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ABSTRACT
Datasets play a central role in scholarly communications. How-
ever, scholarly graphs are often incomplete, particularly due to the
lack of connections between publications and datasets. Therefore,
the importance of dataset recommendation—identifying relevant
datasets for a scientific paper, an author, or a textual query—is in-
creasing. Although various methods have been proposed for this
task, their reproducibility remains unexplored, making it difficult
to compare them with new approaches. We reviewed current rec-
ommendation methods for scientific datasets, focusing on the most
recent and competitive approaches, including an SVM-based model,
a bi-encoder retriever, a method leveraging co-authors and cita-
tion network embeddings, and a heterogeneous variational graph
autoencoder. These approaches underwent a comprehensive anal-
ysis under consistent experimental conditions. Our reproducibil-
ity efforts show that three methods can be reproduced, while the
graph variational autoencoder is challenging due to unavailable
code and test datasets. Hence, we re-implemented this method and
performed a component-based analysis to examine its strengths
and limitations. Furthermore, our study indicated that three out of
four considered methods produce subpar results when applied to
real-world data instead of specialized datasets with ad-hoc features.
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1 INTRODUCTION
With the growing abundance of open datasets [5], the task of dataset
recommendation, wherein relevant datasets are retrieved based
on a paper, author, or textual query, is gaining momentum and
the demand for dataset recommendation methods is increasingly
evident, especially in the context of scholarly graphs [2, 4, 8, 12, 21,
28, 30–32]. The challenge in recommending datasets stems from
their diverse nature, encompassing various formats such as images,
tables, CSV, XML, and RDF files. Compounding this difficulty is the
absence or low quality of metadata containing a dataset description,
creator, and related publications describing their content.

The dataset recommendation methods proposed so far in the
scientific domain are heterogeneous and challenging to compare. In
particular, the input queries can take on diverse forms, including nat-
ural language sentences [14, 28], keywords [28], publications [2, 30],
and authors [8]. The outputs vary, with some dataset recommenda-
tion systems generating a ranking of datasets [2, 8, 28], while others
generate a set of datasets [14, 30, 32]. Further, the methodologies
employed for producing dataset recommendations may leverage
the similarity between the query’s and datasets’ embedding repre-
sentations [21, 31], the exploration of scholarly graphs [2, 8], or the
combination of graph-based and textual-based approaches [30].

In this work, we examine methods designed for the dataset
recommendation task, selecting the most recent, pertinent, and
high-performing approaches published in relevant venues. We con-
sidered methods where the query is represented by one or more
publications or a textual description. These approaches are:

• a LinearSVM-based approach presented at the International Con-
ference on Information and Knowledge Management (CIKM) in
2022 [14] (ICORE1 rank A);

• a bi-encoder retriever outlined in the proc. of the Association for
Computational Linguistics (ACL) in 2023 [28] (rank A*);

• Ensemble_CN , a model leveraging co-authors and citation net-
work introduced in the Data Science Journal (Scimago Q1 [Com-
puter ScienceApplications]) [32] and in the proc. of KSEC 2022 [30]
(rank C);

1https://www.core.edu.au/icore-portal
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• the Heterogeneous Variational Graph AutoEncoder (HVGAE) [2]
published in the IEEE International Conference on Data Mining
(ICDM, rank A*) in 2019;
Research gap.We highlight that none of these approaches di-

rectly compares with each other due to differences in input, the data
used for training, and/or the output they generate. Each method
is typically assessed against baseline measurements not explicitly
designed for the dataset recommendation task. Consequently, estab-
lishing the current state-of-the-art dataset recommendation task is
challenging unless we adapt existing methods to consider the same
input, training data, and output. This requires the reproducibility of
the methods and the definition of shared datasets for comparison. In
this work, we lay the groundwork to make the methods comparable
and establish a competitive baseline for dataset recommendation.

In this regard, the main contributions are:
(1) A replication study (i.e., same setup, different team) of the Lin-

earSVM, the bi-encoder, and the Ensemble_CN methods. The
study shows that the LinearSVM and the bi-encoder are fully
replicable, while Ensemble_CN is only partially replicable.

(2) A reproducibility study (i.e., different setup, different team). We
re-implementedHVGAE and conducted an in-depth components-
based study.

(3) An evaluation of the four recommendation methods on three
newly created test datasets representing real-world data. We
observed a performance drop in three out of four methods when
tested on the new datasets rather than on the ad-hoc datasets
employed in the original papers.

(4) A generalization study (i.e., different setup, team, and context)
based on three baseline recommendation methods – TopPop,
BPR, and LightGCN – not designed for the dataset recommen-
dation task. We adapted these methods to recommend datasets
and tested them on the new datasets. We demonstrate that, un-
der specific experimental conditions, LightGCN outperforms
the analogous reproduced methods, highlighting its untapped
potential for this type of architecture.

The rest of the paper is organized as follows. Section 2 describes
the relevant works on the dataset recommendation task. Section 3
presents the recommendation methods evaluated in this work 2. In
Sections 4 and 5, we describe the datasets employed in the analyses
and the implementation details. We present and discuss the results
in Section 6. Finally, Section 7 draws some final remarks.

2 RELATEDWORK
Many studies have proposed methods targeting the dataset recom-
mendation task in the last decade. In this context, “dataset” refers
to a set of related observations or results derived from research ex-
periments [7]. The typical setup consists of a scientist who needs to
identify existing datasets often adopted or presented in the available
scientific literature. Hence, datasets comprise traditional databases
and data files, e.g., in the CSV format, as well as scientific artefacts
like tables, figures, and archives.

