >4�565�496 >3�600�00 0�27 1�279�007 1�186�96 0�00 3�57 3�03

Average >4�550�951�88 >2�223�67 — 870�335�06 552.71 — 67.86 7.85
Geom. mean >3�354�264 >1�621�25 — 436�484 339.43 — 7.68 4.78

size dk), a base capacity unit C, and capacity instal-
lation costs cij , our network loading problem can be
formulated as

min
∑

�i	 j�∈A

cijyij

∑
j∈V

xk
ij −

∑
j∈V

xk
ji =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 i = sk	

−1 i = tk	

0 otherwise	

k ∈ K	 i ∈ V 	 (8)∑
k

dkxk
ij ≤ Cyij	 �i	 j� ∈ A	 (9)

xk
ij ∈ �0	1�	 yij ∈�+

0 	 k ∈ K	 �i	 j� ∈ A
 (10)

Random instances of the above network loading
problem were generated as follows:
• To obtain a gridlike structure, we generated grid

networks of dimensions 3×5 and 4×4 and randomly
deleted arcs with probability 0.1. Each arc has base
unit capacity of value 4 and cost 10.
• We generated a commodity of flow 10 for each

pair of nodes with probability 0.2.
Some parameters of the LD procedure were changed

with respect to the knapsack test bed, because of the
greatly increased size of the instances:

k: 0.01 times the number of integer variables,
N1: 100,
N2: 25,000.
The results of our experiments are given in Table 3.

In this class of problems, the dominance procedure is
still quite effective, with an overall speedup of four
times and a node ratio of more than 5.
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(a)

(b) 13

20

18

15

Figure 2 Typical Moves Captured by the LD Tests on Network
Design Instances

Typical pruning moves discovered by the LD test
for this class of problems are shown in Figure 2.
In particular, Figure 2 illustrates two moves taken
from instance g_15_17_43. For each of themwe present
two equivalent configurations. Flows of different com-
modities are drawn with different line styles, and the
values reported by the edges (if relevant) indicate the
amount yij of unit capacities installed on the arcs. In
move (a) we have a simple swap of the routing of two
different flows with the same value: the correspond-
ing move involves only binary variables xk

ij , whereas
variables yij (not shown in the figure) are unaffected.
In move (b) we have a more complex swap, involving
also arc capacities (and thus general integer variables
as well). Here, we reroute two commodities so as to
use a different arc and move an appropriate amount
of unit capacities accordingly. This last example shows
the effectiveness of pruning moves: the move can be
applied whenever it is possible to transfer five units of
capacity from the bottom arc to the upper arc, regard-
less of their actual values.
Additional statistics are reported in Table 4. The for-

mat of the table is the same as for knapsack problems.
As expected, both the computational overhead of the
tests and their rate of success are significantly smaller
than in the knapsack case, but still very satisfactory.

6.3. Pool Effectiveness
Finally, we tested the effectiveness of the main
improvements we proposed to the original Fischetti-
Toth scheme. Results are reported in Tables 5 and 6 for
knapsack and network loading instances, respectively.
We compared our final code (Dominance) against
two versions of the same code obtained by disabling
the use of the move pool (versions LD1 and LD2)

Table 4 Internal Statistics for Network Loading Instances

Pool Pool time Pool LD time LD
Problem size ratio (%) success (%) ratio (%) success (%)

g_15_17_43 48 0�73 13�39 26�20 1�50
g_15_17_45 61 1�08 17�80 8�43 0�80
g_15_17_51 167 2�19 17�14 5�79 1�30
g_15_18_35 55 0�94 16�64 15�84 1�10
g_15_18_37 53 1�15 4�04 3�27 0�50
g_15_18_39 108 1�52 12�22 16�93 1�20
g_15_18_40 89 1�66 18�90 5�17 2�60
g_15_19_43 135 1�68 18�51 8�97 3�30
g_16_18_48 78 0�95 9�81 28�68 0�90
g_16_18_53 84 0�17 3�19 59�68 0�60
g_16_19_51 178 2�45 22�92 1�49 1�70
g_16_20_47 56 0�92 8�63 8�76 0�80
g_16_20_51 69 0�81 15�32 18�28 2�60
g_16_21_40 67 0�92 11�46 2�77 1�90
g_16_21_44 108 0�78 7�25 25�27 1�00
g_16_21_52 71 0�77 13�24 5�58 2�30

