
Medical Image Analysis 97 (2024) 103303

A
1

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

Multimodal representations of biomedical knowledge from limited training
whole slide images and reports using deep learning
Niccolò Marini a,∗,1, Stefano Marchesin b,1, Marek Wodzinski a,c, Alessandro Caputo d,e,
Damian Podareanu f, Bryan Cardenas Guevara f, Svetla Boytcheva g,h, Simona Vatrano e,
Filippo Fraggetta e,i, Francesco Ciompi i, Gianmaria Silvello b, Henning Müller a,j,
Manfredo Atzori a,k

a Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Sierre, Switzerland
b Department of Information Engineering, University of Padua, Padua, Italy
c Department of Measurement and Electronics, AGH University of Kraków, Krakow, Poland
d Department of Pathology, Ruggi University Hospital, Salerno, Italy
e Pathology Unit, Gravina Hospital Caltagirone ASP, Catania, Italy
f SURFsara, Amsterdam, The Netherlands
g Ontotext, Sofia, Bulgaria
h Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria
i Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
j Medical faculty, University of Geneva, 1211 Geneva, Switzerland
k Department of Neurosciences, University of Padua, Padua, Italy

A R T I C L E I N F O

MSC:
41A05
41A10
65D05
65D17

Keywords:
Computational pathology
Multimodal Learning
Medical ontology
Natural language processing
Colon cancer

A B S T R A C T

The increasing availability of biomedical data creates valuable resources for developing new deep learning
algorithms to support experts, especially in domains where collecting large volumes of annotated data
is not trivial. Biomedical data include several modalities containing complementary information, such as
medical images and reports: images are often large and encode low-level information, while reports include a
summarized high-level description of the findings identified within data and often only concerning a small
part of the image. However, only a few methods allow to effectively link the visual content of images
with the textual content of reports, preventing medical specialists from properly benefitting from the recent
opportunities offered by deep learning models. This paper introduces a multimodal architecture creating a
robust biomedical data representation encoding fine-grained text representations within image embeddings.
The architecture aims to tackle data scarcity (combining supervised and self-supervised learning) and to create
multimodal biomedical ontologies. The architecture is trained on over 6,000 colon whole slide Images (WSI),
paired with the corresponding report, collected from two digital pathology workflows. The evaluation of the
multimodal architecture involves three tasks: WSI classification (on data from pathology workflow and from
public repositories), multimodal data retrieval, and linking between textual and visual concepts. Noticeably,
the latter two tasks are available by architectural design without further training, showing that the multimodal
architecture that can be adopted as a backbone to solve peculiar tasks. The multimodal data representation
outperforms the unimodal one on the classification of colon WSIs and allows to halve the data needed to
reach accurate performance, reducing the computational power required and thus the carbon footprint. The
combination of images and reports exploiting self-supervised algorithms allows to mine databases without
needing new annotations provided by experts, extracting new information. In particular, the multimodal visual
ontology, linking semantic concepts to images, may pave the way to advancements in medicine and biomedical
analysis domains, not limited to histopathology.
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Fig. 1. Some examples of colon WSIs paired with the corresponding pathology reports.

1. Introduction

The increasing production of multimodal biomedical data empowers
the development of new deep learning algorithms to analyze and
represent data, especially in domains where data annotations are few
and heterogeneity is high, such as the histopathology domain. Still,
few methods allow extracting knowledge and linking information from
different medical modalities in effective ways. This paper presents
a multimodal architecture combining the visual information encoded
within histopathology images with the semantics within textual reports.

The collection of different biomedical data modalities aims to gather
relevant information on varying aspects linked to patient health to
identify possibly dangerous conditions. Data analysis from multiple
biomedical modalities requires the development of new deep learning
algorithms integrating them. Multimodal learning (Bulten et al., 2022)
involves the combination of information from multiple modalities,
aiming to learn relationships between modalities to improve data rep-
resentation (Stahlschmidt et al., 2022). Multimodal learning algorithms
are becoming increasingly popular in machine learning for several
reasons. First, the information included in different modalities is usu-
ally complementary since every medical modality generally provides
information on specific aspects of the patient condition (Heiliger et al.,
2022). Second, the cost of collecting multimodal biomedical data is be-
coming relatively low (Nagai et al., 2017; Gaziano et al., 2016), thanks
to the increasing amount of initiatives pairing multimodal sources of
information (Acosta et al., 2022). Third, combining multiple sources of
information can bring benefits in a domain where collecting annotated
datasets is time-consuming, as data are heterogeneous (Amal et al.,
2022) and inherently multifaceted.

These characteristics are particularly relevant in the histopathology
domain. Histopathology involves the analysis of tissue samples (Gurcan
et al., 2009) to identify the microscopic findings characteristic of
diseases such as cancer. Pathologists are the medical experts analyz-
ing tissue sections, the exploration of which can be time-consuming.
The analysis of histopathology samples does not usually rely on dig-
ital assistance in clinical practice, despite the growing digitization of
tissue samples (Pallua et al., 2020; Fraggetta et al., 2017). Digital
pathology involves digitizing and managing tissue specimens, called
Whole Slide Images (WSI), acquired at high resolution and usually
stored in a multi-scale format. WSIs are usually paired with pathology
reports (Hanna et al., 2020), which include observations derived from
manual WSI analysis for a patient, possibly using several WSIs. Fig. 1
shows examples of WSIs paired with reports.

The collection of large-scale image repositories and associated di-
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agnoses are paving the way for the development of the computational
pathology domain (Marini et al., 2022; Abels et al., 2019), a domain
involving the development of algorithms for the automatic analysis of
WSIs. Even if computational pathology algorithms are becoming more
and more accurate, some limitations still limit their adoption in clinical
practice, such as the need for annotated data (Campanella et al., 2019);
the lack of model generalization on unseen data due to data heterogene-
ity (e.g. in terms of tissue morphologies and color variations) (Tellez
et al., 2019; Marini et al., 2023); the limited combination between WSIs
and other medical modalities in network design.

In particular, combining multiple modalities, such as WSIs and
reports, is still challenging because of the relationship between modal-
ities. Analyzing a specific medical modality requires a specific archi-
tectural design (Acosta et al., 2022; Huang et al., 2020), therefore
combining heterogeneous architectures may not be trivial. For instance,
images are often analyzed with Convolutional Neural Networks (CNN)
or Visual Transformers (ViT), while reports with pre-trained Large
Language Models (LLMs). Furthermore, the relationship among modal-
ities can influence how they combine: if a modality is subordinated
to another, not all available multimodal learning frameworks can be
adopted. For this reason, most applications that combine images and
reports exploit reports to produce weak labels, which are then used
as ground truth for the corresponding images (Marini et al., 2022;
Marchesin et al., 2022).

This paper presents a multimodal architecture combining the low-
level visual information encoded within WSIs with the high-level se-
mantics stored within textual reports. The novelty of the paper involves
both technical aspects and the possibility to create visual ontologies
with biomedical data. Technical aspects involve the adoption of self-
supervised algorithms (SSL) in a context where training data are scarce.
Usually, SSL algorithms require large amounts of training data (Azizi
et al., 2022; Campanella et al., 2023; Caron et al., 2021). However, the
collection of a large amount of biomedical samples may not be trivial.
For this reason, the multimodal architecture shows a peculiar design: it
consists of two input branch encoders (which separately encode WSIs
and pathology reports) and it is trained combining supervised with self-
supervised learning. The encoders aim to generate an embedding vector
for each input modality, that are aligned exploiting peculiar SSL loss
functions and are processed by a shared projection head and a shared
classifier. During training, the loss function includes both weak and
SSL terms to (i) optimize the classification of images and reports and
(ii) learn relationships among modalities. While classification requires
supervised learning, the terms involved in relationship learning across
modalities aim to build a strong multimodal histopathology represen-
tation space in a SSL fashion. This choice differs from classical SSL
algorithms and Vision-Language models (VLM), where no annotations
are required being based on the idea that large unannotated datasets
can be collected. Therefore, the lack of large training dataset, usually
hard to collect in biomedical domain, is compensated by adding weak
supervision.

The multimodal architecture, based on SSL and weakly supervised
learning, aims to create visual ontologies of biomedical data from
limited training sets. Learning relationships between images and re-
ports via SSL allows mining databases to discover new knowledge
without the need for annotations by medical experts. The chosen con-
cepts to match are fine-grained concepts, collected from the ExaMode
Ontology (Menotti et al., 2023). The adoption of these concepts is
not trivial: even if VLMs allow to link visual and textual concepts,
most of the SOTA algorithms focus on broader concepts, such as the
cancer type (Vorontsov et al., 2023; Lu et al., 2023a) or molecular
subtypes (Filiot et al., 2023).

The generated multimodal histopathology data representation can
serve as a strong backbone to address various other tasks, showing
more robust performance than its unimodal counterparts. The analysis
described in this paper targets over 6,000 colon WSIs and pathology
reports collected from digital pathology workflows and over 1,000 WSIs

collected from publicly available datasets. The architecture is evaluated
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on three tasks: WSI classification (evaluated on pathology workflow
and publicly available data), multimodal data retrieval (considering a
modality as input to retrieve the other one), and linking visual and
textual concepts. The latter two tasks are available by design, obtained
without the need for further training, learned without any supervision.

Colon cancer was selected as a use case because it is the fourth
most frequently diagnosed cancer globally and its diagnosis is complex,
requiring the identification of multiple concepts, such as the presence
of infiltrated glands, the presence of dysplasia and its grades, and the
presence of polyps.