Most methods [14, 21, 28, 31] treat dataset recommendation as a
text-centric problem modeling papers and datasets as collections

2Experimental suite available at: https://github.com/HeterogeneousGL-SAN/dataset_
recomm_repro

of documents, with datasets presumed to have accompanying titles
or short descriptive texts. Usually, queries are expressed in some
textual form, such as a keyword query. Consequently, the available
methods usually capitalize on the similarity between the dataset’s
textual metadata and a given query to formulate a ranking of rec-
ommended datasets. However, it is noteworthy that more recent
scholarly databases adopt amore sophisticated representation of the
scientific literature and related artefacts through a richer semantic
graph structure known as scholarly knowledge graphs [3, 6, 19, 24].
Yet, somemethods exploit networks interconnecting scholarly prod-
ucts to perform recommendations. Finally, we identify an essential
common aspect: no solution directly considers the content of the
datasets because their heterogeneity poses relevant challenges for
recommendation [31]. Thus, the existing methods are classified as
metadata-based or graph-based solutions.

Metadata-driven solutions utilize the textual metadata associ-
ated with a dataset for recommendation. Most of these approaches
involve encoding the dataset metadata and queries into a shared
vector space, enabling the computation of similarity to generate
a ranking of recommended datasets. For example, the technique
proposed by Viswanathan et al. [28] employs a text bi-encoder
retriever, demonstrating its effectiveness compared to BM25 and
nearest neighbors retrieval. Another approach, presented by Fär-
ber and Leisinger [14], takes a classification approach where the
query consists of multiple sentences describing the user’s needs.
We included these two approaches in our study due to their method-
ological nuances and significance in the scientific community.

We excluded from the study other methodologies that were out-
performed by the selected methods or focused solely on a straight-
forward application of BM25 or the calculation of similarity be-
tween embeddings using BERT orDoc2Vec [4, 12, 21, 28, 31]. Among
these, Patra et al. [21] employs metadata-based filtering to suggest
datasets to researchers based on their previous publications. In
contrast, Wang et al. [31] employs ranking functions such as BM25
or relies on the similarity between vector representations obtained
with Doc2Vec or BERT for the recommendation process. [31] also
proposed a second method based on extracting one or more ontol-
ogy concepts from the dataset metadata and determining its rele-
vance to the query by using ontology-based similarity approaches.
Lastly, Ben Ellefi et al. [4] represents a dataset with schema concept
labels and ranks the datasets by computing the cosine similarity
between the vector representations of the concepts.

Graph-based approaches leverage scholarly knowledge graphs
interconnecting research products to perform dataset recommenda-
tions. Among the methods in the literature adopting this approach,
the approach by Altaf et al. [2] recommends the most relevant
datasets for a set of papers, adopting a heterogeneous variational
graphs autoencoder (HVGAE) that learns the representation of
papers and datasets. Chen et al. [8] proposed AMENDER, a mul-
tilayered model to recommend a set of datasets leveraging the
information of a three-layers network interconnecting authors, pa-
pers, and datasets. Further methods, such as the one by Wang et
al. [32], use a co-author network to recommend a set of datasets
similar to the one used as a query. This work has been used in
authors’ subsequent publication [30], where the recommendation
combines link prediction-based and ranking-based approaches.

https://github.com/HeterogeneousGL-SAN/dataset_recomm_repro
https://github.com/HeterogeneousGL-SAN/dataset_recomm_repro
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3 DATASET RECOMMENDATION METHODS
Table 1 reports the reproduced methods by outlining the approach
type, the dataset employed in the original papers (detailed in Sec-
tion 4), the query type, the output, and the code availability.

We can see that the metadata-based methods [14, 28] take in
input a free text query representing the user information need.
Thus, these methods allow also to use a paper abstract to retrieve
relevant datasets. The graph-based methods take as input one or
more network nodes representing publications, datasets, or authors.
The nodes can be accompanied by textual descriptions (e.g., title
and description). As outputs, the bi-encoder, and HVGAE return
a ranked list of datasets sorted by their relevance to the query. In
contrast, LinearSVM and Ensemble_CN return a set of datasets
relevant to the user’s query without ranking them.

LinearSVM. In [14], the dataset recommendation task is treated
as a supervised multiclass, multilabel text classification problem.
The idea is that the more detailed the research problem description
(i.e., the user’s query) is, the higher the quality of the recommended
datasets will be. The approach relies on different text represen-
tation methods to encode the user’s query, specifically tf-idf (the
most effective), doc2vec, and sciBERT. Then it applies a linear SVM
to recommend a set of relevant datasets. Two types of inputs are
considered to train and test the models: the papers’ abstracts men-
tioning one or more datasets and the datasets’ citation contexts in
the abstracts.

Bi-Encoder Retriever. Viswanathan et al. [28] consider short
textual descriptions or a set of keywords as queries. The authors
performed dataset recommendation using BM25, k-nearest neigh-
bors retrieval, and a bi-encoder retriever. In the present work, we
consider only the bi-encoder retriever as it has been proven to be the
most effective. In the proposed implementation, the bi-encoder is
initialized with sciBERT and is fine-tuned on the training set. Each
query and dataset’s descriptions are encoded with BERT embed-
dings; the similarity between the embeddings is their inner product.
The output of the bi-encoder is a ranked list of datasets for each
query. The authors showed that using keywords or full-sentence
queries achieved similar results.

Ensemble_CN. Wang et al. [30] leverage a large-scale graph
interconnecting scientific papers, datasets, and authors extracted
from the Microsoft Academic Knowledge Graph (MAKG) to rec-
ommend one or more scientific items. The queries are composed
of scientific items in the graph. This method relies on KGlove [9]
and Glove [23] to generate an embedding for each publication and
dataset; then, the cosine similarity is used to measure the similar-
ity between the embedding of the query and compute the final
prediction. This method combines graph walk on the co-authors
network [32] and authors’ pre-trained embeddings similarity. The
items are ranked according to the BM25 score and BERT-based link
prediction; the ranking is based on the cosine similarity between
BERT pre-trained embeddings. According to the original paper,
combining all the above methods resulted in the best performances,
highlighting that relying on a citation network is essential but
not enough to produce effective recommendations. The output of
this approach is a set of datasets corresponding to the intersection
of the datasets returned from each approach. Even though this
method targets a more general task involving both publications and

dataset recommendations, recommending datasets can be achieved
considering only publications as queries.

