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Abstract

One of the main difficulties in statistical parsing is associated with the
task of choosing the correct parse tree for the input sentence, among all
possible parse trees allowed by the adopted grammar model. While this
difficulty is usually evaluated by means of empirical performance mea-
sures, such as labeled precision and recall, several theoretical measures
have also been proposed in the literature, mostly based on the notion of
cross-entropy of a treebank. In this article we show how cross-entropy can
be misleading to this end. We propose an alternative theoretical measure,
called the expected conditional cross-entropy (ECC), which can be ap-
proximated through the inverse and normalized conditional log-likelihood
of a treebank, relative to some model.

We conjecture that the ECC provides a measure of the informative-
ness of a treebank, in such a way that more informative treebanks are
easier to parse under the chosen model. We test our conjecture by com-
paring ECC values against standard performance measures across several
treebanks for English, French, German and Italian, as well as other tree-
banks with different degrees of ambiguity and informativeness, obtained
by means of artificial transformations of a source treebank. All of our
experiments show the effectiveness of the ECC in characterizing parsing
difficulty across different treebanks, making it possible treebank compar-
ison.

1 Introduction

Statistical natural language parsing has attracted the attention of many re-
searchers in the computational linguistics community, resulting in a large body
of statistical models and parsing algorithms that have been newly developed and
evaluated in the last fifteen years. Most of these models can be automatically
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trained on the basis of annotated corpora, called treebanks, and specialized al-
gorithms have also been developed for this task. With the growing importance
of training for statistical natural language parsing, some attention has been
recently devoted to the problem of treebank comparison, introduced below.

Each treebank is, to some extent, representative of the degree of structural
ambiguity of the grammar underlying the language at hand, as well as of the
informativeness of the linguistic framework adhered to by the chosen annotation.
It is generally agreed that both these aspects can have a strong influence on the
difficulty that one experiences when parsing with a model trained on these
data. It follows that an effective way of quantifying these aspects for a given
treebank, relative to some model of interest, would provide an estimation of
the parsing accuracy experienced by the model when trained on the treebank
itself. Furthermore, this could make it possible to compare treebanks across
different domains and even across different languages, again with respect to
parsing difficulty. Such a measure is called in this article the “informativeness”
of a treebank, with the intended meaning that more informative treebanks are
easier to parse under the chosen model.

The definition of an effective measure of the informativeness of a treebank
and its experimental evaluation is the main contribution of this article. This
line of investigation is strongly motivated by the need to compare different
treebanks, to guide the construction of new treebanks or the restructuring of
existing ones, and to understand the influence that language intrinsic aspects
and annotation choices can have on parsing performance for models trained on
a given treebank. This is a research area that is gaining much attention at the
moment of writing.

A first approach to the assessment of the informativeness of a treebank is
based on the use of the standard labeled precision and recall measures [Black et al.1991],
originally defined for the evaluation of the performance of different parsers on
a common treebank benchmark. More precisely, in this approach parsing per-
formance is measured for an individual parser trained on two or more tree-
banks, in order to establish a quantitative comparison of the informativeness
of these data samples. This is seen for instance in work comparing differ-
ent treebanks for the same language, as done by [Gildea2001] (Wall Street
Journal and Brown Corpus for English) and by [Kübler2005], [Maier2006] and
[Rehbein and van Genabith2007] (NEGRA and TüBa-D/Z treebanks for Ger-
man). Similar work has been done to compare treebanks for different lan-
guages, as reported by [Bikel and Chiang2000] (English and Chinese) and by
[Arun and Keller2005] (English, French and German). [Schluter and van Genabith2007]
also use this approach to guide the process of restructuring an existing treebank
through the use of a more informative annotation.

The problem of evaluating the informativeness of a corpus has also been
considered in speech recognition. In this case, information theoretic measures
such as entropy and cross-entropy are exploited to quantitatively evaluate unla-
beled corpora by computing the so-called perplexity of a language model; see for
instance [Jurafsky and Martin2000, Jelinek1997]. The approach has been gen-
eralized by [Sharman1990], in order to provide a model-independent measure of
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the inherent complexity of a corpus. Such a generalization has been used by
[Musillo and Sima’an2002] to normalize performance evaluations obtained for
parsers trained on different annotations of a common corpus, in the attempt
to overcome biases of existing evaluation measures toward a given linguistic
representation/framework. [Abney1994] also uses information theory to obtain
more accurate, fine-grained and objective estimation of parsing performance in
a chunking task.

In this article we bridge the two approaches outlined above. We first ob-
serve that standard information theoretic measures, such as the sentential cross-
entropy and the derivational cross-entropy (introduced in section 2), are not ad-
equate to assess the difficulty a model encounters when parsing a given treebank.
Such a difficulty is instead strongly related to two parameters:

• the degree of ambiguity of the grammar induced from the treebank; and

• the induced distribution on parse trees for ambiguous sentences, condi-
tioned by the sentence itself.

We then propose a new information theoretic measure, which we call the ex-
pected conditional cross-entropy (ECC), that is directly related to the two pa-
rameters above. In this article we put forward the conjecture that there is a
strong relation between the ECC measure of a given treebank, and the pars-
ing performance one obtains when parsing the treebank itself with the chosen
model.

Exact computation of the ECC measure is problematic, since it involves an
expectation over the whole language generated by the trained model. However,
we provide a theoretical characterization of the ECC, showing that it can be
effectively approximated using the inverse of the normalized conditional log-
likelihood of the treebank, a standard objective measure used in the estimation
of log-linear models. This characterization allows us to evaluate the ECC mea-
sure on a treebank, relative to the chosen model, and to perform comparison
across different treebanks. We then test our conjecture above, by evaluating
the ECC measure on several treebanks and by comparing these values with the
parsing performance of a model trained and tested on these treebanks. We use
treebanks for English, French, German and Italian, as well as other treebanks
obtained by means of artificial transformations of a source treebank. Our exper-
imental evaluation confirms that the ECC measure is strongly related to parsing
performance, and is therefore a good candidate for treebank comparison across
different domains and even different languages.

The rest of this article is organized as follows. In section 2 we recall some
basic notions from information theory and probabilistic languages. In section 3
we define the ECC measure and relate it to the conditional log-likelihood of a
treebank. In section 4 we provide a description of the treebanks that are used
in the experimental assessment in this article, and in section 5 we present and
discuss our experimental findings. We draw some conclusions in section 6. A
few technical details about entropy approximation are reported in appendix A.
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2 Preliminaries

In this section we introduce some of the notation that will be used in the rest of
this article. We start with some information theoretic notions such as entropy
and cross-entropy, defined in the context of language models. The reader is re-
ferred to [Cover and Thomas1991, Chapter 2] for mathematical definitions and
to [Manning and Schütze1999, Chapter 2] for applications of these notions to
language modeling. We also briefly recall the definition of probabilistic context-
free grammar, which is the model used in this article. Again, the reader is
referred to [Manning and Schütze1999, Chapter 11].

In statistical parsing applications we are interested in modeling parse trees
for sentences in some language. Let T be the set of trees of interest, and assume
that there is an underlying probability distribution pT defined over T , that is,
a function pT such that pT (t) > 0 for every t ∈ T , and

∑

t∈T pT (t) = 1.
The derivational entropy for pT is defined as (all logarithms in this article

are in base 2)

HD(pT ) = −
∑

t∈T

pT (t) log pT (t), (1)

and expresses the expected information of trees in T . Informally, this can be
understood as a measure of the uncertainty we experience when observing trees
from T , using our knowledge about pT . The lower the derivational entropy of
distribution pT , the less surprised we are about the outcome of a trial based on
pT .

When we deal with natural language, in most applications distribution pT

is unknown (hidden). Nevertheless, we have some statistical model µ for T , in-
ducing a probability distribution pµ over T . The derivational cross-entropy

for pT and pµ is defined as

HD(pT , pµ) = −
∑

t∈T

pT (t) log pµ(t). (2)

Such a quantity expresses the uncertainty that we experience when observ-
ing trees from T , if we only know distribution pµ (instead of the unknown
distribution pT ). From the information inequality, reported for instance in
[Cover and Thomas1991, Theorem 2.6.3], we have that HD(pT , pµ) ≥ HD(pT ),
and the equality holds if and only if pµ and pT express the same probability
distribution, that is, pµ(t) = pT (t) for every t ∈ T .

Note that the derivational cross-entropy cannot be directly computed, since
we do not know the underlying distribution pT . Nevertheless, it is common
practice to approximate this cross-entropy using the relation introduced below,
whose theoretical justification is discussed in appendix A. We need to introduce
some additional notation. Let A be some set. A sample A of A is a finite
multiset of elements from A. For a ∈ A, we write f(a,A) to denote the multi-
plicity, that is, the number of occurrences, of a in A. We define the size of A as
|A| =

∑

a∈A f(a,A).
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Consider now a sample T of trees from T , called a treebank. We view T as
a sequence of independent and identically distributed random variables, taking
values on T according to pT . We also assume that T is a “typical sequence” for
such random variables, as defined in appendix A. Consider the quantity

HD
T (pµ) = −

1

|T |
·
∑

t∈T

f(t, T ) · log pµ(t). (3)

Under the above assumptions on T appendix A shows that, as the size of the
treebank increases, quantity HD

T (pµ) approaches the derivational cross-entropy
HD(pT , pµ).

