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Abstract

Infrared structured light sensors are widely employed for control applications,
gaming, acquisition of dynamic and static 3D scenes. Recent developments have
lead to the availability on the market of low-cost sensors, like Kinect devices,
which prove to be extremely sensitive to noise, light conditions, and the geom-
etry of the scene.

The paper presents a quality enhancement strategy for Kinect-acquired depth
maps that corrects depth values via a set of local differential equations and in-
terpolates the missing depth samples. The approach improves both density and
accuracy of the generated 3D model under different light conditions and in the
presence of cross-talk noise derived from other devices. Moreover, the paper in-
troduces a new experimental reference dataset for Kinect denoising algorithms
consisting in multiple acquisition under different noise conditions associated to
a laser scan model of the scene (ground truth).

Keywords: DIBR denoising, MS Kinect, structured light camera, infrared
sensor, 3D acquisition

1. Introduction

The recent availability of low-cost range cameras has shaken the ICT world
leading to a flourishing of new object recognition applications, human-computer
interfaces, and acquisition systems of dynamic 3D scenes. Time-of-Flight cam-
eras [1], structured light 3D scanners [2], and multicamera systems allow easy
real-time acquisition of dynamic 3D scenes with both static and dynamic ele-
ments [3].

Among these, the Xbox Kinect sensor [4], which includes a standard RGB
camera together with an infrared (IR) structured light scanner (see Fig. 1), has
recently proved to be one of the most widely-used depth sensors thanks to its
versatility, the limited cost and the improved performance in a wide range of
possible applications.
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In [5] Leyvand et al. discuss new possibilities in tracking persons and iden-
tifying their identity. Suma et al. present a novel toolkit to model human
gestures and poses [6]. In [7] Wilson presents a touch interface implemented
using a depth camera. Moreover, several navigation tools employ kinect sensor
to accurately control and drive robots in an indoor environment (see Turtlebot
by Willow Garage [8], as an example). Other approaches employ Kinect for
modeling ground surface in precision agriculture [9], providing a reliable visual
feedback to the user in virtual dressing rooms [10], managing interaction in
augmented reality [11] or in virtual environments [12].

The structure of the Xbox Kinect device is reported in the diagram of Fig. 1.
The implemented IR depth sensor consists in an IR projector, an IR CMOS
camera, and a processing unit that controls them and elaborates the acquired
signal. An IR pattern of dots is projected by the IR projector on the scene, and
the IR CMOS camera acquires the reflected pattern, which will be distorted
according to the geometry of the objects. The central processing unit estimates
the distance of each point from the depth camera considering the distortions in
the acquired dot pattern with respect to the projected one. Color information
is available as well since an RGB CMOS camera permits obtaining a standard
picture of the acquired scene. This information permits building a point cloud
model of the 3D scene by mapping depth pixels into color pixels with a warping
operation.

Unfortunately, despite the strong versatility and the wide range of new ap-
plications of these devices, the resulting depth signal is affected by a significant
amount of noise.

Like many imaging systems, depth sensors present shot noise related to the
radiation, A/D conversion quantization noise, and thermal noise. Moreover, in
a real scene IR sensors receive a significant amount of radiation that has not
been generated by the the associated projector. This is the case of ambient
illumination (e.g., sun or artificial lights whose electromagnetic radiations also
span the IR frequency of MS Kinect) or, in case multiple similar IR structured
light cameras are present in the same scene, the dot patterns produced by
a different device [13]. In a controlled environment, this inconvenience can
be mitigated by time division multiplexing [14], motion (shake-and-sense [15])
or by sample removal and hole filling [16]. In a distributed system, e.g., an
environment where multiple Kinect sensors are operated independently, like in
case of multiple Kinect-controlled robots [17, 18], this inconvenience must be
addressed by effective interpolation and denoising algorithms.

The paper presents a joint denoise-interpolation algorithm for MS Kinect
sensor that aims at correcting the computed depth values and interpolate them
whenever they are not available because of the noise conditions. The approach
relies on an initial denoising performed by matching borders between range and
color images. The mismatches between edge information from RGB data and
depth maps can be corrected by a set of differential local equations. Then,
the resulting data are propagated to neighboring locations where depth sam-
ples are not available according to the edge information. The proposed solution
improves the approach in [19] by introducing a new set of denoising and in-
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Figure 1: Block diagram of the MS Kinect sensor.