HVGAE. Altaf et al. [2] address the problem of recommending
datasets relevant to one or more publications in a heterogeneous
graph. The input of HVGAE is a heterogeneous graph composed of a
bipartite network (HP,D ) interconnecting papers and datasets, and
an attributed citation network interconnecting papers, where AP,P
is the adjacency matrix, and XP identifies papers’ content vector
embeddings. The architecture consists of two autoencoders: the
first one takes in input the adjacency matrix of the citation network
AP,P , and the papers’ embeddings XP and outputs A′ P,P , which
is the reconstructed adjacency matrix; the other one takes in input
the adjacency matrix of the bipartite graph HP,D , and outputs
the reconstructed adjacency matrix H′ P,D . The citation network
is encoded using GraphSAGE [17]; the bipartite graph, instead, is
encoded relying on a densely connected multi-layer perceptron
(MLP). Each encoder produces mean and variance vectors of a
Gaussian distribution fromwhich paper and dataset representations
®zp , ®zd are sampled. The decoding stage includes two inner product
decoders that decode the latent variables ®zp and ®zd into probabilistic
dense adjacency matrices that reconstructAP,P , andHP,D . For the
objective function, the authorsmaximize the Evidence Lower Bound
(ELBO) on the marginal likelihood of the observed variables AP,P
andHP,D (cfr. Eq.13 in the reference paper [2].) The representation
®zQ of a query 𝑄 is considered as a Gaussian distribution whose
mean 𝜇𝑄 and variance 𝜎2

𝑄
correspond to the element-wise mean

of paper vectors in {®zp ∼ N(𝜇𝑝 , 𝜎2𝑝 ),∀𝑝 ∈ 𝑄}. The relevance of a
dataset to a query is computed via the KL-divergence between the
learned representations of the query and of the datasets and used
for top-k retrieval.

4 DATASETS
In this section we present the datasets adopted by the original
papers and the newly introduced shared datasets describing their
features and code and data availability.

The LinearSVM_Dataset includes 1,691 dataset titles in the
field of computer science extracted from the DSKG [13] and 88,000
abstracts extracted from the Microsoft Academic Graph [29]. Each
of the selected abstracts referenced at least one dataset. According
to the authors’ analyses, most datasets are mentioned up to 100
times in the abstracts. 70% of the datasets has been left for training,
20% for testing, and 10% for validation.

The DataFinder Dataset contains a set of (q, R) pairs, where q
is the query, either a textual description or a set of keywords, and
R is a set of datasets relevant for that query. DataFinder contains
17,5K queries used for training the models and 392 for testing. The
datasets in DataFinder are collected from Papers With Code, 4 a large
index of papers including metadata. The queries in the training set
are automatically formulated using Galactica [27] and are based on
paper abstracts; the relevant datasets have been extracted with a
rule-based procedure. For the test set, pairs of queries and relevant
datasets are manually annotated.

MAKG_CN is an RDF graph of interconnected publications
(3M), datasets (1.5K), and authors (5M) extracted from the MAKG
and ScholeXplorer. Analyzing the MAKG_CN dataset, we verified
4https://paperswithcode.com/

https://paperswithcode.com/
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Table 1: Overview of type, dataset, query, output, and availability of all the methods examined.

Method Type Dataset Query Output Availability

LinearSVM [14] metadata-based LinearSVM_Dataset: MAG [29] + DSKG [13, 16] Textual description Set of datasets
Bi-Encoder Retriever [28] metadata-based DataFinder Dataset [28] keywords, textual description Datasets ranking

Ensemble_CN [30] graph-based MAKG_CN: MAKG [15, 29] + ScholeXplorer3 Publications, datasets Set of datasets
HVGAE [2] graph-based Delve [1] Publications Datasets ranking ✗

Table 2: Overview of employed datasets. We report the num-
ber of publications (P), datasets (D), authors (A), publication-
dataset edges (p → d), publication-publication (p → p), and
dataset-dataset (d → d) edges.

Dataset P D A p→d p→p d→d

MES 2,181 2,949 9,408 3,098K 500 1,182
PubMed_KCore2 2,563 3,291 19,655 5,503 1,055 1,504
PubMed 33,797 42,635 330,000 37,462 18,917 8,078

that only 1,500 triples involve publications connected to datasets. In
particular, 1,400 distinct publications are connected to at least one
dataset, and 257 datasets to at least one publication. Only 11,600
publications and 326 datasets have a textual description.

MES [19] is a curated scholarly graph representing the Euro-
pean Marine Science Community of OpenAIRE 5. It interconnects
publications (4K), datasets (5,5K), authors (21,6K), and software
(not considered in this work). All the publication and dataset nodes
have a set of textual attributes that include the abstract, the title,
the URL (or the DOI), and the publication date; the author’s nodes
contain names, surnames, and ORCID (if present). We processed
and enriched the original MES dataset [19] with a citation network
interconnecting publications to publications required by Ensem-
ble_CN, and HVGAE.

PubMed has been extracted from the OpenAIRE Graph and
interconnects a set of publications available on PubMed (33,8K),
the related datasets (42,6K), and their authors (330K). Publications,
datasets, and authors have the same attributes as the nodes in the
aforementioned MES dataset. Authors have been disambiguated
with the FDup framework [11].

PubMed_KCore2 represents a subset of the aforementioned
PubMed dataset (2,5K publications, 3,3K datasets and 19,6K authors).
It has been created by selecting all the publications (datasets) with
a minimum of two interconnected datasets (publications) and in-
cludes all the associated authors.