There is also an alternative way of reading (3). The treebank T can be asso-

ciated with an empirical distribution pT defined by pT (t) = f(t,T )
|T | , for every

t ∈ T . Then quantity HD
T (pµ) is exactly the derivational cross-entropy for pT

and pµ defined as in (2), that is, we can write HD
T (pµ) = HD(pT , pµ). Under the

above assumptions about T , we have that as the size of the treebank increases
the empirical distribution pT approaches the unknown distribution pT , and con-
sequently HD

T (pµ) approaches the derivational cross-entropy HD(pT , pµ). In sta-
tistical natural language processing, quantity (3) is commonly used to compute
an approximation of the derivational cross-entropy when we only have at our
disposal a “large enough” treebank [Manning and Schütze1999, section 2.2.6].

Similar concepts to those presented above can be defined when we consider
the sets of strings generated by the parse trees in T . We only provide the basic
definitions below, and leave the discussion to the intuition of the reader. For
each tree t ∈ T , let y(t) be the yield of t, that is, the string generated by
t. We write L for the language of all strings generated by trees in T . For a
string w ∈ L, we define T (w) as the set of all parse trees with yield w, that
is, T (w) = {t | y(t) = w}. If we set pT (w) =

∑

t∈T (w) pT (t), we obtain a
probability distribution over L.

The sentential entropy for pT is defined as

HS(pT ) = −
∑

w∈L

pT (w) log pT (w). (4)

Let us extend pµ to L, as done above with pT . The sentential cross-entropy

for pT and pµ is defined as

HS(pT , pµ) = −
∑

w∈L

pT (w) log pµ(w). (5)

It is not difficult to show that HD(pL, pµ) ≥ HS(pL, pµ), and equality holds if
and only if T (w) is a singleton for every w ∈ L.

Consider now a treebank T of trees from T . For a string w, we write f(w, T )
to denote the total number of times w occurs in T as the yield of a tree. More
precisely, f(w, T ) =

∑

t:y(t)=w f(t, T ). We define the quantity

HS
T (pµ) = −

1

|T |
·
∑

w∈T

f(w, T ) · log pµ(w). (6)
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If T is a typical sequence, at the increase of the size of T we have that quantity
HS

T (pµ) approaches the sentential cross-entropy HS(pT , pµ).
We conclude the above part on information theory with a methodological

remark. In statistical natural language processing, the cross-entropy measures
introduced above are commonly exploited as pseudo-distances, in order to com-
pare the tightness of different models to the observed data sample. In fact,
cross-entropy is directly related to the Kullback-Leibler divergence, measuring
how much two probability distributions are point-wise close one to the other. In
the case at hand, the two involved distributions are the empirical distribution
of the input sample and the distribution induced by the trained model. In such
cases, it is crucial that the comparison be carried out with respect to a common
training sample. Differently from such a standard practice, in later sections
we always use the cross-entropy as a measure of uncertainty, and we are only
interested in finding out which distribution minimizes the uncertainty that we
experience when observing events from the associated domain. In this respect,
we do not need to compare cross-entropies estimated over the same data sam-
ple. We will come back to this point in section 3, when we discuss some simple
examples.

The statistical language models µ that we consider in this article are all
based on probabilistic context-free grammars. We assume the reader is familiar
with the definition of this formalism and briefly recall here the notation we use
in this article. A context-free grammar (CFG) is a tuple G = (VN , VT , R, S),
where VN is a finite set of nonterminal symbols, VT is a finite set of terminal
symbols disjoint from VN , S ∈ VN is the start symbol and R is a finite set of
rules. Each rule in R has the form A → α, with A ∈ VN and α ∈ (VT ∪ VN )∗.

We denote by L(G) the set of all strings generated by G and by T (G) the
set of all parse trees generated by G. We also write T (w, G) for the set of all
parse trees generated by G with yield w. If we have |T (w, G)| = 1 for every
w ∈ L(G), then we say that G is unambiguous; otherwise, we say that G is
ambiguous. For a nonterminal A and a string α, we write f(A, α) to denote
the number of occurrences of A in α. For a rule (A → α) ∈ R and a parse tree
t ∈ T (G), f(A → α, t) denotes the number of occurrences of A → α in t. We
also write |w| to denote the length of a string w, and |t| to denote the number
of rules used in a parse tree t.

A probabilistic context-free grammar (PCFG) is a pair G = (G, p),
with G a CFG and p a function from R to the real numbers in the interval
[0, 1]. A PCFG is proper if for every A ∈ VN we have

∑

α p(A → α) = 1. The
probability of a parse tree t ∈ T (G) is the product of the probabilities of all the
rules in t, counted with their multiplicity, that is,

p(t) =
∏

A→α

p(A → α)f(A→α,t). (7)

The probability of w ∈ L(G) is the sum of the probabilities of all parse trees for
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w, that is,

p(w) =
∑

t∈T (w)

p(t). (8)

A PCFG is consistent if
∑

t∈T (G) p(t) = 1, that is, if it induces a proper distri-

bution over the set of trees it generates.1 In this article, all the PCFGs we use
are estimated from treebanks by means of the maximum-likelihood method, also
known as frequency count estimator. This method guarantees that the resulting
grammar is always proper and consistent [Chaudhuri, Pham, and Garcia1983,
Chi and Geman1998].

3 Parsing and ambiguity

When parsing is viewed as the process of correctly assigning a single parse tree
to each input sentence, the source of the complexity that one encounters is due
to the degree of ambiguity of the sentences and to the probability distribution
of parse trees conditioned on each sentence. This is so because certain distribu-
tions might be more favorable than others when discriminating among several
parse trees for a given input. In this respect, parsing unambiguous grammars is
considered easy, even if local ambiguity combined with beam search can some-
times lead to parsing errors. As already discussed in the introduction, we would
like to define some mathematical function of the data and of the induced model,
assessing a measure of the informativeness of the treebank as reflected on the
complexity of the parsing task due to ambiguity resolution. Unfortunately, the
notions of sentential cross-entropy and derivational cross-entropy, that are com-
monly used in language modeling to measure model tightness, do not provide
helpful information in this respect. To illustrate this point, we discuss below
some simple examples. We then introduce an alternative information theoretic
quantity, which we call expected conditional cross-entropy. Such a quantity is
at the basis of the main proposal of this article.

3.1 Some examples

In what follows we introduce two toy treebanks, and infer two PCFGs from these
data. Consider a treebank T1 composed by an equal number of occurrences of
trees t1 and t2, depicted in figure 1, and let T1 = {t1, t2}. From T1 we can
induce the CFG G1 with rules

S → aS, S → bS, S → c.

The language generated by G1 is L(G1) = {uc | u ∈ {a, b}∗}, and G1 is
unambiguous.

1The above definition of consistency is standardly used in the literature on statistical
natural language processing. We warn the reader that such a definition is not related with
the definition of the same term that is found in the statistical literature, indicating that an
estimator for some parametric model is guaranteed to converge in the limit.
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t1 : Sb Sa Sc
t2 : Sa Sb Sc

t3 : Sa SSa a
Figure 1: Trees composing the toy treebanks T1 and T2.

As already mentioned in section 2, in this work we consider the widely
adopted maximum-likelihood method for estimating the probabilities of the rules
of a PCFG, which is based on the frequency count of the rules in a treebank.
Estimating the probabilities of the rules of G1 with this method, on the basis
of the treebank T1, provides a PCFG G1 = (G1, p1) with p1(S → aS) = p1(S →
bS) = p1(S → c) = 1

3 . Let t be a parse tree in T (G1) with |t| = n. From (7) we

have p1(t) =
(

1
3

)n
.

We now use relation (3) with pµ = p1 to approximate the derivational cross-
entropy in (2). We have

HD
T1

(p1) = −
1

|T1|

∑

t∈T1

f(t, T1) · log(p1(t))

=
1

|T1|

∑

t∈T1

f(t, T1) · |t| · log(3)

=
1

2
(3 · log(3) + 3 · log(3)) = 3 · log(3). (9)

Our PCFG G1 also defines a distribution over strings, assigning to each w ∈
L(G1) the probability of the unique tree that generates it, with p1(w) =

(

1
3

)n
,

n = |w|. When we apply the approximation in (6), we obtain essentially the
same calculations as in (9), resulting in

HS
T1

(p1) = 3 · log(3). (10)

We also consider a second treebank T2 composed by occurrences of the only
tree t3, depicted in figure 1, and we let T2 = {t3}. From T2 we induce the CFG
G2 with rules

S → aS, S → Sa, S → a.

We have L(G2) = {an | n ≥ 1}. It is not difficult to see that G2 assigns to
each sentence an a number of parse trees that grows exponentially with n, and
therefore G2 is ambiguous.