1.1. Related work

Multiple Instance Learning. Multiple Instance Learning (MIL) is cur-
ently the state-of-the-art framework to train weakly-supervised models
i.e., models trained using global labels) in the computational pathol-
gy domain (Campanella et al., 2019; Ilse et al., 2018; Lu et al., 2021;
ashimoto et al., 2020). MIL allows the organization of data as a bag
f instances (Carbonneau et al., 2018), where data annotations include
nformation about the whole bag but not on the single instances. MIL
lgorithms process the single instances and then aggregate them. In
he computational pathology domain, a WSI represents a bag including
atches (i.e., the instances), and the available annotations involve the
ntire WSI. Campanella et al. (2019) showed that applying MIL can
ead to the development of models reaching almost perfect cancer vs.
on-cancer predictions, showing the amount of data needed (around
0,000 per tissue use case) to reach AUC = 0.99. (Ilse et al., 2018)

presented the Attention-Based Multiple Instance Learning (ABMIL), the
first MIL framework embedding an attention network to learn weights
are assigned to each patch based on its significance in the overall
prediction. Javed et al. (2022) presented Additive-MIL (ADMIL), a
MIL framework aiming to extend the MIL formulation to multiclass
scenarios, embedding an attention-pooling layer with a channel for
every output class. Lu et al. (2021) presented Clustering-constrained
Attention Multiple Instance Learning (CLAM), an embedding-based MIL
algorithm, adopting a cluster technique to aggregate relevant instances
and identify relevant regions. Li et al. (2021a) presented Dual-Stream
MIL, a MIL framework producing patch-level and image-level predic-
tions. The instance-level predictions are evaluated only on a subset of
relevant patches, aggregated using an attention mechanism to produce
a WSI-level embedding, adopted to classify WSIs. Shao et al. (2021)
presented TransMIL, a MIL framework combining CNN backbone and
ViT components (Vaswani et al., 2017), to exploit spatial properties
included within WSIs. The Transformer architecture represents instance
features as a sequence of tokens, adopting a self-attention mechanism
to highlight relationships between individual instances lost in attention
networks. Li et al. (2021b) presented Deformable Transformer for
Multiple Instance Learning (DTMIL), a hybrid architecture including
convolutional layers and ViT components. The architecture allows fo-
cusing attention on a sub-set of relevant patches instead of the entire
WSI, limiting the range of self-attention and requiring less compu-
tational power. Zhang et al. (2023) presented Multi-Level Multiple
Instance Learning (MMIL-Transformer), a pure Transformer architec-
ture to classify WSIs, that aims to mimic the behavior of pathologists
combining the representations of small sub-regions of interest.

Self-supervision. Self-supervised learning (SSL) is a framework inves-
tigating how to exploit unlabeled data to learn a relevant data rep-
resentation that can be fine-tuned afterward to perform specialized
downstream tasks. The self-supervised domain is reaching increasing
success, especially in domains where collecting annotated data is time-
consuming (Koohbanani et al., 2021; Srinidhi et al., 2022), such as
computational pathology. SSL algorithms aim to learn peculiar fea-
tures and relationships from data collected from a specific domain
instead of adopting natural images to pre-train the network. Cur-
rently, most of the algorithms adopted in computational pathology,
3

such as MoCO (He et al., 2020), simCLR (Chikontwe et al., 2020),
and DINO (Caron et al., 2021), are contrastive algorithms adopted
from general computer vision domains. The algorithms show similar
characteristics since they aim to learn a data representation where
similar samples are close to each other and far from dissimilar ex-
amples, aiming to minimize the distance (in the embedding space)
between the embeddings representing similar samples and maximize
the distance between the embeddings representing dissimilar sam-
ples. Couples of similar and dissimilar examples are automatically
generated via data augmentation, so that a sample is similar to its aug-
mented version (i.e., after a transformation such as rotation, flipping,
or color perturbation) and dissimilar to other samples in a batch (He
et al., 2020; Dehaene et al., 2020). Azizi et al. (2022) presented
REMEDIS as a training strategy to improve the medical data repre-
sentation. REMEDIS includes two training steps: a SSL pre-training
strategy (on natural and then medical data), exploiting the simCLR
algorithm and large datasets, and then a fine-tuning strategy, training
the model on limited data. Chen et al. (2022) presented the Hierarchical
Image Pyramid Transformer (HIPT), a ViT architecture trained on
over 10,000 WSIs (from 33 cancer types) to capture tissue structures
from multiple magnifications, combining two levels of self-supervised
learning. Wang et al. (2022) presented Semantically-Relevant Con-
trastive Learning (SRCL) that aligns multiple positive instances with
similar visual concepts instead of couples of positive examples collected
from WSIs. The positive instances are generated using data augmenta-
tion and some semantically relevant images identified from a memory
bank. Chen and Krishnan (2022) presented a study comparing different
self-supervised and weakly-supervised strategies, aiming to identify the
more robust representation in computational pathology, showing that
ViTs pre-trained using the DINO algorithm (based knowledge distilla-
tion) guarantee robust and interpretable features. Filiot et al. (2023)
presented iBOT, a self-supervised transformer-based algorithm based
on Masked Image Modeling (MIM), pre-trained on over 40 million
histopathology images. Campanella et al. (2023) presented a study in-
cluding the largest histopathology dataset ever collected, over 3 billion
images collected from over 423,000 WSIs. The study aims to compare
the pre-training of ViT exploiting DINO and the masked autoencoder
(MAE) algorithms, evaluating learned representation is evaluated on
downstream tasks. Vorontsov et al. (2023) presented Virchow, a large
neural network trained with a DINO algorithm on over 1.5 million
WSIs.

Vision-language models for image representation learning. Vision-
Language models (VLM) are algorithms aiming to build a data represen-
tation combining images and texts. VLMs are trained with images and
the corresponding text (e.g., a textual description of the image content)
to learn how to link the information from the two modalities. For this
reason, VLM models are usually designed with multiple input branches
including architectures to process specific input data, respectively, to
input images and texts. The goal of VLMs is to build a stronger data
representation that can be adopted as a backbone to solve downstream
tasks, avoiding the need for annotations that may be expensive to
collect. Radford et al. (2021) presented Contrastive Language-Image
Pre-training (CLIP), a self-supervised algorithm to align visual and tex-
tual representations. CLIP is trained to maximize the similarity between
corresponding image-text pairs while minimizing the similarity on un-
related pairs, exploiting a contrastive loss function (Oord et al., 2018),
using around 400 million paired image-texts collected from publicly
available repositories. Yu et al. (2022) presented Contrastive Captioner
(CoCa), an algorithm to pre-train image-text encoder–decoder. CoCa
is trained by combining a contrastive loss function with a captioning
loss aiming to minimize the dissimilarity between the predicted se-
quence of output tokens and the actual target sequence. Zhang et al.
(2020) presented Contrastive VIsual Representation Learning from
Text (ConVIRT), a framework aiming to learn image representations
combining medical images and the corresponding reports. The training
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aims maximize the similarity between image-to-text pairs and the
similarity between text-to-image pairs. In both cases, the loss function
is the Noise-Contrastive Estimation loss function (InfoNCE), which is
asymmetric for each input modality. Wang et al. (2021) presented a
UniFied TransfOrmer (UFO), a Transformer-based architecture that can
be trained with both unimodal and multimodal data, depending on
the task to solve. UFO includes a single encoder adopted for multiple
modalities, that are concatenated. The encoder is trained to optimize
several loss functions: an image-text contrastive loss, an image-text
matching loss and a masked language modeling loss.

Multimodal learning in computational pathology. The application of mul-
timodal learning algorithms in computational pathology aims to com-
bine multiple sources of pathology data (usually histopathology images
with reports or genomics data). Multimodal algorithms are usually pre-
trained on agnostic tasks to provide a robust (including complementary
characteristics) backbone model that can be further applied to specific
downstream tasks. Lu et al. (2023b) presented MI-Zero, a framework
to pre-train a model in a self-supervised fashion, exploiting a mecha-
nism similar to CLIP. MI-Zero is pre-trained on many image-text pairs
(around 33,000 histopathology image-report pairs) and then adopted to
solve several downstream tasks, exploiting zero-shot learning. Further-
more, the text encoder is pre-trained using a corpora including around
900,000 reports from two hospitals and PubMed repositories. Huang
et al. (2023) presented Pathology Language Image Pre-Training (PLIP)
a vision-language model trained with a self-supervised algorithm to
align histopathology images and the corresponding description. PLIP
is pre-trained to adopt OpenPATH, a dataset including over 200,000
histopathology images paired with the corresponding text. Exploiting
the alignment among modalities, PLIP can be adopted to classify sam-
ples labeled with unseen classes using zero-shot learning. Lu et al.
(2023a) presented CONtrastive learning from Captions for Histopathol-
ogy (CONCH), a visual-language foundation model designed to exploit
several histopathology images and biomedical text. CONCH is trained
using over 1.17 million image-text pairs, using two loss functions: an
image-text contrastive loss to align the multimodal representation and
a captioning loss function, such as the one proposed in CoCa.

1.2. Main contributions

In this work, we aim to address the following research question:

RQ: Can high-level concepts from textual reports be effectively com-
bined with low-level image representations?

To do so, we present a multimodal architecture combining visual infor-
mation from images with textual information from reports to improve
histopathology data representations. Specifically, the contributions of
this work are:

• A multimodal learning architecture combining images and re-
ports, leading to a stronger histopathology data representation,
that can be used as a backbone to solve computational pathology
tasks.