A more comprehensive description of nodes and edges count in
MES, PubMed_KCore2 and PubMed datasets used in the present
paper is provided in Table 2. In these datasets, each publication
is connected to at least one dataset. We analyzed the impact of
authors’ disambiguation on MES, PubMed, and PubMed_KCore2.
We detected that in MES, on average, each author contributed
to 3.2 research outcomes (i.e., publications, datasets); conversely,
in PubMed_KCore2 and PubMed, we detected that each author
contributed to 1 and 1.2 outcomes, respectively. In addition to this, in
MES there are 9𝐾 authors connected both to at least one publication
and a dataset, while in PubMed_KCore2 and PubMed only 866
5https://mes.openaire.eu/

and 72𝐾 respectively. These characteristics, typical of real-world
datasets, can significantly impact the final performance of methods
as they contribute to the sparsity of the graph.

5 IMPLEMENTATION DETAILS
We utilized the training-test splits provided in the original papers
to perform replicability experiments. In MES, PubMed_KCore2 and
PubMed datasets, we left 80% of the edges for training and used the
remaining 20% for validation and test.

Replicability. Replicability involves LinearSVM, bi-encoder, and
Ensemble_CN methods. To replicate the results of the linearSVM-
based approach, we relied on the code and data provided in the
GitHub repository; 6 the authors relied on the LinearSVM im-
plementation provided by the scikit-learn python library [22].
Specifically, among the solutions proposed, we replicated the most
effective one: tf-idf for text representation and LinearSVM as se-
lected model.

The bi-encoder retriever relies on the Tevatron7 python pack-
age. To replicate its evaluation on the full-sentence and keywords
queries experiments, we contacted the authors of the paper, who
fixed the code repository. 8

While replicating the Ensemble_CN method we noticed that one
of the files on GitHub9 was corrupted, and the code could not run
properly. We contacted the authors of the paper and we managed
to run the code even though not in all the settings presented in the
original paper as detailed in the results section.

Reproducibility. The original code and data for the HVGAE ap-
proach are inaccessible. Despite contacting the authors, we could
not obtain the code nor the training and test data used in the origi-
nal experiments. Consequently, we re-implemented this approach
from scratch relying on the PyTorch10 and PyTorch Geometric11

python libraries.
The original paper for HVGAE does not provide details about

how the initial metadata representations were obtained. Conse-
quently, we computed the representations using all-MiniLM-L6-v2,
a pre-trained language model available on Hugging Face12 that gen-
erates sentence and paragraphs embeddings with 384 features. We
first ran the re-implemented version of HVGAE on MES, PubMed,
and PubMed_KCore2 relying on the initial combination of param-
eters provided in the original paper –i.e., 110 epochs, learning

6https://github.com/michaelfaerber/datarec
7https://github.com/texttron/tevatron
8https://github.com/viswavi/datafinder/tree/main
9https://github.com/xuwang0010/datarecommend
10https://pytorch.org/
11https://pytorch-geometric.readthedocs.io/en/latest/
12https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

https://github.com/michaelfaerber/datarec
https://github.com/texttron/tevatron
https://github.com/viswavi/datafinder/tree/main
https://github.com/xuwang0010/datarecommend
https://pytorch.org/
https://pytorch-geometric.readthedocs.io/en/latest/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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rate equal to 10−4, L2 regularization equal to 10−3. Running ran-
domized search, we found that the most effective combination of
hyperparameters was instead 500 epochs, learning rate 10−2, L2
regularization 10−5. While in the original implementation, a query
could include more than one paper, in our evaluation setting, each
query corresponds to precisely one paper. To test the system, we
first obtained the query papers representations by leveraging the
GraphSAGE encoder, and then, we computed the KL-divergence
between each query and dataset representations.

Generalization. We selected three general-purpose recommenda-
tion methods – TopPop [10], BPR [25], and LightGCN [18] – not
targeting the dataset recommendation task and analyzed how they
perform on the shared datasets in our settings. We relied on the
implementation of these methods provided by Cornac [26], a frame-
work for multimodal recommender systems. Given that BPR and
LightGCN methods distinguish between users and items, to run
these models, we considered publications as users and datasets as
items.

BPR [25] (Bayesian Personalized Ranking) is a collaborative fil-
tering model designed for recommendation systems that work in
implicit feedback settings. It takes in input the adjacency matrix
describing the interaction between the publications (i.e., the users)
and datasets (i.e., the items). Rather than predicting a precise rat-
ing for each dataset, the method predicts the relative publication
preferences for all publication-dataset pairs. The model learns to
predict a higher ranking for datasets with implicit positive feedback
compared to non-interacted datasets, thus providing personalized
recommendations based on implicit publication preferences. It is
commonly used as a strong baseline in similar settings: it has been
used as baseline also in HVGAE original evaluations [2].

LightGCN [18] is a transductive approach that learns publication-
dataset–i-e., user-item–embeddings by linearly propagating them
on the publication-dataset interaction graph. The final embedding
for prediction is derived by combining the embeddings from the
propagation layers through a weighted sum, capturing information
from different layers in the process. The prediction is based on the
inner product between the publication and the dataset.

We relied on grid search for hyperparameters tuning. We found
that for BPR the best results are achieved with a learning rate of 0.1,
a L2 regularization parameter of 0.001, and at most 300 iterations.
For LightGCN instead, the highest effectiveness is reached with a
learning rate of 1𝑒 − 3, 2 layers, 500 iterations, and a batch size of
1024.

Additionally, we evaluated BM25 and cosine similarity-based
rankings to assess the performance of these baselines across the
three shared datasets. These baselines, mentioned in the original
papers of the methods under study, are points of comparison for
the respective approaches.

For the BM25 implementation, we relied on the one provided by
the rank_bm2513 python library. For the ranking based on the co-
sine similarity instead, we first computed the embeddings using the
all-MiniLM-L6-v214 sentence-transformer model, and then we
computed the cosine-similarity between the query and the datasets
embeddings.