Estimating probabilities for the rules of G2 from T2, again on the basis of
likelihood maximization, provides a PCFG G2 = (G2, p2) with p2(S → aS) =
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p2(S → Sa) = p2(S → a) = 1
3 . For each parse tree t ∈ T (G2) with |t| = n we

have p2(t) =
(

1
3

)n
. Relation (3) now provides

HD
T2

(p2) = −
1

|T2|

∑

t∈T2

f(t, T2) · log(p2(t))

=
1

|T2|

∑

t∈T2

f(t, T2) · |t| · log(3) = 3 · log(3). (11)

Consider a string an, n ≥ 1. Its probability p2(a
n) is the sum of the proba-

bilities of all parse trees in T (an). We can express such a probability using the
recursive relation

p2(a
n) =

{

1
3 n = 1,
2
3 · p2(a

n−1) n > 1;

=
2n−1

3n
. (12)

We can then apply to T2 the approximation in (6), and use relation (12) to write

HS
T2

(p2) = −
1

|T2|

∑

w∈T2

f(w, T2) · log

(

2|w|−1

3|w|

)

= −
1

|T2|

∑

w∈T2

f(w, T2) · (|w| − 1) +

+
1

|T2|

∑

w∈T2

f(w, T2) · |w| · log(3)

= −2 + 3 · log(3) = 3 · log(3) − 2. (13)

We can now compare the different (approximations of the) cross-entropies
reported above for PCFGs G1 and G2. As already remarked in section 2, the
reader should not be confused by the fact that these cross-entropies have been
estimated on different data samples. Here we do not investigate which model
fits better a distribution provided by means of some input sample data, as
usually done in language modeling. We are instead interested in finding out
which model has the least expected surprise when observing events from the
respective domain. The fact that G1 and G2 have the same derivational cross-
entropy, as seen from (9) and (11), indicates that these models experience the
same surprise when observing parse trees generated according to the hidden
distributions underlying the samples T1 and T2, respectively. Similarly, when
observing sentences from its own domain, G2 is less surprised than G1, since the
sentential entropy in (13) is smaller than the sentential entropy in (10).

Note however that, from an intuitive point of view, parsing with G2 is a
very difficult task, since for each input sentence we have to discriminate among
exponentially many parse trees and, moreover, all these trees have the same
probabilities. On the contrary, parsing with G1 is very easy, since there is no
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ambiguity at all that needs to be resolved for any input string. But this is hardly
seen when comparing the values of the cross-entropies for G1 and G2. In fact,
as already observed, we have the same values of the derivational cross-entropy,
and the sentential cross-entropy for G2 is even smaller than that for G1.

The above considerations can be explained by observing that the deriva-
tional and the sentential cross-entropies depend on the joint distribution defined
by the model, that is, the distribution over all parse trees or sentences, respec-
tively, that can be generated by the grammar. In other words, the cross-entropy
measures the average surprise in a trial where the entire language is observed,
unconditionally. On the contrary, in parsing we are provided an input sentence,
and we have to disambiguate with respect to the space of trees that generate
such a sentence. Thus, in order to measure for a given model the “parsing diffi-
culty” due to language ambiguity, we should measure the average surprise our
model experiences when observing parse trees generated by the hidden distribu-
tion, conditioned by the input string. In the next subsection we elaborate more
on the relation between the notion of cross-entropy and the notion of ambiguity.

3.2 Expected conditional cross-entropy

Let us assume the same setting as in section 2 with a hidden distribution pT and
a model distribution pµ, both defined over a set of parse trees T and a language
L of all the generated sentences. Let w be some fixed sentence in L. Recall that
T (w) denotes the set of all possible parse trees for w. We define the conditional

cross-entropy for distributions pT and pµ and relative to sentence w as

HC
w (pT , pµ) = −

∑

t∈T (w)

pT (t | w) log pµ(t | w)

= −
∑

t∈T (w)

pT (t)

pT (w)
log

pµ(t)

pµ(w)
, (14)

where we have used the fact that pT (t, w) = pT (t) in case t belongs to T (w),
since t derives w (similarly for pµ(t, w)). The conditional cross-entropy relative
to w is a measure of the uncertainty we experience when observing a parse
tree for w, with the only knowledge of distribution pµ(t | w) in place of the
unknown distribution pT (t | w). Note that HC

w (pT , pµ) is related to the degree
of ambiguity of w, that is, quantity |T (w)|, and is always zero for unambiguous
sentences in L. Large values of HC

w (pT , pµ) not only indicate that there are
several parse trees for w, but also that the likelihoods of such parse trees under
the two models are very similar, and therefore that it is difficult to discriminate
the desired parse tree.

We note in passing here that, in the restricted case of pT = pµ, quantity
HC

w (pT , pµ) becomes an entropy and has been used by [Hwa2004] with the name
of tree entropy, with the purpose of finding training samples to boost a statistical
parser. Despite the fact that the focus in [Hwa2004] is on training statistical
parsers, there is a certain similarity between the use of tree entropy in that work
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and the use of the conditional cross-entropy HC
w (pµ, pµ) in this article, since in

both works the goal is to measure cases in which the parser experiences the
highest uncertainty.

We now want to evaluate the amount of surprise, due to the ambiguity of our
language L, that we experience when parsing with respect to model µ. To this
end, we consider the average conditional cross-entropy over all the sentences in
L. We thus define the expected conditional cross-entropy (ECC) for pT

and pµ as

ECC(pT , pµ) =
∑

w∈L

pT (w)HC
w (pT , pµ). (15)

Note that the ECC is null if and only if the grammar is unambiguous. Fur-
thermore note that, similarly to the case of the sentential and the derivational
cross-entropies, the ECC cannot be computed, since the distribution pT is hid-
den. To overcome this problem, we develop in what follows an approximation
for the ECC.

Recall that we are assuming pT (w) =
∑

t∈T (w) pT (t) and pµ(w) =
∑

t∈T (w) pµ(t).

From relation (14) we can write

pT (w) · HC
w (pT , pµ) =

= pT (w) ·



−
∑

t∈T (w)

pT (t)

pT (w)
log

pµ(t)

pµ(w)





= −
∑

t∈T (w)

pT (t) log pµ(t) +
∑

t∈T (w)

pT (t) log pµ(w). (16)

Using (16) in the definition of ECC we have

ECC(pT , pµ) =

=
∑

w∈L



−
∑

t∈T (w)

pT (t) log pµ(t) +
∑

t∈T (w)

pT (t) log pµ(w)





= −
∑

t∈T (L)

pT (t) log pµ(t) +
∑

w∈L

pT (w) log pµ(w)

= HD(pT , pµ) − HS(pT , pµ). (17)

In words, the ECC is precisely the difference between the derivational and the
sentential cross-entropies.

Relation (17) means that we can compute an approximation of the ECC
using our approximations for the derivational and the sentential cross-entropies
presented in (3) and (6), respectively. However, there is a well known problem
here. When subtracting two approximations, both having a relative error of
the same order, we might not end up in general with an approximation of the
difference quantity having a relative error again of the same order. This is the
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case if some of the predominant components in the two approximated quantities
elide one another. Such a worst case seems very unlikely to be realized in
practical applications, when our estimations are carried out on the basis of
real world corpora of very large sizes. In preliminary experiments reported in
section 5, learning curves are built confirming that ECC estimation is reliable
enough, given the available data.

As already mentioned in the introduction, our approximation of the ECC
measure is strictly related to the definition of an objective function that is
used to estimate generative models that are more expressive than PCFGs, as
explained in what follows. Recall that, for a tree t, we write y(t) to denote its
yield. We can rewrite our approximation of the ECC as

HD
T (pµ) − HS

T (pµ) =

= −
1

|T |
·
∑

t∈T

f(t, T ) · log pµ(t) +
1

|T |
·
∑

w∈L

f(w, T ) · log pµ(w)

= −
1

|T |
·
∑

t∈T

f(t, T ) · log
pµ(t)

pµ(y(t))

= −
1

|T |
·
∑

t∈T

f(t, T ) · log pµ(t | y(t)) (18)

The second factor in the product in (18) is the so-called conditional log-

likelihood of the treebank T . In the context of training of statistical parsers,
the conditional log-likelihood is used as an objective function to be maximized
when estimating so-called log-linear or maximum entropy distributions [Smith2004].
Such a function has also been used by [Johnson2001] in training PCFG models.
From (18) we thus see that our approximation of the ECC corresponds to the
inverse of the conditional log-likelihood of T , normalized with the size of T
itself. The normalization factor intuitively justifies the use of the ECC measure
in cross-comparison of treebanks, which we pursue in this article.