• A multimodal histopathology data representation allows outper-
forming unimodal representations in terms of WSI classification,
making it possible to exploit smaller datasets to train effective
networks.

• The combination of self-supervised learning methods to learn
similarities and dissimilarities between images and reports, using
limited training datasets.

• The representation of medical ontologies in terms of visual knowl-
edge, linking visual information from images with textual infor-
mation from reports.
4

The rest of the paper is organized as follows: Section 2 describes
the multimodal architecture, the dataset, including WSIs paired with re-
ports, and the experimental setup. Section 3 describes the experimental
results of the multimodal architecture on four tasks: WSI classifica-
tion on pathology workflow data, Section 2.4.1, WSI classification
on publicly available data, Section 2.4.1, multimodal data retrieval,
Section 2.4.1, and the linking between visual and textual concepts,
Section 2.4.1. Section 5 provides a discussion on the obtained results,
while Section 6 concludes the paper with some final remarks.

2. Methods

2.1. Data

The dataset used in this paper includes over 6,000 colon WSIs
and reports collected from the pathology workflows of two hospitals
(the Catania cohort and Radboudumc) and over 1,000 colon images
collected from two publicly available repositories.

Data from pathology reports are used to train and test the archi-
tecture. The architecture is trained with both WSIs and reports, while
during the test phase, the model is mutually exclusive: only WSIs or
reports can be used. Both images and reports are manually annotated
by experts with five classes: Adenocarcinoma, High-Grade Dysplasia
(HGD), Low-Grade Dysplasia (LGD), Hyperplastic Polyp and Normal
Glands. The classes are not mutually exclusive, leading to multilabel
annotations. Pathology workflow data are not manually selected, lead-
ing to unbalanced data in terms of class distribution, from both the
Catania cohort and Radboudumc data. This choice aims to simulate
a common scenario in digital pathology, where information about the
image content is easy to be collected. In fact, querying a LIS for specific
information about WSIs is often not feasible.

WSIs and reports are paired together. WSIs include gigapixel tis-
sue samples, heterogeneous in terms of stain and sample types. Stain
variability is a consequence of the heterogeneous acquisition proce-
dures, especially regarding whole slide scanners and the composition
of chemical reagents applied to the tissue. Catania cohort images
are scanned using two Aperio scanners and two 3DHistech ones (at
magnification 20/40x), while Radboudumc images are scanned using
3DHistech (at magnification 40x). Furthermore, the images are ac-
quired with different types of medical tests: the Catania cohort dataset
mainly includes colorectal polypectomies, biopsies, tissue resections
and margin resections; while the Radboudumc dataset mainly includes
biopsies and few polypectomies. Usually, biopsies are smaller in terms
of size than colorectal polypectomies and tissue resections. The latter
two types of images include more tissue and therefore more patches can
be extracted. Table 1 includes a detailed composition of data collected
from pathology reports, split in training and testing partitions.

Reports include heterogeneous free-text short descriptions of the
findings identified during the analysis, that may lead to one or more
high-level concepts linked to the considered classes (e.g., high-grade
and low-grade dysplasia). The finding description is collected from
the ‘Conclusion’ field, that may include macroscopic or microscopic
description about the single WSI to which it is paired, avoiding any
other information about the patient (such as the family history or
personal information). Textual reports are heterogeneous in terms of
source language, internal structure organization, and textual content.
Reports are translated to English before the analysis, but the source lan-
guages are Italian and Dutch for the Catania cohort and Radboudumc,
respectively. The internal structure of the reports varies according to
the workflows from which they originate: The Catania cohort reports
include a field with the diagnosis of the images, while Radboudumc
reports include a field with the diagnosis of the whole block including
one or more images. The last source of heterogeneity involves the
textual content, as samples and reports are collected over the years.
Therefore, several pathologists wrote the reports with their own per-
sonal style. Furthermore, Catania cohort reports are manually typed,
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Table 1
Composition of the dataset collected from the pathology workflows of the Catania cohort and Radboudumc. The dataset
includes paired WSIs and reports. The dataset is split into training and testing partitions. A 10-fold cross validation approach
is applied to train and validate the models.
Source Adenocarcinoma HGD LGD Hyperplastic Polyp Normal glands Total

Training data

Catania 893 774 1263 470 579 3091
Radboudumc 395 357 856 952 939 3085
Total 1288 1131 2119 1422 1518 6176

Testing data

Catania 111 96 113 32 98 348
Radboudumc 75 65 146 119 193 520
Total 186 161 259 151 291 868
Table 2
Composition of the dataset collected from public available repositories: UNITOPatho and IMP-CRC. The dataset includes only
images and it is split into training and testing partitions. A 10-fold cross validation approach is applied to train and validate
the models.
UNITOPatho images

Partition HGD LGD Hyperplastic Polyp Normal glands Total

Training 35 144 31 16 226
Testing 11 40 10 5 66

IMP-CRC images

Partition High-Grade Lesions Low-Grade Lesions Non-Neoplastic Lesions Total

Training 200 427 174 801
Testing 51 100 52 203
while Radboudumc ones are sometimes generated through ‘‘speech to
text’’ tools, thus introducing an additional source of noise in the report
analysis.

For what concerns WSIs from publicly available datasets, they are
collected from two publicly available repositories: UNITOPatho (Bar-
bano et al., 2021) and IMP-CRC (Oliveira et al., 2021). These reposito-
ries include heterogeneous images, in terms of color variations, sample
types, and classes. UNITOPatho images are scanned using a Hamamatsu
Nanozoomer S210 (at magnification 20x). They include sections of
WSIs that are paired together and treated as a single WSI, and are an-
notated with four classes: High-Grade Dysplasia, Low-Grade Dysplasia,
Hyperplastic Polyp, Normal Glands. IMP-CRC images are scanned using
two Leica GT450 scanners (magnification 40x). They include colorectal
biopsy and polypectomy slides, and are annotated with three classes:
High-Grade Lesions, Low-Grade Lesions, Non-Neoplastic Lesions.

Publicly available data are collected to evaluate the capability of the
multimodal data representation to generalize on heterogeneous data.
The architecture is adopted to solve different classification problems
(i.e. adopting other output classes and re-training the architecture
classifier), comparing it with the unimodal data representation. Ta-
ble 2 includes a detailed composition of data collected from publicly
available repositories, split in training and testing partitions.

Overall, the data involved in this study presents a high degree of
heterogeneity, which well resembles the landscape that these methods
are required to face in real-case scenarios. In support of this, Fig. 2
shows the dataset heterogeneity, in terms of tissue sample type and of
color distributions.

2.2. Multimodal architecture and training

We present a multimodal architecture to combine visual and textual
information from biomedical images and textual reports, aiming to
combine the low-level information from images with the high-level
information from reports.

Fig. 3 provides an overview of the architecture. The architecture
includes two input branches and some shared layers, including the
classifier. The input branches process and encode WSIs and pathology
reports. The image input branch (encoding WSIs) consists of a CNN
5

backbone and exploits the ADMIL framework to create an embed-
ding of fixed dimension (128) representing a WSI. he embeddings
are aggregated using an attention pooling layer, producing a single
attention channel for each one of the classes involved in the classi-
fication (i.e. five). The attention channels are aggregated in a single
embedding vector, representing the WSI, exploiting another attention
pooling layer. The latter aggregation aims to create a single-dimension
vector, that can be aligned to the one produced by the text encoder.
The architecture is shown in the lower layer of Fig. 3. The text input
consists of a BERT backbone, that outputs an embedding (768 in size)
followed by a fully connected layer, to project the BERT embedding to a
lower dimension size. The fully-connected layer creates an embedding
of fixed dimension (i.e. 128, the same as WSI embeddings) representing
a report. The embeddings of both modalities feed a shared projection
layer. The choice of adopting a shared projection layer aims to tackle
the lack of large datasets to train the architecture. Usually, VLMs
embed a l2-normalized projection head for every modality, such as
in CLIP architecture (Radford et al., 2021). However, those models
are usually trained with a larger magnitude of samples (between hun-
dreds of thousands and millions of samples) than our setup, where we
adopted around 6,000 WSIs. The rationale behind this single projection
head is to enhance alignment between image and text representations,
given the limited data in self-supervised scenarios. This design aims
to avoid overfitting, allowing the projection head to more effectively
align modalities when processing both images and texts, leveraging its
weight updates for classifying both modalities. The embeddings of both
modalities feed the classifier, which outputs predictions on multilabel
classes for both WSIs and reports. The embeddings representing WSIs
and reports are not l2-normalized, as usually shown in VLMs, since
the embeddings feed a classifier and it is not typical to normalize
embeddings before a classifier.