13https://github.com/dorianbrown/rank_bm25
14https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Table 3: Replicability results. We provide the results obtained
replicating each experiment (Replicated), the results reported
in the reference paper for that experiment (Original), and
the difference between these values (Difference).

Method [dataset] Experiment Precision Recall F1

LinearSVM [LinearSVM_Dataset]

Abstract - Original 0.3900 0.1700 0.2200
Abstract - Replicated 0.3700 0.1900 0.2300
Abstract - Difference -0.0200 0.0200 0.0100
Citation - Original 0.6200 0.5500 0.5700
Citation - Replicated 0.6000 0.5500 0.5600
Citation - Difference -0.0200 0.0000 -0.0100

Bi-encoder [DataFinder Dataset]

Sentences - Original 0.1600 0.3120 0.2115
Sentences - Replicated 0.1705 0.3355 0.2262
Sentences - Difference 0.0105 0.0235 0.0147
Keyphrase - Original 0.1650 0.3240 0.2186
Keyphrase - Replicated 0.1649 0.3260 0.2184
Keyphrase - Difference -0.0001 0.0020 -0.0002

Ensemble_CN[MAKG_CN]

Exp 1 - Original 0.7600 0.6400 0.1180
Exp 1 - Replicated 0.7600 0.6390 0.1180
Exp 1 - Difference 0.0000 0.0010 0.0000
Exp 2 - Original 0.6950 0.0176 0.0343
Exp 2 - Replicated 0.2662 0.0007 0.0015
Exp 2 - Difference -0.4228 -0.0169 -0.0328
Exp 3 - Original 0.6404 0.0315 0.0600
Exp 3 - Replicated 0.2456 0.0010 0.0021
Exp 3 - Difference -0.3948 -0.0315 -0.0579

6 EXPERIMENTAL RESULTS AND DISCUSSION
In this section we discuss the replicability, reproducibility, general-
izability results.

Replicability results. Table 3 reports the results of the replicability
analyses. Each method has been evaluated on its original datasets
when possible using the original evaluation metrics.

Both LinearSVM and bi-encoder retriever are entirely replica-
ble, following the guidelines provided on the original repositories.
Only minor variations were observed in comparison to the original
results.

On the contrary, the Ensemble_CN approach is partially repli-
cable. Indeed, in the Ensemble_CN paper, the authors presented
three experiments, each one characterized by two sets of seeds,
i.e., publications and datasets nodes – one for queries and one for
candidates; we have observed that the seeds and candidate sizes
of the second and third experiments were more than ten times
greater than those mentioned in the paper. Even with the help of
the authors (contacted via email), it was impossible to solve the data
discrepancy. For the cases where the experiment seeds and candi-
date sizes did not match, the code did not terminate the execution.
To overcome this issue, we ran the experiments using the numbers
indicated in the paper rather than the repository. Moreover, the
original paper does not provide details on how the reported results
were calculated, and the authors could not provide this information.
We could replicate the first experiment, finding out the authors
used an unorthodox definition of mean precision and recall in the
original paper. Indeed, precision and recall were calculated first
by counting all the relevant datasets retrieved in each query and
dividing them by all retrieved datasets. On the other hand, we could
not replicate the second and third experiments in the original paper
(we obtained a precision of approximately 0.4 lower).

https://github.com/dorianbrown/rank_bm25
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Table 4: LinearSVM Reproducibility. For each dataset, we
report Precision, Recall and F1 score.

Dataset P R F1

MES 0.030 0.020 0.020
PubMed_KCore2 0.080 0.080 0.080
PubMed - - -

LinearSVM_Dataset 0.390 0.170 0.230

Table 5: Bi-encoder retriever reproducibility results. For each
test data, we report nDCG@5, P@5, R@5.

Dataset nDCG@5 P@5 R@5

MES 0.380 0.084 0.363
PubMed_KCore2 0.301 0.098 0.401
PubMed 0.377 0.097 0.469

DataFinder Dataset 0.160 0.211 0.320

Reproducibility results.

LinearSVM. To test the LinearSVM on the shared datasets, we
extracted from MES, PubMed _KCore2, and PubMed the intercon-
nected publications and datasets along their textual attributes. In
our experiments, we relied on tf-idf text representation. The textual
descriptions of publications were treated as queries for our analyses.
The results of LinearSVM on MES, PubMed_KCore2, and PubMed
data are reported in Table 4. The last row contains the results re-
ported in the original paper and obtained running LinearSVM on
the LinearSVM_Dataset. On MES and PubMed_KCore2, LinearSVM
achieved the lowest performance – precision and recall equal to
0.03 and 0.02 on MES and 0.08 and 0.08 on PubMed_KCore2, respec-
tively. LinearSVM treats the task as a multi-class, multi-label text
classification problem. Yet, in our three test datasets, the number
of labels (i.e., the datasets) is larger than the number of classes
(i.e., papers’ abstracts). We postulate that this might be the most
impacting challenge to the performance of the classification models.
This condition is never met in the original data, where the num-
ber of classes (88𝐾) largely exceeded the number of labels (1, 6𝐾).
Running the experiment on PubMed data instead did not produce
results as LinearSVM does not handle large amounts of datasets
and abstracts.

Bi-encoder retriever. Table 5 reports the experimental results for
the bi-encoder, where, similarly to the LinearSVM experimental
setup, we considered the publications’ abstracts as queries. In the
last row, we report the results obtained running the bi-encoder on
full-sentence queries on the DataFinder Dataset. The bi-encoder
performs well across MES, PubMed, and PubMed_KCore2, showing
higher nDCG and recall than the DataFinder dataset. However, its
precision remains consistently below 0.1 in all tested datasets, lower
than reported in the original paper. We also tested the effectiveness
of the bi-encoder providing shorter queries, i.e., the title in place of
the description, but we did not detect significant differences.