To conclude, we go back to our example from subsection 3.1 involving PCFGs
G1 and G2. Following relation (17), we evaluate the ECC using the approxi-
mated values of the derivational cross-entropy and the sentential cross-entropy.
From (9) and (10) we derive that the ECC for treebank T1 under model p1 is
3 · log(3) − 3 · log(3) = 0. This is in accordance with our intuition that the
parsing effort due to disambiguation that we experience when processing data
with G1 should be zero, since the underlying grammar is unambiguous. Simi-
larly, from (11) and (13) we derive that the ECC for treebank T2 under model
p2 is 3 · log(3) − (3 · log(3) − 2) = 2. Again, this meets our intuition that the
parsing effort due to the ambiguity of grammar G2 should be estimated to a
value greater than zero.
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4 Treebanks

For the experimental assessment in the next section we use six treebanks for
four different languages. These are the Penn Treebank for English, the French
Treebank, the NEGRA treebank and the Tübingen Treebank of Written Ger-
man for German, and the Italian Syntactic-Semantic Treebank and the Turin
University Treebank for Italian. These treebanks consist of annotations of texts
that are mainly taken from newspaper articles (with the exception of the Turin
University Treebank, which includes other genres). In this section we briefly
describe the main characteristics of these data collections, summarized in ta-
ble 1. We refer the reader to the references cited below for more specific details
on these language resources and their distributions.

corpus # sentences # tokens # nonterminals # POS
WSJ (English) 48,889 1,175,366 26 45
FTB (French) 13,295 327,806 12 15
NEGRA (German) 20,596 355,065 25 54
TüBa-D/Z (German) 22,091 381,525 26 54
ISST (Italian) 2,969 84,985 26 28
TUT (Italian) 2,115 51,383 25 26

Table 1: Treebank description.

The Wall Street Journal (WSJ) treebank is part of the Penn Treebank (PTB)
[Marcus, Santorini, and Marcinkiewicz1993]. This treebank is well known and
does not require much discussion here. The treebank uses 45 part-of-speech
(POS) tags and 26 nonterminals. It is the largest of the six treebanks con-
sidered in this article, with a total of 48,889 sentences. In our cross-language
experiments in section 5.2, and unless otherwise stated, we only use the 3,452
sentences in sections 02-03 of the WSJ treebank as training sample, and leave
aside sections 04-22. In this way, the amount of training sentences for the WSJ
treebank becomes comparable with those of the training samples available for
the other three languages.

The second language we consider is French, for which we use the French
Treebank (FTB) [Abeillé, Clément, and Kinyon2000]. The FTB displays the
lowest number of POS tags among all of the six treebanks considered in this
article, with only 15 lexical categories used for simple as well as for compound
words. POS tagging in the FTB basically conforms to the standard set of
lexical categories also seen in the other treebanks considered in this article. The
only exception is represented by clitics (weak pronouns) and foreign words (in
quotations): both these categories are annotated with a POS tag of their own.

The phrase structure annotation in the FTB is mainly based on a surface,
shallow annotation compatible with various syntactic frameworks. The syntactic
tag set consists of 12 nonterminals. Again, this is the smallest nonterminal set
among all the treebanks considered in this article. Only major phrases are
annotated, with little internal structure. The use of unary rules in annotation
is also parsimonious. In case of rigid sequences of categories such as dates

13



or addresses, for which it is rather difficult to determine the lexical head, the
annotation consists of one flat noun phrase with no internal constituents. The
FTB does not make any use of empty categories, in an attempt to be as theory
neutral as possible. Similarly, functional phrases are not used, such as those
projected by determiners (DP) and complementizers (CP). Finally, there can
also be headless phrases, as for instance elliptical noun phrases lacking a head
noun, or sentential clauses lacking a verbal nucleus.

In the FTB all punctuation marks were originally annotated with the same
POS tag. We have instead enriched the annotation for the punctuation marks,
in order to make it more uniform with the WSJ treebank. More specifically, all
punctuation marks have been assigned their appropriate tag from the POS tag
set of the WSJ treebank, which distinguishes among commas, periods, brackets,
etc.

The third language we consider is German, with two treebanks. The first
treebank, called NEGRA [Skut et al.1997], consists of around 350,000 word to-
kens from German newspapers. This amounts to 20,602 German sentences,
further reduced to 20,596 after removing few problematic cases. In the NEGRA
treebank the adopted syntactic annotation combines a phrase structure repre-
sentation with grammatical functions. We have used the Penn treebank version
included in the official distribution. It is derived by accommodating crossing
branches with the introduction of syntactic traces, and uses a PTB-like format
with 54 POS tags and 25 nonterminals.

As in the case of the FTB, we have enriched the annotation for punctuation
marks, which were originally annotated with a single POS tag, to make it more
uniform with the annotation adopted by the WSJ treebank. As compared with
the WSJ treebank, the NEGRA treebank uses a flatter syntactic representation,
collapsing the verb phrase marker with the sentential marker. This choice has
been originally motivated by the semi-free word order of German, where the
leftmost noun phrase in a sentence need not necessarily be the subject. Fur-
thermore, the noun phrase marker is similarly collapsed when in the parental
context of a prepositional phrase. This representation accounts for the fact that
prepositions behave like case markers in German, so that a preposition and a
determiner can merge into a single word.

The second German treebank is the Tübingen Treebank of Written German
(TüBa-D/Z) [Telljohann et al.2006]. This treebank uses the same POS tag set
as NEGRA, and a set of 26 nonterminals. For the experiments reported in this
article, we use the second release of TüBa-D/Z, in the available Penn treebank
format. This version comprises approximately 22,000 sentences (ca. 380,000
words).

The annotation adopted for TüBa-D/Z comprises information on inflectional
morphology, syntactic constituency, grammatical functions, (complex) named
entities, anaphora and coreference relations. The annotation scheme is surface-
oriented in that it relies on a context-free backbone and uses neither crossing
branches nor traces. Instead, it describes long-distance relations by specific
functional labels, which we have ignored in our experiments.

The last language we consider is Italian, for which we use two treebanks. The

14



first treebank, the Italian Syntactic-Semantic Treebank (ISST) [Montemagni et al.2003],
is annotated at four levels: a morpho-syntactic level, two syntactic levels consist-
ing of a phrase structure level and a level with functional relation annotations,
and a lexico-semantic level. The ISST total size is of 305,547 word tokens. In
this article we refer only to the part of ISST that is syntactically annotated
at the phrase structure level. This part contains about 3,000 sentences in the
financial domain, originally published as articles in a business and economy Ital-
ian newspaper. We remark that we have removed some sentences from the data
sample, because of annotation errors. We thus use a total of 2,969 sentences.

ISST has a rich morpho-syntactic annotation that includes POS tags, inflec-
tional features (e.g., masculine, singular, etc.) and lemma information. We only
use the POS tags for each word token, and discard the rest of the morphological
information. As compared with the WSJ treebank, the POS tag set of ISST is
smaller, consisting of 28 tags. There is only a single tag for verbs, which is also
used for the class of modal verbs. Again, we have enriched the annotation for
punctuation marks, which were originally annotated with a single POS tag.

In its original distribution, ISST is represented in XML format. This has
been automatically converted into bracketed expressions in the PTB-style. The
total number of nonterminals adopted by ISST amounts to 26. The phrase
structure annotation differs from that of the WSJ treebank in several aspects.
First, there is no use of the verb phrase marker. As in the case of the NEGRA
treebank, this is mainly motivated by the relatively freer word order that is seen
in written Italian sentences, with respect to English sentences. As a results, the
syntactic structures displayed by ISST are rather flat. Furthermore, ISST does
not use empty categories.

The second Italian treebank is the Turin University Treebank (TUT) [Bosco2004].
The treebank is composed of sentences from the Italian civil law code and sen-
tences from two Italian newspapers. The original version of TUT is based on
a specific dependency-oriented annotation aiming at capturing the richness of
the syntax-semantics interface. This was later converted into the Penn treebank
format. For our experiments we have used the development corpus and the 200
sentences of the test sample made available to participants in the EVALITA
parsing task.2 They consist of 2,176 sentences (about 55,000 tokens) annotated
in the Penn treebank format. Some of the sentences of the development set
could not be used for training because of specific problems with the format.
Therefore, in our experiments we have only used 2,115 sentences.

TUT has a rich morpho-syntactic annotation that includes complex POS
tags and inflectional features. We only use the basic POS tags for each word
token, and discard the rest of the morphological information. As compared with
the WSJ treebank, the POS tag set of TUT is smaller, consisting of 26 tags. We
have enriched the annotation for punctuation marks, which were originally an-
notated with a single POS tag. The total number of basic nonterminals adopted
by TUT amounts to 25, enriched by suffixes expressing functional syntactic re-
lations, which we have discarded. TUT also uses empty categories, which were

2http://evalita.itc.it/tasks/parsing.html

15



removed before feeding the treebank to the parser.

5 Experimental assessment

The aim of the experimental assessment in the present section is to test our
conjecture about the effectiveness of the ECC as a measure of the difficulty of
the parsing task due to ambiguity resolution, in the chosen statistical model.
We evaluate parsing difficulty by considering the standard measures of parsing
performance, namely labeled precision (LP) and labeled recall (LR), and their
F1 combination [Black et al.1991]. We also consider the so-called exact match
rate (EMR), defined as the percentage of trees where recall and precision are
both 100%. In all of the reported experiments, parsing performance is evaluated
using the Stanford parser [Klein and Manning2002b, Klein and Manning2003].3

We have slightly modified the source code in order to be able to computate the
quantity p(w), which is needed in the definition of the ECC. The experiments are
carried out on POS sequences, thus disregarding word tokens. This choice was
made in order to avoid any effect on parsing due to wrong POS tag assignments.
Furthermore, testing is always done only on trees with yield smaller than 40
word tokens (as usually done in this type of experiments), while training is
unrestricted.