The training of the network aims to classify histopathology samples
(both WSIs and reports) and to combine high-level properties from
reports with low-level properties from the image representation, based
on raw pixels. While the first goal is achieved by minimizing the errors
on the WSI and report predictions via two Binary Cross-Entropy loss
function terms, the combination of high-level and low-level properties
is achieved through several factors. First, the training loss function
includes three terms to combine information: the NTXent loss function,
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Fig. 2. Overview of dataset heterogeneity. The upper part includes examples of tissue samples: biopsy, tissue resection, margin resection and polypectomy. The lower part includes
the distribution of patches per dataset (on the left), considering the Catania cohort (green), Radboudumc (Blue), UNITOPatho (yellow) and IMP-CRC; the distribution of color
variation according the dataset (on the right), considering the PCA projection of the RGB components for H&E of the patches.
the L1-loss, and the cosine similarity loss. The ablation study involving
the three loss functions is shown in Section 4. The NT-Xent loss function
is a contrastive loss function adopted in self-supervised algorithms, such
as MoCo and simCLR. During training, the architecture is fed with two
input batches of dimension 𝑛: the WSIs and the reports. Every sample
is linked to a similar example and 𝑛 − 1 dissimilar examples in the
other batch. A similar example is the paired sample corresponding to
the other modality (in the case of a WSI, the corresponding pathology
report and viceversa), while instead the dissimilar examples are the
other samples (i.e. in the case of a WSI, the reports of the other
WSIs). The role of NT-Xent optimization is to learn the similarity and
dissimilarity between samples in a batch. In this paper, the NT-Xent
loss function is used to learn the similarity between a couple of corre-
sponding WSI-report and the dissimilarity between unpaired WSIs and
reports, as shown in a paper in recent papers about Vision-Language
models, such as Radford et al. (2021), Lu et al. (2023b) and Huang
6

et al. (2023). NT-Xent is mainly sensitive to two parameters, which
influence the loss function: a temperature parameter and the batch size.
The temperature value chosen is fixed at 0.07, while the batch size is
equal to 4. More information about the batch size is detailed in the
Supplementary Material. The role of L1-loss and cosine similarity loss
functions is to align the multimodal representations by minimizing the
differences between the WSI and report representations. The L1-loss
(Mean Absolute Error loss) is a function that minimizes the absolute
differences between two vectors. The cosine similarity loss function is
a function that minimizes the cosine of the angle between two vectors,
computed as the dot product of the two vectors divided by the product
of their magnitudes. The combination of both loss functions to align
representations aims to avoid overfitting on training data (as shown
in Section 4), since the direct minimization of the distance between
multimodal representations, in combination with the relatively small
training dataset (around 6,000 couples images-reports), could lead the



Medical Image Analysis 97 (2024) 103303N. Marini et al.
Fig. 3. Overview of the multimodal architecture. It includes two input branches, to encode WSIs and pathology reports, a shared projection head and a shared classifier. During
the training both modalities are used, while instead during the testing the modalities are analyzed alone. The training involves the optimization of a loss function including
several terms: the classification errors for both WSIs and reports, a self-supervised loss including NT-Xent loss, a L1-loss and a cosine similarity loss function. The self-supervised
loss function aims to align the representations of WSI and reports. The lower part of the figure shows the image encoder: an ADMIL network, which includes a CNN backbone
and two attention networks. The first attention network aggregates the single patches to create a WSI-embedding, containing an embedding for every class. In order to obtain a
monodimensional embedding vector, another attention network aggregates the channels.
image and text representations into a small cluster in the embedding
space (Liao, 2021). Furthermore, the fact that both modalities are
classified by the same output branch helps to align the modality rep-
resentations. In fact, during the training phase, the network weight
updates influence both modalities, which are supposed to be as similar
as possible.

In this paper, the multimodal architecture can be trained with
several setups:
7

• Unimodal: the architecture is trained only on the classification of
WSIs.

• CLIP loss only : the architecture is trained only on the self-
supervised task, with the CLIP loss function.

• Our SSL loss: the architecture is trained only on the self-supervised
task, with the loss function proposed in the paper (L1-loss +
Cosine similarity Loss function + NT-Xent Loss).

• Classification + CLIP loss: the architecture is trained combining the
classification terms and the CLIP loss function.
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• Classification + Our SSL loss: the architecture is trained combining
the classification terms and with the loss function proposed in the
paper (L1-loss + Cosine similarity Loss function + NT-Xent Loss).

.3. ExaMode ontology

The ExaMode ontology (Menotti et al., 2023) contains several com-
onents, including the key high-level concepts and properties for ana-
yzing the findings identified during the tissue analysis.

The high-level concepts are summarized in three macro categories:

• Type of the polyp identified (‘Adenoma-Serrated Polyps’ or ‘Ma-
lignant Polyps’). This kind of information refers to the node ‘Polyp
of Colon’ and to its subclasses.

• Presence of Dysplasia, with the corresponding grade (low grade,
medium grade, or high grade). This kind of information refers to
the node ‘Dysplasia’ and to its subclasses.

• Characteristics of malignant polyps (considered as cancer), such
as the type of tumor, the tumor grade. This kind of information
refers to the node ‘Adenocarcinoma’ and to its subclasses.

.4. Experimental setup

.4.1. Evaluation tasks
SI classification on pathology workflow data. The multimodal architec-

ure is tested on the classification of WSIs from pathology workflows,
onsidering the unimodal and the multimodal setups (both with CLIP
nd our loss function to align multimodal representations). The testing
artition includes an independent (split at patient-level) set of 868
SIs, from both the Catania cohort (348) and Radboudumc (520). The

oal of this task is to evaluate if the multimodal representation (learnt
ombining WSIs and reports) reaches higher performance compared
ith the unimodal representation (learnt only from images), using the

ame architecture. Furthermore, both architectures are trained with
n increasing percentage of data (from 10% to the whole dataset) to
valuate if the combination of images and reports (paired together in
athology workflow) leads to high classification performance with a
maller amount of training data, reducing the need for the collection
f large datasets.

SI classification on publicly available data. The multimodal architec-
ure is tested on the classification of images from public available
atasets (UNITOPatho and IMP-CRC), considering the unimodal and
he multimodal (our loss function) training setups. The goal of this
ask is to evaluate if the multimodal histopathology data representation
an generalize better than unimodal one on heterogeneous data. The
ultimodal architecture is adopted as a pre-trained backbone to classify
SI from external datasets, including different classes. Therefore, WSI

lassification on publicly available data involves the finetuning of the
ultimodal architecture, trained using both couples of WSIs-reports

r only WSIs, as shown in Paragraph 2.4.1. In this task, only the
lassifier is trained, while the backbone of the multimodal architecture
mage input branch is frozen. The classification performance of the
ultimodal representation is compared with the performance of the
nimodal representation.

ultimodal data retrieval. The multimodal architecture is tested on
he multimodal retrieval of images and reports, considering all the
raining setups, except the unimodal one. The task involves the retrieval
f samples across modalities. When the input sample is an image,
he goal is to retrieve the most similar reports; on the other hand,
hen the input sample is a report, the goal is to retrieve the most

imilar images. A point to stress about this task is that the multimodal
etrieval task is inherently available after the multimodal training of
he architecture without the need for additional training or finetuning,
8

ince the network is not directly trained on the retrieval task. e
inking between visual and textual concepts. The multimodal architec-
ure is tested on the linking between visual and textual concepts,
onsidering all the training setups, except the unimodal one. The
oncepts are the ones described in Section 2.3. The linking involves
emantic concepts from pathology reports and the corresponding visual
epresentations based on pixels, exploiting a zero-shot learning setup.
extual concepts can be extracted from textual reports, but it is still not
ompletely clear how to link them to images, that include only raw-
ixels, without any semantics. The linking involves the evaluation of
imilarity (cosine similarity) between the embeddings of images and
oncepts. In this paper, the images may be single patches (224 × 224
rom magnification 10x) or entire WSIs. When the linking involves
he single patches, the corresponding textual representation of every
oncept is evaluated, using the textual branch of the architecture.
oncept embeddings are compared with the input patches via cosine
imilarity, linking the couples with the highest similarity value. One
undred patches per concept were selected (the ones with the highest
imilarity value), which an expert pathologist reviewed. When the
inking involves the WSIs, the evaluation is slightly different since the
ask is not a multiclass problem, such as at patch-level, but it is rather a
ultilabel problem, since many concepts may be linked to a single WSI.

ollowing a similar approach to the one proposed for patch linking,
he cosine similarity between the visual embedding representing WSIs
nd the textual embedding representing concepts/classes is evaluated.
everal thresholds are applied to link visual and textual concepts
0.7, 0.8, 0.9), as shown by Veeranna et al. (2016). When the cosine
imilarity exceeds the threshold, the textual concept is linked to the
SI.
The concept matching task is inherently available after the mul-

imodal training of the architecture without the need for additional
raining costs or fine-tuning, since the network is not directly trained
n the linking between visual and textual concepts task.

.4.2. Image pre-processing
Image pre-processing involves splitting the image into patches,

electing the ones from tissue regions, and discarding regions from the
ackground. The splitting of WSIs into patches is necessary due to the
igapixel nature of WSIs. Currently, GPU hardware has limited mem-
ry and struggles to handle large input images. Images are split into
atches of 224 × 224 pixels, extracted from magnification 10x, using
he Multi_Scale_Tools library (Marini et al., 2021b). The patch size is
hosen considering that the ResNet34 backbone used as CNN requires
his input data size. The magnification level is chosen considering that
he WSIs at 10x allow visualizing the components that correctly identify
he considered classes. Patches coming from background regions are
ot informative for analysis and are therefore discarded. The tissue
nd background regions are identified by generating tissue masks with
istoQC tool (Janowczyk et al., 2019).