Ensemble_CN. Table 6 reports the results of the Ensemble_CN
method; the last row presents the results reported in the original
paper for the third experiment (cfr. Table 7 in [30]) evaluated on the

Table 6: Ensemble_CN reproducibility results. For each test
data, we report Precision, Recall and F1 score.

Dataset P R F1

MAKG_CN-datarec 0.222 0.020 0.020
MES 0.652 0.258 0.370
PubMed_KCore2 0.035 0.015 0.021
PubMed 0.010 0.005 0.007

MAKG_CN 0.640 0.031 0.060

Table 7: HVGAE reproducibility results. For each test data,
we report nDCG@5, P@5, R@5.

Dataset nDCG@5 P@5 R@5

MES 0.014 0.008 0.041
PubMed_KCore2 0.023 0.014 0.067
PubMed 0.006 0.004 0.027

Delve 0.715 0.184 0.922

MAKG_CN dataset. We first analyzed how this method performs
when the queries are publications and the recommendation contains
only datasets (MAKG_CN-datarec row in Table 6). MAKG_CN-
datarec is obtained by extracting from the MAKG_CN dataset a new
set of seeds containing 129 publications randomly selected from the
publications connected to at least one dataset – i.e., the queries, and
a set of 257 datasets used as candidates for the recommendation.

When restricting recommendations solely to datasets, there is
a noticeable decrease in effectiveness, with precision at 0.222. In
contrast, the original paper, recommending both publications and
datasets, reported higher precision across all experiments. This drop
in effectiveness can be attributed to several factors. Firstly, a limited
number of datasets (only 326 out of 1.5𝐾 ) have associated descrip-
tions, negatively impacting text-based recommendation models
like BERT and BM25. Additionally, datasets often exhibit lower
connectivity than publications, typically part of a dense citation
network. As a result, this method struggles to effectively lever-
age the citation network for dataset recommendations, particularly
when compared to more interconnected and extensively described
items. Author connectivity is a crucial aspect. A prior study on
dataset mentions and citations in scientific publications [20] found
that most connected publications and datasets share at least one
author. Consequently, exploring author embeddings and the co-
author network becomes essential for effective recommendations.
However, for MAKG_CN-datarec, the absence of dense co-author
networks, attributed to either the lack of author information linked
to datasets or issues with author name disambiguation, further
contributes to the method’s failure in recommending datasets. As a
result, optimal performances are observed with the MES dataset,
while the PubMed_KCore2 and PubMed datasets exhibit lower per-
formance. This discrepancy is attributed to the increased sparsity in
PubMed_KCore2 and PubMed datasets. Furthermore, most authors
remain undistinguished, restricting the effectiveness of citation and
co-author network exploration.

HVGAE. Table 7 presents the result of the re-implemented HV-
GAE on MES, PubMed, and PubMed_KCore2. Notably, the method
exhibits non-reproducibility, with all the datasets achieving nDCG
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Table 8: HVGAE component-based analyses results.

VAE Cit. Net. VAE Bip. Net (mlp) VAE Bip. Net (gcn) VAE Bip. Net (sage)

Dataset nDCG@5 P@5 R@5 nDCG@5 P@5 R@5 nDCG@5 P@5 R@5 nDCG@5 P@5 R@5

𝑀𝐸𝑆 0.093 0.054 0.262 0.100 0.070 0.219 0.095 0.066 0.222 0.077 0.054 0.187
𝑃𝑢𝑏𝑀𝑒𝑑_𝐾𝐶𝑜𝑟𝑒2 0.015 0.010 0.045 0.079 0.050 0.212 0.065 0.041 0.175 0.071 0.045 0.189
𝑃𝑢𝑏𝑀𝑒𝑑 0.013 0.008 0.036 0.026 0.016 0.070 0.036 0.022 0.103 0.020 0.012 0.053

𝑀𝐸𝑆𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 0.119 0.073 0.326 0.084 0.062 0.195 0.095 0.066 0.225 0.072 0.045 0.194
𝑃𝑢𝑏𝑀𝑒𝑑_𝐾𝐶𝑜𝑟𝑒2𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 0.017 0.010 0.045 0.080 0.050 0.212 0.111 0.070 0.294 0.100 0.062 0.265
𝑃𝑢𝑏𝑀𝑒𝑑𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 0.010 0.006 0.029 0.032 0.019 0.085 0.039 0.025 0.101 0.056 0.035 0.145

𝑀𝐸𝑆𝑟𝑒𝑑𝑢𝑐𝑒𝑑 0.039 0.025 0.100 0.215 0.141 0.513 0.196 0.133 0.476 0.068 0.049 0.143
𝑃𝑢𝑏𝑀𝑒𝑑_𝐾𝐶𝑜𝑟𝑒2𝑟𝑒𝑑𝑢𝑐𝑒𝑑 0.013 0.008 0.040 0.095 0.061 0.251 0.074 0.047 0.194 0.058 0.035 0.160
𝑃𝑢𝑏𝑀𝑒𝑑𝑟𝑒𝑑𝑢𝑐𝑒𝑑 0.002 0.001 0.007 0.049 0.032 0.115 0.069 0.044 0.175 0.003 0.002 0.008

Table 9: HVGAE results considering different bipartite networks autoencoders.