We directly compare parsing performance with the ECC value for all of
the treebanks discussed in the previous section, and also for some treebanks
obtained from the WSJ treebank through some artificial transformations, to be
discussed below. What we observe is the desired correlation, that is, at the
growing of the ECC value the parsing difficulty also grows, as attested by a
degradation in the above performance measures. Finally, we contrast the ECC
value with the sentential and derivational cross-entropies of the model, similarly
to what we have done in the simple examples in section 3, showing that these
measures alone are not adequate to assess the difficulty of the parsing task in
the chosen model.

Before we present the results of our experiments, in the five subsections be-
low, there are two important issues that should be discussed. The first issue
concerns the use of the F1 and the EMR measures in the estimation of pars-
ing performance. In some of our experiments some idiosyncratic behavior is
revealed when comparing these measures across different treebanks. More pre-
cisely, in some cases we have registered an increase in EMR accompanied by a
corresponding decrease in F1, when moving from one treebank to another. In
further investigation of the problem, we have also observed the same pattern
when running different statistical parsers on the same treebank, as reported
in the following experiment. We have run the Stanford parser and Michael
Collins’ parser [Collins2003], as implemented by Dan Bikel [Bikel2004], on the
TUT treebank, using a leaving-one-out strategy on all sentences.4 The best

3http://nlp.stanford.edu/downloads/lex-parser.shtml
4For the sake of precision, in this experiment Stanford was run with tagPA and hMarkov=2

options.
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performance in terms of F1 is observed for the Bikel parser, with 76.07% versus
70.70% on sentences shorter than 40, and with 72.95% versus 67.12% on all
sentences. On the other hand, EMR provides better results for the Stanford
parser, with 22.84% versus 21.67% on sentences shorter than 40, and 19.43%
versus 18.43% on all sentences. Although divergences between EMR and F1

measures are well-known [Manning and Schütze1999, pages 432–436], we are
not aware of in depth investigation of the issue in the literature. We provide
some technical discussion below.

A crucial factor explaining the above contrastive patterns between F1 and
EMR is that parsing errors within the same tree are usually highly correlated:
the occurrence of one error is likely to force other errors in the construction of
the parse tree, depending on the structure of the treebank grammar. Errors
are then distributed into clusters within a smaller number of trees than what
expected if the same number of errors were scattered. Furthermore, the size
of these clusters depend on the treebank grammar itself. To provide a simple
analysis, assume a treebank T1 parsed with a smaller number of errors at its
nodes than a second treebank T2, resulting in a larger value of F1 for T1. It
could well be the case that T2 has a larger value of EMR than T1, in case errors
occurs in clusters of larger size in T2, resulting in fewer wrong trees than in T1.

Even in cases the errors are not mutually dependent within the same tree,
contrastive patterns can still be observed due to differences in size of trees in the
treebanks, as discussed in what follows. Let us assume that errors in a treebank
are independent and identically distributed, and let q be the probability that
a node is correct. Labeled recall is defined as the total number of correct
nodes over the total number of nodes in the treebank, and is therefore equal
to q. As a first approximation, let us assume that labeled precision is also q,
and thus F1 = q. Under the above assumptions, the EMR measure can be
computed as the expectation of the probability that each tree is correct, that
is, EMR =

∑

t Pr(t) · q|t| =
∑

n Pr(|t| = n) · qn, where we have denoted by |t|
the number of nodes of tree t. We can then see that, if q is larger for treebank
T1 than for treebank T2, and trees are bigger in T1 than in T2, then we can have
a larger value of F1 in T1 and a larger value of EMR in T2.

Necessarily, when the above contrastive patterns show up, the ECC values
cannot correlate with both F1 and EMR. In case F1 and EMR are related, we
always observe in our experiments the correlation between ECC and perfor-
mance predicted by our conjecture. In two cases, however, we have found the
contrastive behaviour between F1 and EMR discussed above. In both these
cases the predicted correlation is still observed if we consider the EMR mea-
sure. The fact that the ECC patterns with the EMR and not with the F1 can
be justified by considering that our definition of ECC is not enough fine-grained
to capture errors at the single node level, as in the definition of F1, but rather
reflects the difficulty of the choice of the correct tree at a somehow more global
level, depending on the degree of ambiguity of the sentence and the associated
conditional distribution.

Some discussion on the choice of the parsing model is also in order here. As
already mentioned in section 3, the statistical model adopted in this work is the
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PCFG directly extracted from the training treebank and estimated using the
maximum-likelihood method. This has been called the treebank grammar

model by [Charniak1996]. The choice of this model follows a methodology al-
ready established for instance by [Johnson1998], [Musillo and Sima’an2002] and
[Kübler, Hinrichs, and Maier2006]. More sophisticated models have been pro-
posed in the literature, that percolate lexical information through the syntactic
structure of the original treebank and smooth rules by using Markovianization
on the original rules; see for instance the models developed by [Collins2003].
However, available implementations of these models are usually paired with
heuristic search strategies that block the constructions of analyses with low
probabilities. This is problematic for the computation of quantity p(w), which
is needed in the definition of the ECC. We have therefore opted for the treebank
grammar model, which is an unlexicalized grammar and does not introduce any
smoothing. We leave further analysis of more sophisticated models for future
research.

In several of the experiments discussed in this section, we estimate the deriva-
tional cross-entropy on a test sample of trees previously unknown to the model.
Since the treebank grammar model does not use any smoothing, some of the
trees in the test sample may contain rules not appearing in our treebank gram-
mar, resulting in the assignment of zero probability to those trees. As a conse-
quence, relation (3) and our estimation of the ECC would be undefined. To get
around this problem, we introduce an important notion that is used throughout
this section.

Let T be some sample of trees. We define the covered portion of T (with
respect to a model) as the sample of all occurrences of trees in T whose rules are
all defined by the model. Note that, while the covered portion of the training
sample is the sample itself, in the case of the test sample the covered portion
is usually a proper subset of the sample. Thus, when estimating the ECC on
some test sample, we always restrict our evaluation to the covered portion of the
sample. Accordingly, we adopt the same restriction for all of our performance
evaluations, in order to make the comparison with the ECC meaningful.

The above experimental methodology has a two-fold effect: the average tree
size (and yield length) is observably lower on the test sample than on the training
sample, and performance on the test sample is over-estimated. Nonetheless, this
over-estimation is not really relevant to us, as long as it applies to all of the
measurements we compare. This is because we are not interested here in the
absolute values of the performance, but rather on the relative ranking of our
evaluations on different data samples.

5.1 Reliability of ECC estimation

As already mentioned in section 3, we compute approximations of the ECC value
for each of the treebanks of interest, since exact computation is problematic.
As discussed in section 4, the six treebanks taken into account in this work are
very different in size, average sentence length, underlying grammar structure,
etc. First of all, then, we should be concerned with the issue of how reliable our
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estimations of the ECC are. This issue is addressed in this subsection.
Let T be an input treebank of trees over set T . Recall that, for t ∈ T , y(t)

denotes the yield of t. Assume that we have already trained our PCFG, in some
way that is not of our concern now, resulting in the model distribution pµ. We
can approximate the ECC on the basis of T using (6), (3) and (17), writing

ECC(pT , pµ) =

= HD(pT , pµ) − HS(pT , pµ)

∼ HD
T (pµ) − HS

T (pµ)

= −
1

|T |
·
∑

t∈T

f(t, T ) · log pµ(t) +
1

|T |
·
∑

t∈T

f(t, T ) · log pµ(y(t))

=
1

|T |
·
∑

t∈T

f(t, T ) · (log pµ(y(t)) − log pµ(t)). (19)

In practice, we iterate through all of the occurrences of trees t in the multiset
T , sum up all of the quantities

∆t = log pµ(y(t)) − log pµ(t), (20)

and finally normalize using term 1
|T | .

We see from (19) that our estimation of the ECC corresponds to the com-
putation of a mean on the samples ∆t, which we assume to be statistically
independent. We can thus compute the confidence interval of the sample, in
the standard way, providing the estimated range of values that is likely to in-
clude the unknown parameter ECC. We report confidence intervals for all of
the experiments presented in this section. As already mentioned, estimation of
confidence intervals is especially important here, since we are evaluating and
comparing ECC parameters on samples from different populations and having
different sizes.

In order to further assess the reliability of our estimations of the ECC pa-
rameter, we provide below learning curves for ECC for the different treebanks.
As we aim here at studying the convergence rate of our ECC estimations, rather
than the values in their own, our learning curves are computed on the same data
used for training. By performing both model training and ECC estimation on
the whole treebanks, we can then use a larger amount of data.

In figure 2.a the ECC learning curve for the WSJ treebank is reported,
computing relation (19) at each new tree in the test. The experiment was per-
formed on three randomly scrambled versions of the test sample. Qualitatively
we see that, for data samples of more than 5,000 trees, the estimation of the
ECC seems reliable in an interval of ±0.2. The same experiment is repeated for
the FTB and the NEGRA treebank, and the results are shown in figures 2.b
and 2.c, respectively. Although in this case the sizes of the two treebanks are
considerably smaller than the size of the WSJ treebank, we can qualitatively
see that at around 5,000 trees the estimation of the ECC seems reliable in an
interval of ±0.2. The learning curve for the Tüba D/Z treebank reported in
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figure 2.d presents a slightly worse behaviour, oscillating in an interval of ±0.6
for 5,000 trees, but converges quite fast afterword, and at around 7,000 trees
the confidence interval reduces to approximately ±0.2.