.4.3. Report pre-processing
The report pre-processing involves the translation of the reports

nto English and the splitting of text into tokens. Reports are originally
tored in Italian and Dutch, according to the workflows from which
hey originate. However, state-of-the-art NLP algorithms are often de-
eloped to use English. Therefore, the report content is first translated
o English using pre-trained MarianMT neural machine translation
odels (Junczys-Dowmunt et al., 2018). Then, before the analysis,

ranslated reports are WordPiece tokenized using the BERT model
ocabulary. BERT vocabulary includes around 30,000 tokens divided
nto words, subwords, or characters. When words are not included
n the vocabulary, the WordPiece tokenizer divides words in known
ubword units or characters. By design, BERT accepts sequences of a
aximum of 512 tokens, where the first token of each sequence is a

pecial classification token ([CLS]) and the last is a special separator
oken ([SEP]). The final hidden state corresponding to the [CLS] token
s the aggregate sequence representation for classification tasks (Devlin

t al., 2018).
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2.4.4. Multimodal architecture pre-training
Both input branches for encoding images and reports are pre-

trained.
The image input branch is a ResNet34 backbone, pre-trained with

MoCo v2, a SSL framework aiming to learn features from input data.
MoCo v2 is adopted to pre-train the CNN backbone on learning sim-
ilarities and dissimilarities between input samples. In this paper, the
input samples correspond to the WSI patches collected from the training
partition. The concepts of similarity and dissimilarity among input data
are achieved using data augmentation: an input sample is considered
similar to its augmented version and dissimilar from the others. The
augmented samples are collected in a queue to produce dissimilar
examples from the input data. This paper’s queue includes 16,384
samples, while each batch includes 256 samples. The augmentation
pipeline includes several operations, implemented with Albumentations
python library (Buslaev et al., 2020): horizontal and vertical flipping,
random rotations (90/180/270 degrees), HUE saturation value, RG-
BShift, Contrast Limited AHE (CLAHE), random brightness, random
contrast, elastic transformation, grid distortions. Each operation is
applied to an input sample with a probability of 0.8. During CNN
pre-training, a H&E-adversarial optimization (Marini et al., 2021a)
is adopted to force the network to learn stain-invariant features to
improve the capability of the network to generalize well when tested
on data, including different stains that the ones included in the training
partition.

The report input branch uses PubMedBERT (Gu et al., 2021) as
the backbone, a BERT model pre-trained from scratch using abstracts
from PubMed and full-text articles from PubMed Central (Gu et al.,
2021). PubMedBERT has been pretrained from scratch, using a domain-
specific vocabulary, over biomedicine text to overcome the limitations
of mixed-domain pre-training strategies. PubMedBERT has been opti-
mized via Masked Language Modeling (MLM), Next Sentence Prediction
(NSP), and adversarial pre-training, which introduces perturbations
in the (input) embedding layer that maximizes the adversarial loss.
Adversarial pre-training forces PubMedBERT to optimize the standard
training objective (i.e., MLM and NSP) and minimize the adversarial
loss (Liu et al., 2020). In this work, we take PubMedBERT as is and use
it as an encoder for textual reports.

2.4.5. Image data augmentation pipeline
Input whole slide images are augmented during CNN training using

the Albumentations library (Buslaev et al., 2020). Image data augmen-
tation pipeline includes three operations: 90/180/270 degrees random
rotation, vertical and horizontal flipping, and hue-saturation-contrast
(HUE) color augmentation. The augmentation is applied at image-level
to have a consistent transformation for all the patches included in a
WSI, with a probability of 0.5.

2.4.6. Report data augmentation pipeline
The report data augmentation pipeline exploits three operations.

The first operation is a back2back translation – that is, translating
the input text to a different language and then back to English –
using French, Italian, German, Spanish, Turkish, Chinese, Japanese,
and Russian as middle languages, implemented using the nlpaug li-
brary (Ma, 2019). The second operation is an insert/rephrase strategy,
implemented via the nlpaug library, which consists of slightly mod-
ifying the sentence by inserting new words or paraphrasing it. The
third operation is a ChatGPT augmentation. The augmented report is
produced by the GPT v3 model (text-davinci-003 backend) (Brown
et al., 2020), submitting a prompt stating to modify the input text
without changing its global content. The prompt adopted is: ‘‘Generate
a different version of the following pathology report, without changing
its content, but rather the order of the words, the sentences, and the
medical terminology. [...]’’
9

2.4.7. Metrics to evaluate the architecture
The model’s performance is evaluated on three tasks: the WSI classi-

fication (pathology workflow and publicly available data), multimodal
data retrieval, and linking visual and textual concepts.

WSI classification. The model’s performance on WSI classification is
evaluated using the weighted macro F1-score. WSI classification is
defined as a multilabel problem (on the pathology workflow data) and
as multiclass problem (on the publicly available data). Weighted macro
F1-score is adopted to tackle the class imbalance. The macro-weighted
average involves the evaluation of the F1-scores for the single classes,
which are then weighted according to the class support (number of true
samples for the class). F1-score metric is defined as the average among
the recall and the precision. The precision measures the capability
of a classified to not misclassify negative samples as positive ones,
while the recall measures the capability to classify positive samples
correctly. The weighted F1-score is reported in terms of average and
standard deviation of the ten experiment repetitions, evaluated on the
test partition.

Multimodal data retrieval. The performance of the model on multi-
modal retrieval is evaluated using the precision@𝑘 and the mean
average precision (mAP). The precision@𝑘 evaluates the number of
relevant items retrieved concerning the total number of retrieved items
(i.e., 𝑘 value). The paper’s 𝑘 value (i.e., cut-off) for the precision equals
5, 10, 50. The choice of adopting low cut-off values is basedo on the
fact that medical experts querying the retrieval system may not have
a large amount of time to check all possible outcomes, so the system
must be effective with a small number of retrieved samples. The mean
average precision involves the evaluation of the average precision (the
area under the precision–recall curve) for the single input samples of
the retrieval system. The average precisions are then averaged. The area
under the recall-precision curve involves the evaluation of the recall@𝑘
and the precision@𝑘, where 𝑘 is the number of samples that can be
retrieved (in this case the whole dataset from pathology workflows). In
the paper, the 𝑘 value for the mAP equals 1,000. The cut-off value for
this metric is higher than the one adopted for precision@𝑘. This choice
is driven by the fact that the mAP metric also involves the evaluation
of recall@𝑘, which measures the ability to retrieve as many relevant
documents as possible; therefore, a high cut-off value shows how well
the system performs in terms of retrieving relevant content across a
wide range of possibilities. Since data are multilabel, both metrics are
computed with the micro-average (true positives and true negatives are
considered separately and then aggregated).

Linking between visual and textual concepts. The performance of the
model on the linking between visual and textual concepts is evaluated
for each task using the accuracy (true positives over the total amount
of samples).

2.5. Statistical significance test

The Wilcoxon Rank-Sum test (Woolson, 2007) is adopted during
a comparison between two algorithms to verify if the performance
difference is statistically significant (𝑝-value < 0.05).

2.5.1. k-fold cross validation
The multimodal architecture is trained using 𝑘-fold cross-validation

to show the robustness of the model concerning data used for training.
The training partition is divided into 𝑘 groups (in this paper 𝑘 = 10):
for every training repetition, k-1 groups are used to train the model,
while the other group is used to validate the model. Data are divided
at the patient level so that the samples collected from a patient cannot
be on both training and validation partitions. During the training, the
loss function involves optimizing five terms, as shown in Section 2.2.
During the validation, the weights of the best model are stored when
the loss function reaches the lowest value, considering only the WSI
classification term of the loss function.
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Table 3
Results for the performance of the multimodal architecture on the classification of WSIs, considering the Catania
cohort and Radboudumc datasets. The evaluation involves the unimodal and the multimodal representation
(considering both CLIP loss and our SSL loss function). The performance is evaluated with weighted F1-score,
reporting the average and the standard deviation (of the models involved in the k-fold cross-validation) and including
cumulative results for each dataset.

F1-score Catania Radboudumc Cumulative

Unimodal 0.765 ± 0.013 0.771 ± 0.012 0.769 ± 0.011
Classification + CLIP loss 0.785 ± 0.013* 0.782 ± 0.013* 0.784 ± 0.013*
Classification + Our SSL loss 0.788 ± 0.011* 0.792 ± 0.012* 0.790 ± 0.009*

* The results that are statistically significant (compared with the unimodal representation, using the Wilcoxon Test)
are reported.
.5.2. Hardware & software
The experiments are implemented using Python libraries. The deep

earning algorithms are implemented and trained using PyTorch 1.11.
ransformers 4.6.1 (Wolf et al., 2019) is used to implement the BERT
rchitecture and to pre-process textual reports. Deep learning experi-
ents are performed on a Tesla V100 GPU. WSIs are accessed using

penslide 3.4.1 (Goode et al., 2013). The model performance is eval-
ated with the metrics implemented by scikit-learn 0.23. The image
re-processing and augmentation are applied using albumentations
.8 (Buslaev et al., 2020).

.5.3. Hyperparameters
The grid search algorithm is adopted to identify the optimal con-

iguration of CNN hyperparameters. The optimal configuration chosen
eaches the lowest loss function on WSI classification in the validation
artition. The parameters involved in the grid search algorithm are:
he optimizer (Adam selected; Adam and SGD tested); the number
f epochs to train the model (15; above this amount of epochs, the
alidation partition loss function does not reach a lower level); the
earning rate (10−3; 10−2, 10−3, 10−4, 10−5 were tested); the decay rate

(10−3; 10−2, 10−3, 10−4, 10−5 were tested); the number of nodes in the
intermediate layer after the ResNet backbone (128; 32, 64, 128, 256
were tested).