HVGAE (mlp) HVGAE (gcn) HVGAE (sage)

Dataset nDCG@5 P@5 R@5 nDCG@5 P@5 R@5 nDCG@5 P@5 R@5

𝑀𝐸𝑆 0.014 0.008 0.041 0.035 0.020 0.104 0.026 0.016 0.070
𝑃𝑢𝑏𝑀𝑒𝑑_𝐾𝐶𝑜𝑟𝑒2 0.023 0.014 0.067 0.080 0.050 0.218 0.051 0.032 0.139
𝑃𝑢𝑏𝑀𝑒𝑑 0.006 0.004 0.027 0.007 0.004 0.021 0.009 0.005 0.023

𝑀𝐸𝑆𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 0.014 0.008 0.041 0.039 0.025 0.104 0.011 0.008 0.031
𝑃𝑢𝑏𝑀𝑒𝑑_𝐾𝐶𝑜𝑟𝑒2𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 0.016 0.010 0.042 0.067 0.042 0.183 0.038 0.024 0.100
𝑃𝑢𝑏𝑀𝑒𝑑𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 0.006 0.005 0.012 0.006 0.003 0.016 0.011 0.007 0.027

𝑀𝐸𝑆𝑟𝑒𝑑𝑢𝑐𝑒𝑑 0.054 0.033 0.145 0.060 0.037 0.173 0.010 0.062 0.260
𝑃𝑢𝑏𝑀𝑒𝑑_𝐾𝐶𝑜𝑟𝑒2𝑟𝑒𝑑𝑢𝑐𝑒𝑑 0.015 0.009 0.042 0.060 0.038 0.163 0.052 0.033 0.135
𝑃𝑢𝑏𝑀𝑒𝑑𝑟𝑒𝑑𝑢𝑐𝑒𝑑 0.006 0.004 0.018 0.004 0.002 0.012 0.003 0.003 0.009

and recall lower than 0.1. A key factor contributing to these out-
comes is the dataset definition. The original HVGAE paper utilized
a training dataset comprising 8𝐾 publications, 5𝐾 datasets, and
network edges totaling 360𝐾 in the citation network and 14𝐾 in the
bipartite graph. This graph’s density, at 0.0044, exceeds that of our
test datasets. Another potential factor impacting our implementa-
tion’s overall performance relates to queries. In the original paper,
authors extracted 426 queries, each represented by a set of papers,
varying in size from one to more than six papers. The authors noted
that recommendations for queries with multiple papers are more
effective due to the strengthened representation of a topic across
multiple papers. In our case, having queries composed of a single
paper may affect the system’s effectiveness.

We conducted a components-based analysis on HVGAE to assess
the efficacy of two autoencoders and their influence on reproducibil-
ity. Each autoencoder underwent separate training to evaluate its
ability to reconstruct the adjacency matrices of the citation and
bipartite networks. Results of this analysis are presented in Table 8.
The first autoencoder was focused on reconstructing the publica-
tions’ citation network (VAE Cit. Net. in Table 8), while the second

autoencoder was focused on reconstructing the bipartite network
of publications and datasets (VAE Bip. Net. in Table 8). We first
tested the performances of each autoencoder on the three shared
datasets (rows 1-3 in Table 8). This is the standard setup. Notably,
the publications’ citation network autoencoder (VAE Cit. Net. in
Table 8) achieved the highest performance on the MES dataset with
recall exceeding 0.25. However, its performance on PubMed and
PubMed_KCore2was consistently below 0.1. This is likely due to the
sparse citation networks in these datasets, which makes it challeng-
ing for GraphSAGE to perform effectively. The bipartite network
autoencoder (VAE Bip. Net. (mlp) in Table 8), used also in the orig-
inal implementation, showed higher performances on MES and
PubMed_KCore2 with a recall exceeding 0.2. However, it achieved
low performances on PubMed. The sparse nature of shared datasets
significantly impacted the second autoencoder, which processed a
sparse adjacency matrix representing connections between publica-
tions and datasets. This sparsity posed challenges during training,
making capturing meaningful patterns in the sparse data difficult.
To address this, we explored whether incorporating a set of features
extracted from the textual attributes of datasets could enhance the
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second autoencoder’s performance. We replaced the multi-layer
perceptron encoder with two layers of graph convolutional neural
networks (VAE Bip. Net (gcn) in Table 8) and a GraphSAGE encoder
(VAE Bip. Net (sage) in Table 8). VAE Bip. Net. (gcn) approximated
the results of VAE Bip. Net. (mlp) across all datasets, whereas VAE
Bip. Net. (sage) showed decreased performance. This is because the
GCN considers all neighbors of a node, while GraphSAGE samples a
subset of neighbors, thus reducing the representative sets of nodes
for each publication/dataset.

We tested the performances of each of the presented autoen-
coders on two alternative setups: enriched and reduced. In the en-
riched setup (rows 4-6 in Table 8), we enriched the citation network
in input to the VAE Cit. Net with 𝑝 → 𝑑 edges, and the bipartite
network in input to the VAE Bip. Net. with 𝑝 → 𝑝 , and 𝑑 → 𝑑 edges.
These connections serve to expand the neighborhood of each node,
thereby improving the representations of the nodes employed in
the autoencoders, while mitigating graph sparsity. In the reduced
setup (rows 7-9 in Table 8), we excluded from the training set of
each dataset all 𝑝 → 𝑑 edges where neither 𝑝 nor 𝑑 appeared in the
validation and test sets. This setup gives us information about how
noisy individual 𝑝 → 𝑑 connections are. To construct the reduced
setup, we removed 2,358, 1,986, 29,076 𝑝 → 𝑑 edges from MES,
PubMed_KCore2 and PubMed datasets, respectively.

In the enriched setup, both the VAE Cit. Net. and VAE Bip. Net.
(sage) autoencoders achieve the highest performance compared to
the standard and reduced setups (rows 1-3 and 7-9 in Table 8). This
suggests that denser neighborhoods can enhance the effectiveness
of these models. However, the performances of VAE Bip. Net. (mlp)
and VAE Bip. Net. (gcn) did not significantly improve compared to
the standard setup.

In the reduced setup instead, the VAE Cit. Net. achieved the
lowest performances on all the datasets: this is due to the fact that
the number of considered publications decreased and the models
had not enough data to learn. The VAE Bip. Net. (mlp) achieved the
highest performances across all the datasets, and the VAE Bip. Net.
(gcn) achieved the highest performances on MES and PubMed data.
In VAE Bip. Net (sage) instead, there is a performance decrease.