The two Italian treebanks, which are the smallest treebanks that we are
considering here, represent the most problematic cases. The learning curves are
reported in figure 2.e for ISST and figure 2.f for TUT. We can clearly see that,
for samples of, say, half of the size of the entire treebank, there is still a quite
large variation on the range of the estimations of the ECC. For this reason, and
only for the case of the experiments for Italian, we have decided to exploit the
leaving-one-out protocol, which leads to a more effective use of the available
data.

5.2 Comparison on different languages

In this subsection we investigate how the ECC measure is correlated with pars-
ing performance, when porting a parser on different languages. We compare
performance on the six treebanks introduced in section 4, by separately consid-
ering performance on the training and on the test samples. Although measuring
performance on the training sample is not considered significant in statistical
parsing, recall that here we are not interested in absolute parsing performance
values, but rather in the relative comparison of these values through different
languages.

Results are reported in table 2, where the six treebanks are listed for de-
creasing values of the ECC. As usual, we always consider training samples and
test samples with no overlapping. In the case of test samples, and for both the
ECC and the performance parameters, we restrict the evaluation to the covered
portions of these samples, as discussed at the beginning of this section. Per-
centage in size of the covered portions is also reported in table 2. Because of
this restriction, our results on the test samples are not directly comparable with
those reported in the literature for the treebanks under analysis here.

In the case of the Italian treebanks (ISST and TUT), the small size of the
available data sample makes it problematic to estimate the ECC measure on
an even smaller test partition, as already discussed in section 5.1. We have
thus opted for an evaluation of the ECC and the parsing performance using the
leaving-one-out (LOO) protocol, in order to increase as much as possible the
reliability of the results. In this case we use equation (19) to estimate the ECC,
but notice that, because of the LOO protocol, quantities ∆t in (20) are all
evaluated with respect to slightly different models for each tree t in the sample.
For this reason, values of the sentential and derivational cross-entropies are not
available in table 2 for the ISST and TUT experiments. As in the experiments
that do not use LOO, we only consider trees that are covered by the model. For
ISST we have that only 1,037 trees are covered out of 2,329 trees, corresponding
to 44.53% of the test sample. In the case of TUT, 1,206 trees are covered out
of 1,813, corresponding to 66.52% of the test sample.

As already mentioned, the WSJ treebank is the largest of the data samples we
consider here. However, we prefer to extract a training sample with a dimension
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corpus L < 40 cov. HD(−) HS(−) ECC LP LR F1 EMR
Training sample
ISST 2,329 100% 77.44 61.16 16.28 ± 0.59 64.72 62.82 63.76 9.70
TUT 1,813 100% 64.82 53.01 11.81 ± 0.61 73.40 69.72 71.51 20.02

WSJ 3,173 100% 85.51 75.21 10.30 ± 0.34 80.74 76.68 78.66 19.25
TüBa-D/Z 7,076 100% 67.04 57.82 9.22 ± 0.22 90.43 86.49 88.41 23.13
FTB 7,898 100% 53.76 45.65 8.11 ± 0.21 77.10 75.55 76.32 28.95
Negra 6,757 100% 51.19 47.14 4.05 ± 0.16 88.39 87.05 87.72 55.15
Test sample
ISST 2,329 44.53% – – 11.83 ± 0.74 69.38 67.39 68.37 17.36
TUT 1,813 66.52% – – 9.78 ± 0.67 74.90 70.99 72.89 24.96

WSJ 38,606 51.07% 75.63 66.38 9.26 ± 0.13 81.47 77.18 79.27 21.65
TüBa-D/Z 14,231 85.78% 60.40 52.09 8.31 ± 0.16 91.01 86.86 88.89 24.61
FTB 3,537 44.81% 45.95 38.51 7.44 ± 0.42 75.12 73.01 74.05 29.08
Negra 13,168 40.86% 32.66 29.92 2.74 ± 0.13 87.42 85.78 86.59 56.14

Table 2: Cross-linguistic analysis (confidence intervals at 99%).

comparable with the tree samples for the other three languages, namely the 3,173
trees of sections 02 and 03. This is the reason why the reported value of the ECC
in table 2 for the train sample of the WSJ treebank is considerably different
from the corresponding value reported by the learning curve in figure 2.a of
subsection 5.1. Further discussion on the relation between the size of the training
sample and its ECC value is reported in subsection 5.4. Note also that the choice
of a reduced training sample provides us with a very large test sample for the
WSJ experiment, and thus with the guarantee of a good estimation for the
ECC and the performance values. The test sample consists of 38,606 trees; the
covered portion of the test sample consists of 19,716 trees, corresponding to
51.07% of the test sample.

In the case of the TüBa-D/Z treebank, the training sample is composed of
7,076 trees and the test sample consist of 14,231 trees. Note that this treebank
shows an exceptionally large covered portion of the test sample, corresponding to
85.78% of the entire sample. We have found out that this is due to a small ratio
between the size of the set of rules of the treebank grammar and the number of
occurrences of rules observed in the training sample. More specifically, this ratio
is indicative of how much “specialized” the induced treebank grammar is, with a
large ratio corresponding to a highly specialized set of rules and thus to a smaller
covered portion of the test sample. In the case of the TüBa-D/Z treebank, we
have the smallest ratio among all of the six treebanks. As a comparison on the
same language, this ratio is much higher for the NEGRA treebank, resulting in
a covered portion of the test sample corresponding to 40.86%.

Finally, the training sample for the FTB is composed of 7,898 trees and
the test sample consist of 3,537 trees, with a covered portion of 1,585 trees
(44.81%). In the case of the NEGRA treebank, the training sample consists of
6,757 trees and the test sample of 13,168 trees, with 5,381 trees covered by the
model (40.86%).

As already mentioned, treebanks in table 2 are listed in decreasing order for
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their ECC values, both for the training and the test samples. Correspondingly,
the EMR is always growing, with the only exception of the TUT treebank,
marked in italics in the table. We will show in a later experiment, reported
in table 7, that in this case the deviation is not statistically significant. The
behavior of F1, on the contrary, presents some oscillations for TüBa-D/Z and
FTB, again both for the training and the test samples, in italics in the table.
This corresponds to one of the two cases of divergence between F1 and EMR,
as already discussed in detail at the beginning of the present section.

Note that for each treebank the parsing performance in terms of EMR is
always higher for the test sample than for the training sample, contrary to what
is usually observed in standard practice in statistical natural language parsing.
As already mentioned at the beginning of this section, this effect is due to the
fact that evaluation on the test sample is restricted to the covered portion of
these trees, excluding all trees with rules that are not covered by the model.
This has the effect of providing a test sample with average length of the tree
yields smaller than that of the training sample. This considerably improves the
performance on the task, as longer sentences tend to be more complex to parse
than shorter ones. Again, we remark that we are not interested here in the
absolute performance values, but rather in their relative order.

Overall, the conclusions that we might draw from table 2 and the above
discussion is that we have some ranking on the difficulty that our model en-
counters when parsing the six treebanks under investigation here, as attested
by the EMR performance evaluation, with ISST at the top (most complex to
parse) and the NEGRA treebank at the bottom. This ranking is duly predicted
by the informativeness of the six treebanks, as measured by the ECC evaluation
assigning lower degree of informativeness (higher ECC value) to the treebanks
that are more complex to parse. Note that the relatively different degrees of
informativeness that we measure cannot be ascribed to the size of the training
samples, since the amounts of trees we have used for training are all compara-
ble through the four languages considered here. We then speculate that such
a difference in complexity must be the result of the interaction of several other
factors, that certainly include language intrinsic features such as for instance
word order freeness, but also specific aspects of the adopted annotation as for
instance the overall informativeness of the symbols used by the grammar as well
as the structural ambiguity of the grammar itself. We come back to this issue
in the next subsection.

5.3 Transformations on treebanks

In addition to measuring the difficulty of the parsing task based on treebanks
for different languages, we can also use the methodology proposed in this article
to compare different models for the same treebank. To do this, we follow ideas
originally developed by [Johnson1998], where different parsing models are en-
coded through syntactic transformations on a treebank. In this subsection we
apply specific transformations to a source treebank, resulting in different tree-
bank grammars that are more or less “fine grained” than the treebank grammar
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obtained from the source treebank. We then analyze the relation between the
ECC values and the parsing performance on all the transformed grammars and
on the original grammar as well. For these experiments, we use the WSJ tree-
bank, since this is the largest of the six treebanks described in section 4.

POS NT
JJ: JJ JJR JJS ADJ: ADJP WHADJP
NN: NN NNP NNPS NNS ADV: ADVP WHADVP
VB: VB VBD VBG VBN VBP VBZ NP: NP WHNP QP
RB: RB RBR RBS PP: PP WHPP

Table 3: POS and NT clusters on the WSJ treebank.