3. Results

Multimodal representation latent space. Fig. 4 shows the latent spaces
including the embeddings representing either WSIs and reports, as
the outcome of the unimodal representation (architecture trained only
to classify WSIs, upper Figure) and the multimodal representation
(architecture trained to classify samples and using our SSL loss function,
lower Figure). Each dot in the Figure shows the embeddings, either
WSIs (red) and reports (blue) evaluated on the internal testing partition
(data from the Catania cohort and Radboudumc). The latent space
is obtained via dimensionality reduction, pre-processing the embed-
dings with Principal Component Analysis (PCA) and then applying
t-distributed stochastic neighbor embedding (t-SNE).

The upper part of Fig. 4 shows the embeddings representing WSIs
and reports, outcome of the unimodal representation. Since the input
data encode different characteristics and are processed with differ-
ent architectures, the corresponding embeddings are separated in the
space.

The lower part of Fig. 4 shows the embedding representing WSIs and
reports, outcome of the multimodal representation. The multimodal
representation is learned by forcing the representations of WSIs to be
similar to the corresponding report representations and by learning
relationships of similarity and dissimilarity among WSIs and reports,
as shown in Section 2.2. The main characteristic of the multimodal
representation is that WSI embeddings (red dots) are close to report
embeddings (blue dots), showing that the image representation encodes
both raw-pixel and concepts information. This characteristic is not
trivial, since the characteristics of both modalities are complementary:
while reports are short and include high-level concepts, images are
10

large and the pixels do not include any semantic information.
Table 4
Results for the performance of the multimodal architecture on the classification of
WSIs, considering the UNITOPatho and the IMP-CRC datasets. The evaluation involves
the unimodal and the multimodal representation (considering both CLIP and our SSL
loss function). The performance is evaluated with a weighted F1-score, reporting
the average and the standard deviation (of the models involved in the k-fold cross-
validation). The evaluation involves the unimodal and the multimodal histopathology
data representation.

F1-score UNITOPatho IMP-CRC

Unimodal 0.790 ± 0.017 0.874 ± 0.018
Classification + CLIP loss 0.750 ± 0.062 0.881 ± 0.007
Classification + Our SSL loss 0.824 ± 0.022* 0.894 ± 0.014*

* The statistically significant results (compared with the unimodal representation, using
the Wilcoxon Test) are reported.

WSI classification on pathology workflow data. The multimodal repre-
sentation outperforms the unimodal representation in the classification
of WSIs collected from pathology workflows for every percentage of
training data adopted in every testing partition.

The architecture is evaluated with the weighted F1-score, consider-
ing different percentages of input data and reporting the average and
the standard deviation of ten models (trained using cross-validation).
The architecture is trained with an increasing percentage of data,
starting from 10% and up to the whole dataset. The training results
on the increasing amount of data are shown in Fig. 5. The architecture
trained with both modalities (using our loss function to align images
and reports), but using half of the dataset (3,000 couples of WSIs-
repors instead of 6,000), reaches the same performance of the unimodal
architecture trained with the whole dataset. This suggests that com-
bining images and reports may alleviate the need to collect large
datasets to reach robust performance. When the whole training dataset
is used (100%), the multimodal representation reaches higher accuracy
than the unimodal one, with cumulative (considering both the Catania
cohort and Radboudumc test partition) F1-score = 0.790 ± 0.009. In
contrast, the unimodal representation reaches a cumulative F1-score =
0.769 ± 0.011, as shown in Table 3.

WSI classification on publicly available data. The multimodal represen-
tation, trained with our loss function to align the image and textual rep-
resentations, outperforms the unimodal representation on classifying
images from publicly available datasets. Both the representations are
learned during the previous task (i.e., WSI classification on pathology
workflow data, Section 2.4.1).

Images from publicly available datasets, collected from UNITOPatho
and IMP-CRC, are annotated with different classes. While the archi-
tecture is originally trained with multilabel data (five classes), both
UNITOPatho and IMP-CRC include multiclass data (respectively four
and three classes). The architecture backbone, considering both the
multimodal, trained with CLIP loss and our loss function to align modal-
ities, and the unimodal representation, is pre-trained on pathology
workflow data, as shown in Paragraph 2.4.1. On the other hand, the
classifier is trained from scratch on different classes.

The multimodal representation reaches an F1-score = 0.824 ± 0.022
on UNITOPatho dataset and an F1-score = 0.894 ± 0.014 on IMP-

CRC dataset, while the unimodal representation reaches respectively
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Fig. 4. Overview of the latent space, considering both the unimodal representation (architecture trained only to classify WSIs, upper Figure) and the multimodal representation
(architecture trained to classify samples and using our SSL loss function, lower Figure). The latent space of the multimodal representation shows regions where images and reports
are close to each other. The latent space of the unimodal representation shows two separate clusters, one including images, the other including textual reports.
an F1-score = 0.790 ± 0.01 on UNITOPatho dataset and an F1-score
= 0.874 ± 0.018 on IMP-CRC dataset. The multimodal representation
trained with our SSL loss function also outperforms the multimodal
representation obtained by aligning images and texts with CLIP loss.
Table 4 summarizes the results on publicly available datasets.

Multimodal data retrieval. The multimodal architecture allows building
a robust retrieval system without any peculiar architectural design for
reports and image retrieval compared with other methods developed
for this purpose.

Due to the multimodal representation characteristics, the retrieval
system can retrieve reports using a WSI input sample and WSIs using
a report input sample. The system is evaluated using the precision@𝑘
(cut-off 𝑘 chosen values are 5, 10, 50) and the mean average precision
(mAP). In both cases, the performance is evaluated considering the
samples from the testing partition of the Catania cohort and Rad-
boudumc as input queries, with the possibility to retrieve data from
all the WSIs and reports collected from pathology workflows (6176
samples from the Catania cohort and Radboudumc).

Table 5 summarizes the performance reached on the multimodal
retrieval, for both images and reports. The highest results are achieved
by the combination of classification and SSL losses (CLIP and our SSL
loss function to align modalities) that exceed both setups with only
SSL losses. In particular, the multimodal setup combining classification
and our SSL loss to align modalities reaches the highest performance in
11
terms of precision@k, for both datasets and modalities; while instead,
the combination of classification and CLIP loss function reaches the
highest performance in terms of mAP, for both datasets and modalities.
These results highlight the importance of the classification term in the
multimodal architecture training, especially when training datasets are
not large in size.

Linking between visual and textual concepts. The multimodal represen-
tation allows linking tissue morphologies from images to high-level
concepts included in the reports, building a multimodal knowledge
graph of paired histopathology visual and text information.

The concepts adopted for the linking are extracted from the ExaM-
ode colon ontology, presented in Section 2.4.1. The images associated
with the ontology concepts were reviewed by an expert pathologist.
Visual concepts can be linked to textual concepts at patch-level and
WSI-level.

Table 6 shows the results of the multimodal architecture on the
linking between visual and textual concepts, collected from reports, at
patch-level.

Table 6 shows the results of the linking between visual and textual
concepts, collected from reports. The linking is effective, considering
that the global accuracy of the multimodal architecture (trained com-
bining classification and our SSL loss) is 0.607, higher than the other
setups. The result is relevant, considering the fact that modality combi-
nation does not require any supervision and that most of the concepts
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Fig. 5. Results for the average performance of the architecture. The evaluation involves
the multimodal representation (blue line, classification + our SSL loss function) and
the unimodal representation (green). The results are reported for the Catania cohort
testing partition (upper sub-figure), the Radboudumc testing partition (middle sub-
figure), and the combination of both testing partitions (bottom sub-figure). In the three
sub-figures, the dashed line represents the performance of the architecture when trained
by combining both images and reports on the whole dataset (100%); the dotted line
represents the performance of the architecture when trained with only images on the
whole dataset (100%).
12
Table 5
Overview of the results of the multimodal retrieval task. The task is evaluated on the
image retrieval (reports as input) and the report retrieval (images as input), considering
several multimodal methods: CLIP loss only, our SSL only, classification + CLIP loss,
classification + our SSL loss.

CLIP loss only

Retrieve reports (image as input)

Metric Catania Radboudumc

Precision@5 0.255 ± 0.030 0.244 ± 0.097
Precision@10 0.253 ± 0.031 0.251 ± 0.076
Precision@50 0.249 ± 0.049 0.268 ± 0.064
mAP 0.179 ± 0.024 0.212 ± 0.040

Retrieve images (reports as input)

Precision@5 0.233 ± 0.066 0.231 ± 0.059
Precision@10 0.248 ± 0.049 0.239 ± 0.041
Precision@50 0.247 ± 0.031 0.245 ± 0.026
mAP 0.159 ± 0.008 0.186 ± 0.007

Our SSL only

Retrieve reports (image as input)

Metric Catania Radboudumc

Precision@5 0.757 ± 0.021 0.768 ± 0.020
Precision@10 0.756 ± 0.019 0.768 ± 0.021
Precision@50 0.770 ± 0.009 0.775 ± 0.016
mAP 0.463 ± 0.017 0.583 ± 0.008

Retrieve images (reports as input)

Precision@5 0.836 ± 0.030 0.850 ± 0.016
Precision@10 0.832 ± 0.028 0.851 ± 0.012
Precision@50 0.827 ± 0.012 0.845 ± 0.007
mAP 0.467 ± 0.010 0.580 ± 0.010

Classification + CLIP loss

Retrieve reports (image as input)

Metric Catania Radboudumc

Precision@5 0.780 ± 0.012 0.777 ± 0.016
Precision@10 0.779 ± 0.014 0.779 ± 0.018
Precision@50 0.789 ± 0.010 0.789 ± 0.017
mAP 0.546 ± 0.020 0.639 ± 0.018

Retrieve images (reports as input)

Precision@5 0.847 ± 0.033 0.887 ± 0.016
Precision@10 0.847 ± 0.024 0.882 ± 0.017
Precision@50 0.846 ± 0.013 0.874 ± 0.014
mAP 0.515 ± 0.020 0.632 ± 0.022

Classification + our SSL loss

Retrieve reports (image as input)

Metric Catania Radboudumc

Precision@5 0.795 ± 0.030 0.794 ± 0.015
Precision@10 0.794 ± 0.028 0.796 ± 0.015
Precision@50 0.798 ± 0.020 0.802 ± 0.013
mAP 0.537 ± 0.023 0.632 ± 0.012

Retrieve images (reports as input)

Precision@5 0.867 ± 0.030 0.880 ± 0.015
Precision@10 0.864 ± 0.024 0.877 ± 0.013
Precision@50 0.854 ± 0.021 0.873 ± 0.016
mAP 0.508 ± 0.019 0.620 ± 0.015

The performance is evaluated with precision@𝑘 (𝑘 values are 5, 10, 50) and mAP,
reporting the average and the standard deviation (of the models involved in the k-fold
cross-validation).

where the linking is effective are not involved in the classification.
More details about the single concept linking are described in the
Supplementary Material.