Average 89�19 1�17 13�15 15�07 1�51
Geom. mean 82�13 1�01 11�70 9�89 1�31

and a version without the local search on incum-
bents (version LD3). We provide the absolute per-
formance figures for Dominance, and we give rela-
tive performance for the other versions—the numbers
in Tables 5 and 6 give the slowdown factors of the
various versions with respect to our final code (the
larger the worse). According to Tables 5 and 6, dis-
abling the move pool while retaining the limit M on
the number of times the LD test is actually called
(version LD1) is disastrous: not only do we lose the
fathoming effect on a large part of the tree, but we
waste a large computing time in solving auxiliary
problems discovering a same pruning move (or even
a dominated one) over and over. Better results can be
obtained if we remove limit M (version LD2): in this
way we retain much of the fathoming effect but at
a much greater computational effort (LD2 is about
five times slower than the default version on knap-
sack problems, and reaches the one-hour time limit
in 11 out of 16 instances on network problems). The
contribution of the local search on incumbents (ver-
sion LD3) is more difficult to evaluate: although the
number of nodes is always reduced by its use, the
overall computing time is reduced only for network
problems. A closer look at the individual table entries
shows, however, that local search is ineffective only
for easy problems, where its overhead is not balanced
by the increased fathoming power, but local search
turns out to be very useful in harder instances (e.g.,
kp70_1 or kp90_1).

7. Conclusions
In this paper we have presented a dominance proce-
dure for general MILPs. The technique is an elabora-
tion of an earlier proposal of Fischetti and Toth (1988),
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Table 5 Comparison of Different LD Versions on Knapsack Problems

Dominance LD1 ratios LD2 ratios LD3 ratios

Problem Nodes Time (s) Nodes Time Nodes Time Nodes Time

kp60_1 1�793 3�45 104�23 3�09 3�66 1�36 1�20 0�23
kp60_2 3�718 3�05 179�47 11�96 4�61 4�77 1�56 0�76
kp60_3 3�995 2�15 143�03 14�41 5�01 4�67 1�97 0�82
kp60_4 19�720 6�42 19�34 3�07 4�33 10�45 1�67 0�85
kp70_1 1�634�517 138�68 >8�16 >8�65 >1�26 >8�65 7�21 6�25
kp70_2 4�466 6�43 133�94 5�05 5�58 2�70 1�26 0�30
kp70_3 6�396 4�93 117�94 7�94 5�31 4�43 1�35 0�44
kp70_4 27�591 4�49 >500�77 >267�18 2�85 17�85 2�33 1�36
kp80_1 2�599 9�41 105�96 1�46 4�97 0�72 1�38 0�11
kp80_2 3�118 1�87 103�60 9�35 4�19 4�70 1�30 0�69
kp80_3 2�962 3�40 119�87 4�49 5�14 1�79 1�44 0�26
kp80_4 5�690 3�29 39�23 3�56 4�78 4�36 1�54 0�70
kp90_1 803�333 65�57 >20�06 >18�30 10�66 16�30 14�49 10�52
kp90_2 5�024 3�56 3�354�31 221�01 4�45 4�02 1�58 0�67
kp90_3 37�017 5�61 >432�23 >213�78 3�67 20�43 1�58 0�94
kp90_4 8�056 3�82 240�35 27�55 3�32 4�58 1�00 0�64

Average — — >351�41 >51�30 >4�61 >6�99 2�68 1�60
Geom. mean — — >116�83 >13�14 >4�26 >4�85 1�88 0�74

Notes. LD1 is the version without the move pool and with the same limit M on the number of times the LD test is called,
whereas LD2 is still without the move pool, but with no such limit. LD3 is the version without local search on the incum-
bents. As in Table 1, label Dominance refers to the default LD version; > indicates a reached time limit.