Table 9 presents the analysis of HVGAE across the three setups,
combining the original VAE Cit. Net. with three different VAE Bip.
Net. models defined above. Specifically, HVGAE (mlp) utilizes the
VAE Bip. Net. (mlp) from the original paper, HVGAE (gcn) employs
the VAE Bip. Net. (gcn), and HVGAE (sage) utilizes the VAE Bip.
Net. (sage). We can see that HVGAE (gcn) always performs better
than HVGAE (mlp) and HVGAE (sage). In contrast, HVGAE (mlp)
achieves the worst performance. HVGAE (sage) performances are
between the HVGAE (mlp) and the HVGAE (gcn) in all the setups,
except for the 𝑃𝑢𝑏𝑀𝑒𝑑𝑟𝑒𝑑𝑢𝑐𝑒𝑑 where it performed worse than HV-
GAE (mlp). These results show that relying on dense attributed net-
works can improve the overall performance of the HVGAE model.
However, we can see that the performance decreases across all the
datasets when two autoencoders (one for the publications’ citation
network and one for the bipartite one) are combined (Table 9) and,
recommending datasets relying exclusively on one VAE Bip. Net.
autoencoder (Table 8) is always more effective. This inefficacy is
rooted in our training and test sets. According to our interpretation
of HVGAE, each query is constructed by exploring the references
list of a paper in the test set and selecting papers already present

Table 10: Generalization. For each dataset, we report
nDCG@5, P@5, R@5 for three recommendation methods.

Method Dataset nDCG@5 P@5 R@5

TopPop
MES 0.060 0.020 0.083
PubMed_KCore2 0.002 0.001 0.004
PubMed 0.007 0.003 0.011

BPR
MES 0.042 0.008 0.042
PubMed_KCore2 0.239 0.070 0.315
PubMed 0.000 0.000 0.000

LightGCN
MES 0.042 0.008 0.042
PubMed_KCore2 0.434 0.110 0.472
PubMed 0.006 0.001 0.006

in the list of 8, 503 preprocessed publications. Subsequently, the au-
thors compute the mean of all representations of the papers in the
references list to generate the final query representation. However,
this implementation generates the query representation by aggre-
gating vectors of papers that were created during the training phase.
In our implementation, the representation of each query paper was
generated using the trained model, specifically by feeding the ci-
tation network, composed of query papers and their connections,
into the GraphSAGE encoder. This underscores that the method
struggles to generalize to new, unseen data, as performance de-
creases when utilizing vector representations of papers that have
never been encountered.

Generalization results. In Table 10, we present the results obtained
evaluating LightGCN, BPR and TopPopmethods on our test datasets.

TopPop, unsurprisingly, exhibits lower effectiveness. This is be-
cause it does not perform a personalized recommendation (i.e.,
results are query-independent), while the ground truth ratings
showcase slight popularity bias.

For BPR, we observe that it achieves the highest performance on
the PubMed_KCore2 dataset (recall > 0.3); on the contrary, on MES
dataset, the performance on nDCG, precision and recall are always
lower than 0.05, while on PubMed dataset they are equal to 0.

Similar considerations can be drwan for LightGCN. LightGCN
shows good results when applied to PubMed_KCore2 dataset, but
there is a performance decrease with MES and PubMed. This could
be attributed to the denser bipartite network present in PubMed_KCore2.
Conversely, in MES and PubMed, a significant portion of publica-
tions is connected to at most one dataset. These relationships may
introduce noise, consequently leading to a decrease in performance.

One of the main reasons why standard recommendationmethods
usually do not work well for the dataset recommendation task is
that, typically, a dataset has been utilized by a tiny number of
publications. This makes it difficult to rely on models based on
user–i.e., publication–interaction with multiple items–i.e., datasets.

We conducted a further analysis on two standard search base-
lines: BM25 and cosine similarity-based. The results are reported in
Table 11. We see that both methods outperform all the methods se-
lected in the present paper, confirming that relying solely on textual
content, when available, can be more effective than those exploiting
the topology of the scholarly graph. This effectiveness is attributed
to the fact that scholarly graphs are usually very sparse, and there
are few datasets that are truly relevant to a given publication.
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Table 11: BM25 and cosine similarity-based results. For each
test data, we report nDCG@5, P@5, R@5.

BM25 cosine-based similarity

Dataset nDCG@5 P@5 R@5 nDCG@5 P@5 R@5

MES 0.166 0.070 0.227 0.459 0.245 0.629
PubMed_KCore2 0.262 0.080 0.356 0.437 0.260 0.532
PubMed 0.209 0.077 0.283 0.316 0.176 0.421

7 FINAL REMARKS
In this study, we considered four metadata-based and graph-based
approaches for dataset recommendation analyzed for the first time
under the same experimental conditions. Our replicability analy-
sis showed that only the LinearSVM-based approach and the bi-
encoder are fully replicable, while the Ensemble_CN is only partially
replicable. In this respect, contacting the original authors of the
original papers was crucial for ensuring replicability.

Our extended analyses on reproducibility uncovered some im-
portant observations. First, the currently available methods do not
fully capture the complexity of real-world data. The most relevant
examples are the HVGAE and Ensemble_CN methods, whose per-
formances depend on the availability of large and dense citation
and co-author networks, rarely available in real scenarios.

The component-based analyses conducted on HVGAE demon-
strated that, on real-world data, relying on a bipartite network
variational autoencoder (VAE) is more effective than the proposed
HVGAE, pointing to the fact that less complex approaches, even
when not targeting the dataset recommendation task, can be more
effective. The analyses conducted on three recommendation-based
approaches – LightGCN, BPR, and TopPop – showed that Light-
GCN outperforms the reproduced baselines when applied to dense
bipartite networks as PubMed_KCore2.
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