The visual ontology is shown in Fig. 6. For every concept, nine
randomly selected patches are linked to the concept.

The upper part of Fig. 6 shows the linking between visual and tex-
tual concepts from the ExaMode ontology related to the ‘Positive Out-
come’ (i.e. when findings are identified). The most relevant concepts in
this part of the ontology are the ones related to the ‘Adenocarcinoma’,
where it is possible to identify a small number of glands (that are not

well defined).
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Fig. 6. The ExaMode visual ontology as a result of the linking between visual (patches) and textual concepts. The visual ontology includes concepts related to colon dysplasia
concepts and on the polyp of colon.
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Table 6
Overview of the results on the linking between visual and textual concepts, considering
all training setups, at patch-level. For every concept, one hundred images are collected
and reviewed by an expert pathologist. The model adopted for the linking is the one
reaching the highest performance in terms of classification (when the classification
term is involved) or retrieval (otherwise), among the training repetitions involved in
the k-fold cross-validation.

Setup True positives Accuracy

CLIP loss only 204/1500 0.136
Our SSL loss only 747/1500 0.498
Classification + CLIP loss 745/1500 0.496
Classification + our SSL loss 911/1500 0.607

The central part of Fig. 6 shows the linking between visual and
extual concepts from the ExaMode ontology related to colon polyps.

ithin the patches, it is possible to identify the presence of glands,
etter defined in terms of shape respect to the dysplasia patches, and
he presence of a stroma less infiltrated.

The bottom part of Fig. 6 shows the linking between visual and
extual concepts from the ExaMode ontology related to dysplasias.

ithin the patches, it is possible to identify the presence of deformed
lands and of the stroma infiltrated by cells, usually related to the
ysplasia condition. An important characteristic to underline is the
act that the patches linked to concepts are invariant to the color
ariations: the learned representation embeds features linked to tissue
orphologies and to color variations.

Table 7 shows the results of the linking between visual and textual
oncepts, collected from reports, at WSI-level. The linking is effective,
onsidering the number of concepts (15) and that the F1-score achieved
y the multimodal architecture (trained combining classification and
ur SSL loss) is higher than the other setups. One aspect to stress
s the fact that the models trained using only the CLIP loss function
each always 0, as a consequence of the low similarity values obtained
ith the concepts. This result can be explained considering the large
mount of samples needed to train a deep learning model in a self-
upervised fashion: in this only 6,000 samples were used, reducing
he impact of the CLIP loss function. The result is relevant, because
odality combination does not require any supervision and that most

f the concepts where the linking is effective are not involved in the
lassification.

. Ablation study

The ablation study aims to investigate the contribution of the SSL
oss functions on the classification of WSIs and of the image encoder in
he multimodal architecture.

he contribution of self-supervised loss functions on the classification of
SIs. This section of the ablation study aims to investigate the con-

ribution of the SSL loss functions on the WSI classification. The inves-
igated loss functions are combinations of L1-loss, cosine similarity loss
nd NT-Xent loss; the application of CLIP loss.

The multimodal architecture is trained considering the classifica-
ions terms (for both WSIs and reports) and different combination
f SSL losses and evaluated in terms of classification performance,
onsidering the pathology workflow test partitions (Catania cohort,
adboudumc and their combination) and compared with the unimodal
epresentation.

Table 8 shows an overview of the performance. The multimodal
epresentation, learnt combining the three loss functions, reaches the
ighest performance in the Catania and the cumulative dataset, while
nstead the highest performance in the classification of Radboudumc
ata is reached by the multimodal (with CLIP loss function). Fur-
hermore, comparing the performance with the unimodal represen-
ation, the multimodal architectures trained with our self-supervised
oss function and with CLIP loss function are the only ones where
he difference in performance is statistically significant (according to
14

ilcoxon Rank-Sum test).
The contribution of the image encoder in the multimodal architecture. This
section of the ablation study aims to investigate the contribution of
the image encoder on the WSI classification, considering four different
MIL frameworks: ABMIL, CLAM, transMIL and ADMIL (the framework
adopted in the paper). The multimodal architecture is trained con-
sidering two setups: the unimodal representation and the unimodal
representation (with our self-supervised loss function) and evaluated in
terms of classification performance, considering the pathology work-
flow test partitions (Catania cohort, Radboudumc and their combina-
tion).

Table 9 shows an overview of the performance, according to differ-
ent MIL image encoders. The multimodal representation, learnt com-
bining the three loss functions, reaches the highest performance in
every test partition (Catania, Radboudumc and their combination), con-
sidering every MIL framework. However, the difference in performance
is statistically significant for every partition only for the ABMIL and the
ADMIL frameworks. The reason may be identified in the more complex
architecture of CLAM and transMIL frameworks. These architectures
implement mechanisms to identify relevant patches among the input
bags. Therefore, the unimodal architecture, trained only with WSIs,
reaches a plateau in the classification performance. Even if the clas-
sification performance is higher, we chose to adopt ADMIL: CLAM and
transMIL framework are not trivial to set up and their tuning may not
be trivial, requiring additional optimizations.

5. Discussion

This paper presents a multimodal architecture, trained to combine
histopathology images and textual reports to empower histopathol-
ogy data representation. The multimodal architecture shows several
advantages: a more robust representation of histopathology data, a
solution to tackle data scarcity (still reaching accurate performance),
and the possibility to link visual concepts from images to textual
concepts from reports. The approach includes two input encoders, a
CNN for images and a BERT model for textual reports, to process and
combine modalities during the training. At testing time, the architec-
ture works on single modalities. The architecture is trained on data
collected from pathology workflows and evaluated on several tasks:
first, WSI classification (on pathology workflow data, Section 2.4.1
and on publicly available data, Section 2.4.1); secondly, multimodal
data retrieval (Section 2.4.1) and, lastly, the creation of multimodal
ontologies, linking visual and textual concepts (Section 2.4.1).

The results achieved in the classification of images, both on pathol-
ogy workflows and publicly available repositories, show that the mul-
timodal data representation is more robust than the representation
learnt adopting only images, leading to higher performance, and to
better capability to generalize on unseen data. The multimodal ar-
chitecture presented in the paper shows more robust characteristics
for its application in the histopathology domain, compared with other
Vision-Language Models presented in scientific literature to align the
representations, such as CLIP (Radford et al., 2021), CoCa (Yu et al.,
2022), ConVIRT (Zhang et al., 2020), PLIP (Huang et al., 2023), MI-
Zero (Lu et al., 2023b), CONCH (Lu et al., 2023a). The main difference
with these methods involves the amount of data adopted for training
the architecture. While usually VLMs and SSL require a large amount
of training samples, in this case only around 6,000 input samples
are adopted: regarding the computational pathology domain, MI-Zero
is trained with 33,000 pairs of image-text (over 5x bigger than this
paper training dataset), PLIP on over 200,000 pairs (over 33x big-
ger than this paper training dataset), CONCH on over 1.17 million
pairs (over 190x bigger than this paper training dataset); regarding
computer vision domain, CLIP is trained on over 200,000 pairs (over
66,660x bigger than this paper training dataset). This detail is not
trivial: the application of self-supervised loss functions, such as the
one adopted to train the CLIP algorithm, does not lead to fine-grained

histopathology data representations, required when training data are
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Table 7
Overview of the results on the linking between visual and textual concepts, considering all training setups, at WSI-level. The performance is evaluated
on the test partition collected from pathology workflow (Catania and Radboudumc). Being a multilabel problem, three threshold levels for the matching
are proposed: 0.7, 0.8, 0.9. The performance is evaluated with weighted F1-score, reporting the average and the standard deviation (of the models
involved in the k-fold cross-validation).
Setup 0.70 0.80 0.90

Catania Radboudumc Catania Radboudumc Catania Radboudumc

CLIP loss only 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Our SSL loss only 0.449 ± 0.055 0.485 ± 0.032 0.392 ± 0.068 0.432 ± 0.046 0.231 ± 0.047 0.173 ± 0.095
Classification + CLIP loss 0.462 ± 0.027 0.449 ± 0.040 0.419 ± 0.046 0.476 ± 0.057 0.269 ± 0.047 0.242 ± 0.084
Classification + Our SSL loss 0.484 ± 0.030 0.486 ± 0.051 0.435 ± 0.053 0.480 ± 0.040 0.286 ± 0.050 0.263 ± 0.114
Table 8
Overview of ablation study involving the self-supervised loss functions and their combinations. The loss functions
are: L1-loss, cosine similarity loss, NT-Xent loss and CLIP loss. The performance is evaluated with weighted F1-score,
reporting the average and the standard deviation (of the models involved in the k-fold cross-validation).