It is well known that, in the construction of a probabilistic grammar based
on phrase structure, the choice of the nonterminal symbols, including the set
of POS tags, has a crucial effect on the parsing performance; see for instance
discussion reported by [Johnson1998] and by [Klein and Manning2003]. One
can then investigate how the parsing performance changes when some fixed set
of nonterminal symbols (and of POS tags) is clustered or refined, in the sense
explained below. We start with a first experiment, in which we apply three
clustering transformations to the WSJ treebank. The first transformation, called
POS, clusters together POS tags that refer to related lexical categories. We use
the four clusters specified in table 3. Similarly, a second transformation called
NT introduces four clusters of nonterminal symbols, as specified again in table 3.
Finally, we call ALL the combination of the POS and NT transformations.

corpus L < 40 cov. HD(−) HS(−) ECC LP LR F1 EMR
Training sample
Baseline 3,173 100% 85.51 75.21 10.30 ± 0.34 80.74 76.68 78.66 19.25
POS 3,173 100% 73.95 62.68 11.27 ± 0.36 79.50 74.97 77.17 16.60
NT 3,173 100% 87.89 75.91 11.97 ± 0.39 78.62 74.38 76.44 16.32
ALL 3,173 100% 76.28 63.33 12.95 ± 0.41 77.46 72.82 75.07 13.99
Test sample
Baseline 38,606 51.07% 75.63 66.38 9.26 ± 0.13 81.47 77.18 79.27 21.65
POS 38,606 60.34% 67.06 56.70 10.36 ± 0.13 79.98 75.38 77.61 18.33
NT 38,606 51.45% 78.06 67.04 11.02 ± 0.15 75.98 75.16 77.31 19.32

ALL 38,606 60.84% 69.48 57.35 12.13 ± 0.15 78.21 73.63 75.85 16.22

Table 4: Clustering experiments on the WSJ treebank (confidence intervals at
99%).

The ECC and the performance values obtained on the WSJ treebank (base-
line) and the three transformed treebanks are reported in table 4. Training
and test samples are the same as those presented in subsection 5.2 for the WSJ
treebank. Again, we report here the percentage of covered sentences, defined at
the beginning of this section, for the experiments in which evaluation is carried
out on a test sample. For all of the three transformed treebanks, the estimated
ECC value is larger than the ECC value for the original treebank. This can
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be intuitively explained by considering that our clustering transformations pro-
duce some kind of information loss, with an average increase in the amount of
ambiguity in the inferred treebank grammar, which is what the ECC parameter
measures. In table 4 we list the transformed treebanks in order of increasing
value of the ECC parameter. Note that the F1 performance measure shows a
correspondingly decreasing trend, as predicted by our conjecture. This is also
the case for the EMR performance measure, with the only exception of the NT
transformation in the test experiments, marked in italics in the table. Again,
we will show later in table 7 that in this case the deviation is not statistically
significant.

In contrast to the clustering transformations investigated above, one could
also go in the opposite direction and refine nonterminals by “splitting” some
symbol into several new symbols that represent specialized information [Johnson1998,
Klein and Manning2003, Ule2003]. One such transformation, often used in sta-
tistical natural language parsing, is the so called parent annotation, originally
proposed by [Johnson1998]. In this transformation each nonterminal symbol
of the source treebank is enriched with parent symbol information. A sim-
ple example of this transformation is depicted in figure 3. It has been shown
that this transformation usually results in an improvement in the parsing per-
formance of the corresponding model; see again [Johnson1998, Charniak2001,
Klein and Manning2003] and also [Charniak2001].

We apply the parent transformation on the WSJ treebank, and again com-
pare the ECC value against the performance. Parsing models that have been
trained using the parent annotation transformation are usually evaluated for
parsing performance by applying the inverse transformation on the output tree.
This happens in the context of work aiming at the development of parsing mod-
els with improved performance on a fixed treebank; see again [Johnson1998].
However our goal here is the comparison of different treebanks, and we must
follow the already discussed methodology of comparing ECC and performance
value pairs both obtained on the same treebank, under the chosen model. Thus
we do not apply the inverse transformation in our experiments.

As far as the F1 measure is concerned, we remark here that an error in
labeling a non-leaf node in some tree also propagates to all of the children
nodes when using the parent annotation. This generates a cluster of dependent
errors that causes a main degradation for F1, when evaluated on the transformed
treebank. However, this is not recorded when using the EMR measure, which
does not distinguish between a single error at some node and a large cluster of
errors in some tree. Once more, we have here a case of inconsistency between
the F1 and the EMR measures of the kind discussed at the beginning of this
section. We report anyway the values of the F1 measure, but we restrict our
discussion to EMR since the former underestimates parsing performance on the
transformed treebank.

The results of our experiment are reported in table 5. Again, the relation
between ECC and EMR values predicted by our conjecture is confirmed, both
for the train and for the test samples. (As already mentioned the test sample
corresponds to section 23 of the WSJ treebank).
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corpus L < 40 cov. HD(−) HS(−) ECC LP LR F1 EMR
Training sample
Baseline 3,173 100% 85.51 75.21 10.30 ± 0.34 80.74 76.68 78.66 19.25
PA 3,173 100% 75.46 69.43 6.03 ± 0.25 78.05 76.67 77.35 31.20
Test sample
Baseline 2,243 55.28 % 75.33 66.58 9.35 ± 0.53 81.47 76.87 79.10 21.69
PA 2,243 44.76 % 63.79 58.39 5.39 ± 0.41 78.70 76.90 77.79 35.65

Table 5: Parent annotation experiments o n the WSJ treebank (confidence
interval at 99%).

The results reported in tables 4 and 5 confirm what has already been sug-
gested in subsection 5.2, namely that the ECC parameter is a global measure
that accounts not only for language intrinsic factors, but also for representation
factors that are related to the informativeness of the adopted annotation, such
as for instance the choice of the phrase structure symbols used by the grammar.

5.4 Treebanks and rule sets

In this subsection we again compare evaluations on different treebanks for a
single language, using the WSJ treebank. Differently from the previous subsec-
tion, however, we do not apply here any artificial treebank transformation. We
instead construct our treebanks by considering successively increasing portions
of the WSJ treebank. This means that our treebanks differ one from the other
only with respect to the rules that are exploited in the annotation and their
counts.

L < 40 cov. HD(−) HS(−) ECC LP LR F1 EMR
Training sample
W1 11,207 100 % 87.39 75.95 11.44 ± 0.20 79.19 74.46 76.75 16.52
W2 13,995 100 % 87.28 75.82 11.46 ± 0.18 79.43 74.73 77.01 16.52
W3 16,766 100 % 87.42 75.89 11.53 ± 0.16 79.30 74.66 76.91 16.34
W4 20,459 100 % 87.36 75.77 11.59 ± 0.15 79.28 74.54 76.84 16.28
Test (different models, common sample)
W1-model 18,549 73.63 % 81.57 70.89 10.68 ± 0.17 80.27 75.24 77.67 17.36
W2-model 18,549 73.63 % 81.57 70.89 10.68 ± 0.17 80.31 75.38 77.77 18.04
W3-model 18,549 73.63 % 81.57 70.89 10.68 ± 0.17 80.21 75.33 77.69 17.82
W4-model 18,549 73.63 % 81.58 70.88 10.70 ± 0.17 80.39 75.38 77.81 17.81

Table 6: Growing training sets for the WSJ treebank (confidence interval at
99%).

In our experiment, we consider four training samples randomly extracted
from the WSJ, namely Wi, i = 1, 2, 3, 4. For each i and j with i < j, we have
Wi ⊂ Wj . Note that for each j > i sample Wj is a “refinement” of sample Wi,
in the sense that the former covers a superset of the rules covered by the latter.
Each sample is then used to train a treebank grammar, and ECC values and
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parsing performance are evaluated on the training samples as well as on some
held-out test sample, as done before. Results are shown in table 6. Note that
the confidence intervals for the ECC values indicate that the provided results
are not statistically significant. This is because, even with a treebank as large
as the WSJ, we do not have enough data for this type of experiment. But we
have anyway decided to present and discuss these findings, since we believe that
there is some interesting pattern here.

Intuitively, when larger sets of rules are observed in a treebank, there is an
increase in the degree of ambiguity for the corresponding models and, conse-
quently, we observe a degradation in parsing performance when these models
are evaluated on the same data samples that have been used for training. A
slight degradation on parsing performance is in fact apparent from the evalua-
tion reported in the upper (training) part of table 6. Note that this degradation
is accompanied by an increase in the corresponding value of the ECC, as pre-
dicted by our conjecture. As already anticipated, these results also explain
the observed difference between the ECC values for the two different portions
of the WSJ treebank reported, respectively, in the training part of table 2 in
subsection 5.2, and in the learning curve in figure 2 in subsection 5.1.

In table 6 we also report the evaluation on a held-out test sample. It is
a well known fact that the performance of a parsing model on a held-out test
sample usually improves as the size of the treebank sample used to train the
model itself increases. Correspondingly, we should expect decreasing values of
the ECC on the test sample. However, this is not apparent from table 6. We
provide some discussion on this fact below.