with important improvements aimed at making the
approach computationally more attractive in the gen-
eral MILP context. In particular, the use of nogoods
and of pruning moves that we propose in this paper
turned out to be crucial for an effective use of domi-
nance tests within a general-purpose MILP code.
In our view, a main contribution of our work is the

innovative use of improving moves. In a classical (yet

Table 6 Comparison of Different LD Versions on Network Problems

Dominance LD1 ratios LD2 ratios LD3 ratios

Problem Nodes Time (s) Nodes Time Nodes Time Nodes Time

g_15_17_43 242�693 164 4�36 2�73 >1�97 >21�98 0�82 0�90
g_15_17_45 1�544�646 845 >5�38 >4�26 >0�22 >4�26 1�26 1�22
g_15_17_51 963�576 545 >8�38 >6�60 >0�55 >6�60 1�99 1�82
g_15_18_35 286�539 172 6�80 4�89 1�48 15�78 1�08 1�02
g_15_18_37 567�899 280 2�13 1�77 1�25 12�43 0�47 0�55
g_15_18_39 303�667 147 2�19 1�63 1�11 7�99 0�97 0�89
g_15_18_40 1�071�922 494 >9�46 >7�29 >0�65 >7�29 1�44 1�35
g_15_19_43 415�472 295 3�39 2�68 1�04 10�83 0�98 0�93
g_16_18_48 122�824 87 9�51 5�49 >4�17 >41�55 4�01 2�63
g_16_18_53 6�489 56 >1�126�00 >64�13 28�33 33�69 3�84 1�07
g_16_19_51 3�774�093 2�159 >1�93 >1�67 >0�11 >1�67 1�65 1�57
g_16_20_47 587�773 450 >10�07 >8�00 >1�05 >8�00 2�96 2�61
g_16_20_51 272�355 257 3�46 2�43 >1�83 >13�99 1�63 1�35
g_16_21_40 2�334�537 1�525 >2�66 >2�36 >0�17 >2�36 2�42 2�36
g_16_21_44 151�869 182 7�18 4�25 >3�04 >19�78 1�76 1�31
g_16_21_52 1�279�007 1�187 >3�57 >3�03 >0�23 >3�03 1�01 0�97

Average — — >75�40 >7�70 >2�95 >13�20 1�77 1�41
Geom. mean — — >6�49 >4�14 >1�00 >9�24 1�51 1�29

Notes. LD1 is the version without the move pool and the same M as the default LD version, whereas LD2 is still without
the move pool, but with no such limit. LD3 is the version without local search on the incumbents. As in Table 1, label
Dominance refers to the default LD version; > indicates a reached time limit (for LD1 and LD2, the time limit is reached
so often that the means are seriously underestimated).

computationally impractical) test set approach, these
moves are used within a primal solution scheme,
leading eventually to an optimal solution. In our
approach, instead we heuristically generate improv-
ing moves on small subsets of variables by solving,
on the fly, small MILPs. These moves are not used
to improve the incumbent, as in the classical test
set environment, but rather to fathom nodes in the
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branch-and-bound tree—hence, the name pruning
moves. If implemented in a proper way, this approach
introduces an acceptable overhead even if embedded
in a highly efficient commercial MILP solver such as
ILOG CPLEX 11 and may produce a drastic reduc-
tion in the number of nodes. Indeed, computational
results show that the method can lead to a speedup of
up to two orders of magnitude on hard MILPs whose
structure is amenable to dominance, in the sense that
it allows for local variable adjustments that produce
equivalent solutions. An example of this kind of prob-
lem has been discussed—namely, a network loading
problem arising in telecommunication.
A drawback of our approach is of course the

overhead introduced when addressing problems that
turn out not to produce any effective pruning move.
A possible remedy is to use a conservative adaptive
scheme that tries to generate those moves only in the
first part of the search and deactivates the solution of
auxiliary problem if its success rate is not satisfactory.
The detailed design and implementation of this idea
is, however, out of the scope of the present paper and
is left to future investigation.
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