Loss function Catania Radboudumc Cumulative

Unimodal 0.765 ± 0.013 0.771 ± 0.012 0.769 ± 0.011
L1 0.770 ± 0.015 0.775 ± 0.006 0.774 ± 0.008
Cosine similarity 0.773 ± 0.019 0.773 ± 0.010 0.774 ± 0.009
Contrastive 0.773 ± 0.009 0.778 ± 0.017 0.776 ± 0.012
L1 + Cosine similarity 0.770 ± 0.019 0.773 ± 0.015 0.772 ± 0.014
L1 + Contrastive 0.777 ± 0.016 0.785 ± 0.012* 0.783 ± 0.009
Cosine similarity + Contrastive 0.780 ± 0.010* 0.782 ± 0.010 0.782 ± 0.009*
CLIP loss function 0.785 ± 0.006* 0.782 ± 0.016* 0.784 ± 0.016*
L1 + Cosine similarity + Contrastive 0.788 ± 0.011* 0.792 ± 0.012* 0.790 ± 0.009*

* The statistically significant results (compared with the unimodal representation, using the Wilcoxon Test) are
reported.
able 9
verview of ablation study involving the image encoder backbone. The comparison

nvolves four MIL frameworks, considering the unimodal and the multimodal repre-
entation (with our loss function as a self-supervised loss function) setups: ABMIL,
LAM, transMIL and ADMIL (the framework adopted in the paper). The performance

s evaluated with weighted F1-score, reporting the average and the standard deviation
of the models involved in the k-fold cross-validation).
Image encoder setup Catania Radboudumc Cumulative

ABMIL (Unimodal) 0.762 ± 0.012 0.769 ± 0.011 0.766 ± 0.010
ABMIL (Multimodal) 0.779 ± 0.006 0.793 ± 0.005* 0.787 ± 0.003*
CLAM (Unimodal) 0.778 ± 0.011 0.783 ± 0.017 0.781 ± 0.012
CLAM (Multimodal) 0.783 ± 0.013 0.798 ± 0.012* 0.792 ± 0.009*
transMIL (Unimodal) 0.783 ± 0.018 0.800 ± 0.015 0.793 ± 0.014
transMIL (Multimodal) 0.803 ± 0.011* 0.806 ± 0.007 0.805 ± 0.006*
ADMIL (Unimodal) 0.765 ± 0.013 0.771 ± 0.012 0.769 ± 0.011
ADMIL (Multimodal) 0.788 ± 0.011* 0.792 ± 0.012* 0.790 ± 0.009*

* The statistically significant results (compared with the corresponding unimodal
representation, using the Wilcoxon Test) are reported.

not large in size. For example, the multimodal architecture (trained
adopting the CLIP setup) reaches the poorest performance in all the
downstream tasks (i.e. multimodal retrieval and linking between visual
and textual concepts). The reason may be identified in the design of
CLIP, which requires two projection heads, that are l2-normalized,
before aligning the multimodal representations. Due to this architec-
tural design, the model risks overfitting on the relatively short amount
of training data (compared with hundreds of thousands of samples
required to train VLMs). The architecture design presented in the paper
(a single projection head, shared among modalities, without any l2-
normalization) allows a smoother modality alignment, that is reflected
in the performance on every evaluated downstream task. Therefore,
the loss function presented in the paper (a combination of L1-loss,
cosine similarity loss and NT-Xent loss) better fits the scenario where
multimodal datasets are not large in size, which is particularly true in
the biomedical domain, therefore on the histopathology domain.

The benefits that the network shows to tackle the scarcity of training
data are particularly clear when the classification performance is ana-
lyzed. The multimodal representation reaches the same performance
as the unimodal representation, but using half of the training data
15

(3,000 WSIs and reports vs. 6,000 WSIs). This result is remarkable
considering the application of the architecture in the histopathology
domain (in general in the biomedical domain), where the collection of
WSI annotations is time-consuming and not trivial. Therefore, the need
for a reduced amount of training data to reach accurate and robust
performance allows saving computational time, and reducing energy
and carbon footprint for training deep learning models. The adoption
of the multimodal architecture is also facilitated by the fact that usually
WSIs (medical images in general) are paired and stored with the
corresponding reports in the Laboratory Informative Systems, avoiding
additional costs and efforts of collecting two medical modalities.

The multimodal representation generalizes better on unseen data,
considering the results achieved on UNITOPatho and IMP-CRC data.
In both cases, the image input branch of the architecture is trained
with a brand new classifier, leaving the backbone of the architecture
frozen, since data from publicly available datasets are annotated with
different classes than the ones used to pre-trained the network. The
performance is compared with the unimodal representation (learnt only
from WSIs). Multimodal representation reaches higher performance in
both datasets (the difference is statistically significant), which is not
trivial. However, the main implication of this result is the fact that
the multimodal representation can be used as a valuable pre-trained
backbone to train models on other classification tasks (for example
including different classes) when dataset size is limited (UNITOPatho
has around 200 WSIs in the training set, while IMP-CRC has around
800). Therefore, the pre-trained model can be easily fine-tuned with a
small amount of data, guaranteeing good performance.

The results achieved in the multimodal data retrieval and on the
linking of visual and textual concepts show that the multimodal data
representation can be used to mine data and extract new knowledge
from data. In both multimodal retrieval and concept matching tasks,
the architecture shows robust performance, even if the architecture is
not explicitly trained to solve those tasks. This feature of the network
can be explained by considering the loss functions adopted to combine
and align the image and report representations. In particular, the mul-
timodal architecture shows competitive performance in the linking of
visual and textual histopathology concepts at patch-level and WSI-level.
The combination of SSL and weakly supervised learning enables the
creation of visual ontologies for biomedical data, even when working
with small training sets. This feature is crucial to understand in the
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content, since it may pave the way to advancements in medicine
and biomedical analysis domains, not limited to histopathology. Multi-
modal ontologies of biomedical data are still rare and difficult to create,
often requiring human inputs. This fact not only prevents medical
experts from properly benefitting from the recent opportunities offered
by deep learning models, but it also prevents medical researchers
in deep learning from benefitting from the opportunities offered by
medical experts. Multimodal ontologies may allow medical experts to
benefit from recent advancements in deep learning, considering aspects
such as education, a richer data integration and standardization, and
improved diagnostics. Biomedical visual ontologies can be adopted as
educational tools for medical students, helping experts to understand
the relationships among different structures and can improve their
learning experience, also facilitating to better visualize information and
peculiar conditions. Multimodal ontologies may help to standardize and
better describe diseases, aligning medical terminology and data formats
and contributing to enhance the exchanges among different health-
care systems, providing a shared framework for identifying diseases,
symptoms and treatments, that can increase the agreement of medical
experts on diagnosis. All these conditions would lead to enhanced
diagnoses and better treatments provided by medical experts. On the
other hand, multimodal ontologies may allow medical researchers in
deep learning to benefit from the opportunities offered by medical
experts, considering aspects such as data annotation and model re-
finement, accessible information, enhanced learning and prediction.
The adoption of multimodal ontologies would allow to exploit large
amounts of WSIs, currently unexploited and unannotated, to build
weakly-supervised algorithms. The WSIs would be linked to relevant
concepts, that could be used as weak labels. Furthermore, models can
be refined on peculiar tissue structures that can be identified at patch-
level. Therefore, by exploiting this feature, it is possible to build richer
and richer datasets, including rare diseases. These datasets, built by
linking high-level textual concepts to visual images, can be exploited to
train new robust tools with relatively limited effort, starting a virtuous
cycle not only in histopathology, but in the entire biomedical domain.
Multimodal ontologies, linking visual and textual content, may allow
to have more accessible and interpretable information, that can be
exploited by several users, including clinicians and researchers. Also
in this case, these aspects may dramatically help to design more robust
algorithms to analyze biomedical data.

6. Conclusions

Linking visual and textual knowledge from biomedical data is still
an unsolved task in biomedical domain, especially in domains where
annotated datasets are few and heterogeneity is high, such as in com-
putational pathology. This paper presents a multimodal architecture,
including input branches for processing images and reports. The net-
work is trained to classify images and reports, but due to the combi-
nation of modalities during training, it can be applied to solve other
tasks, such as multimodal data retrieval and linking between visual
and textual concepts. The multimodal architecture, trained combining
both modalities, outperforms the same network, trained with only im-
ages, on the classification of pathology workflows (the Catania cohort
and Radboudumc datasets) and publicly available data (two external
datasets). Furthermore, the multimodal nature of the network also
allows to retrieve multimodal data and to link textual concepts and
images in a self-supervised fashion, providing a tool to mine large
unlabaled datasets stored in hospital informative systems. In particular,
the linking between visual and textual concepts allows to create a visual
ontology of biomedical data. The application of biomedical ontology
may dramatically lead to benefit for both medical experts and medical
researchers. The multimodal approach can have a huge impact, not
only on digital pathology but in general on biomedical sciences. Future
16

works could target the development of multimodal representations
including different tissues, pathologies, concepts. Especially, linking to-
gether multimodal data representations of different domains may pave
the way to unified multimodal representations of biomedical knowl-
edge. The code and the multimodal architecture is publicly available
on Github (https://github.com/ilmaro8/multimodal_learning).
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