Recall that we always evaluate the ECC measure and the parsing perfor-
mance on the covered portion of the test sample, that is, we exclude all parse
trees that show rules not covered by the model. When we use different models,
trained on successively increasing portions of a training sample, we have to per-
form our evaluations on a common test sample, for a fair comparison. This is
chosen as the largest portion of the held-out test sample that is covered by all
of our models, which amounts to say that we use the portion of the test sample
that is covered by the model that has been trained on the smallest training
sample. But in this way, when we move to more refined models, no improve-
ment in parsing performance can be observed, since the additional information
of these models is mainly ascribed to new rules that have been observed in the
extended training sample, but which are of no use to the system because testing
is restricted to the sample data covered by the least refined model. In other
words, the improvement that we usually observe in parsing performance when
enlarging the training sample is mainly due to an increase in coverage, which in
this case is totally blocked by the methodology we adopt here. This explains the
fact that in table 6 we observe almost stable values of the parsing performance,
when moving to more refined parsing models. Most important here, observe
how this corresponds to stable values for the ECC: once again, we can conclude
that our conjecture is verified by the reported experimental observations.
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5.5 EMR versus ECC on all experiments

In the experiments discussed in the previous subsections we have compared
different treebanks and have always observed the predicted relation between the
ECC and the EMR values. In this subsection we ask whether our conjecture
still holds when we group together all of the treebanks (train and test samples)
that have been analyzed in this article. Note that in this case the involved
treebanks pertain to experiments having completely different typologies, and
comparison on a common scale of the absolute performance values may not
always be meaningful.

We include only one of the treebanks Wi, i = 1, 2, 3, 4, from subsection 5.4,
since the estimated values for these treebanks have differences that are not
statistically significant, as already remarked. Furthermore, values of the F1

measure are not reported, since we have already observed that our ECC measure
fails to match with F1 when there are contrastive patterns between F1 and EMR.
In this experiment we also report confidence intervals for the EMR measure.
These intervals are computed in the standard way, by considering the EMR
measure as the average of a sequence of scores of length equal to the number
of trees output by the parser, with each score assuming value 1 if the tree is
correct and 0 otherwise.

Results are reported in table 7 and in the plot in figure 4, with confidence
intervals at 99%. We see that, within an approximation included in the confi-
dence intervals, there is an overall degradation of parsing performance with the
increasing of the ECC values. Again this is in accordance with our conjecture,
and seems to be a quite strong result in view of the above observation about
the different typologies of the involved experiments.

6 Concluding remarks

In this article we have considered the problem of measuring the difficulty that
a model faces when parsing data from a given treebank. We have proposed an
information theoretic measure, called ECC, and have experimentally observed
a strong correlation between ECC values of different treebanks and parsing per-
formance, with increasing ECC values almost always corresponding to a degra-
dation in parsing performance. We have thus conjectured that the ECC measure
can be effectively used in comparison of treebanks across different domains and
even across different languages.

The ECC measure is defined on the basis of the cross-entropy computed for
the conditional distribution of parse trees for each sentence, averaged for all
sentences generated by the model. An entropy measure that comes close to the
conditional cross-entropy above has been used by [Hwa2004], with the purpose
of finding training samples to boost a statistical parser. Also, a similar attempt
to exploit information theory in the analysis of parsing performance has been
presented in work by [Abney1994]. While [Abney1994] uses entropy to measure
the information that needs to be added to the solution proposed by the parser
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experiment ECC EMR
Negra test 1.91 ± 0.13 55.30 ± 1.12
Negra train 2.36 ± 0.16 54.92 ± 1.56
PA test 5.39 ± 0.41 35.65 ± 3.50
PA train 6.03 ± 0.25 31.20 ± 2.12
FTB test 7.44 ± 0.42 29.08 ± 1.97
FTB train 8.11 ± 0.21 28.95 ± 1.31
Tüba-D/Z test 8.31 ± 0.16 24.61 ± 1.00
Tüba-D/Z train 9.22 ± 0.22 23.13 ± 1.29
WSJ test 9.26 ± 0.13 21.65 ± 0.76
WSJ sec23 test 9.35 ± 0.53 21.69 ± 3.35
TUT LOO 9.78 ± 0.67 24.96 ± 3.21
WSJ train 10.30 ± 0.34 19.25 ± 1.80
POS test 10.36 ± 0.13 18.33 ± 0.65
W4 test 10.70 ± 0.17 17.81 ± 0.84
NT test 11.02 ± 0.39 19.32 ± 0.72
POS train 11.27 ± 0.13 16.60 ± 1.70
W4 train 11.59 ± 0.15 16.28 ± 0.66
TUT train 11.81 ± 0.61 20.02 ± 2.42
ISST LOO 11.83 ± 0.74 17.36 ± 2.02
NT train 11.97 ± 0.39 16.32 ± 1.69
all test 12.13 ± 0.15 16.22 ± 0.62
all train 12.95 ± 0.41 13.99 ± 1.59
ISST train 16.28 ± 0.59 9.70 ± 1.58

Table 7: Values of ECC and EMR for all of the treebanks considered in this
article, with 99% confidence intervals.

in order to obtain the correct (gold case) parse tree, we use (cross-) entropy as
a measure of the information gap between the input sentence and the choice of
its correct parse tree.

We have also shown that the ECC is strictly related to the conditional log-
likelihood that is used to estimate log-linear models, also known as maximum
entropy distributions [Smith2004]. We have contrasted the use of a conditional
cross-entropy in the definition of our ECC measure with the standard definition
of language cross-entropy, based on a joint model. Our experiments show that
both the (joint) derivational and sentential cross-entropies can be misleading
in measuring the difficulty of the parsing task, especially when the grammar
assigns similar probabilities to a large number of parse trees that correspond to
different sentences. We have shown (equation (17) in section 3) that the dif-
ference between these two cross-entropies, based on a joint model, provides the
expectation of a cross-entropy based on a conditional model. Such a difference,
in fact, seems to give an effective approximation of the degree of ambiguity of
the model estimated from the treebank. In the more general context of language
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modeling and model estimation, comparison between conditional and joint dis-
tributions (and the related likelihoods) has been a long standing issue; see for
instance recent work by [Johnson2001] and [Klein and Manning2002a], and ref-
erences therein. The results presented in this article should also be regarded
as a specific contribution to this discussion, but in the different perspective of
assessing the informativeness of a corpus.

We conclude with a remark on a problem that is left open in this article.
All of the results presented in this article are based on the treebank grammar
representation of a treebank, following the already cited literature. This means
that we do not use any smoothing on the rules attested by the input treebank
and on their probabilities. Taking into account smoothing introduces a new
dimension into the problem, with both the effects of an increase in the pars-
ing coverage and an increase on the degree of ambiguity of the model. It is
generally agreed that these effects have a contrastive influence on the parsing
performance. In this work we therefore disregard smoothing in order to obtain
clearly interpretable results. However, smoothing is very important in standard
parsing practice, and further work is in order here, investigating an appropriate
methodology that takes into account these techniques.
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Entropy approximation and typical sequences

This appendix discusses the theoretical background of the approximations (6)
and (3) reported in section 2 and used throughout this article. In order to sim-
plify the presentation, we consider the problem of the finite approximation of
the entropy of a distribution; similar arguments also hold for the finite approx-
imation of the cross-entropy of two distributions. In the discussion below we
follow [Cover and Thomas1991, Chapter 3].

Consider a probability distribution p over some set X . Recall that the en-
tropy associated with p is defined as

H(p) = −
∑

x∈X

p(x) log p(x). (21)

Assume that we observe a sequence x1, x2, . . . , xn of n ≫ 1 values in X . We can
compute the probability of such a sequence p(x1, x2, . . . , xn) if we assume that
these values are all statistically independent and drawn from p. This is usually
referred to as a sequence of n independent and identically distributed random
variables. The asymptotic equipartition property (AEP) states that

H(p) ∼ −
1

n
· log p(x1, x2, . . . , xn). (22)

This in turn implies that the probability p(x1, x2, . . . , xn) of the sequence is
close to 2−nH(p). The AEP holds in probability for large enough values of n.
The proof is based on the weak law of large numbers, which states that given
n independent and identically distributed random variables, their arithmetic
average is approximately equal to the mathematical expectation, provided that
n is large enough.

The set of all sequences of length n can therefore be partitioned into a
typical set, composed of all sequences for which equation (22) holds, and a set
with all of the remaining sequences. Equivalently, the typical set is the set of
all sequences of length n having probability 2−nH(p). A sequence in a typical
set is usually called a typical sequence. Since the AEP holds in probability,
it follows that for large enough values of n the probability of the typical set is
nearly 1. Therefore, if the corpus we consider is large enough, we can assume
that it represents a typical sequence and we can apply the AEP to estimate the
entropy. Finally, since all typical sequences have the same probability 2−nH and
their total probability approaches 1, it follows that the total number of typical
sequences is close to 2nH .
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Figure 2: Learning curves for ECC: WSJ (a), FTB (b), NEGRA (c), TÜBA-
D/Z (d), ISST (e) and TUT (f).
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Figure 3: Example of the parent annotation transformation.
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Figure 4: Values of ECC plotted against the corresponding EMR value for all
of the treebanks considered in this article, with 99% confidence intervals.
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