terpolating equations for depth samples and optimizing their implementation
in order to run in real time. Experimental testing was improved as well us-
ing a high-quality laser-scanned 3D model as ground truth reference in order
to evaluate the algorithm performance. This activity led to the creation of a
downlodable dataset with multiple acquisitions under different illumination con-
ditions. The reported results show that the algorithm increases the number of
available depth samples and refines the accuracy of the generated point clouds.
Moreover, the proposed solution can run in real time allowing a frame rate of
approximately 17 frame/s. In the following, Section 2 overviews some of the
existing works in literature, while Section 3 presents the characteristics and the
effects of noise on depth signals. Section 4 describes the proposed algorithm in
detail, with Subsection 4.3 reporting the depth correction process and Subsec-
tion 4.5 presenting the interpolation strategy. Experimental results (Section 5)
and conclusions (Section 6) end the paper.

2. Related works

Several works have proposed novel denoising algorithms to improve the qual-
ity of the acquired depth maps. This is severely impaired by three main issues:
the inaccuracy of depth samples due to the presence of noise, the irregularity
of object boundaries, and the presence of missing depth samples (holes) in the
acquired depth maps.

Depth samples are usually corrected by filtering the depth data in order to
reduce the noise level. The work in [20] reviews the performance of different
types of filters (median, bilateral, joint bilateral, non-local means, with adaptive
thresholds, and temporally smoothing) of the data generated by a Kinect sensor.
Experimental results show that temporal denoising performs extremely well
in most of the situations although it requires multiple acquisition along time.
For single-acquisition depth maps, joint bilateral filters perform well enough
thanks to their edge-preserving properties and require a limited computational
complexity [21]. They rely on tuning the weights of a standard bilateral filter [22]
according to the color information. Joint bilateral filters have been evaluated
in many works considering different devices and different data format [23]. As
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an example, the work by Huhle et al. [24] targets Time-of-Flight (ToF) devices
coupled with an RGB camera. In the case of ToF cameras, some solutions also
consider the confidence values to denoise depth acquired via a ToF camera [25].
Side RGB color information have also been effectively employed to enhance the
resolution of depth images, which is usually much lower with respect to that of
color data [26]. The solution in [27] performs an edge detection approach on
both color and depth images, discards irrelevant edges, and applies a directional
joint bilateral filter along the object borders. In [28] filter weights are generated
using a Common Distance Transform (CDT), which models the degree of pixel-
modal similarity between depth pixels and the corresponding color pixels. The
solution in [29] employs a joint bilateral filter that refines the object boundaries
and fills holes by adapting the filtering parameters according to depth values.
The resulting depth map permits improving the smoothness of object contours
and the performance of object detection algorithms that exploit the RGBD
signal.

Inpainting and interpolation algorithms are usually employed to estimate
the missing data samples. Like in the previously-mentioned approaches, most
of the proposed solutions jointly process both depth and color signals. The
solution in [30] adopts a structure-guided fusion strategy that enacts a weighted
estimation of the missing depth samples starting from the neighbouring available
ones. Weights are computed according to geometrical distance, depth similarity
and color data. Other solutions segment color information in order to find the
boundaries where interpolation of valid depth samples can take place [31]. This
strategy relies on the fact that object shapes must be the same both for color and
depth data: such assumption can also be used to perform depth superresolution
[32] or no-reference quality evaluation [33]. Since good segmentation algorithms
require some computational effort, it is possible to reduce the computing effort
by employing edge information to drive the inpainting operations. In the paper
[34], edges are computed to generate a higher resolution depth image. The
solution in [19] enacts an edge-constrained hole filling interpolation to improve
the quality of Kinect-acquired depth maps. Other solutions combines non-linear
processing strategies with traditional wavelet decomposition in order to suit the
piecewise-smooth characteristics of depth maps [35].

In case time delay is not an issue, it is possible to merge multiple acquisi-
tions to improve the quality of the acquired 3D model [36]. This solution permits
obtaining good performances, as shown in [20] but introduces an additional de-
lay in outputting the acquired depth map since more than one acquisition is
required. In a Depth Image Based Rendering (DIBR) video with high require-
ments in terms of frame rate, the denoising approach must be faster and avoid
processing multiple depth frames.

To this purpose, the proposed strategy processes single couples of RGB and
depth images. It inherits the estimation strategy of [19] in order to find the
mismatches between color and depth edges. With respect to [19], depth correc-
tion and fusion strategies are improved while avoiding an increase in terms of
computational complexity.
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(a) (b)

Figure 2: Example of kinect acquisition. Images show (a) color and (b) depth components.
Corresponding points P1 and P2 are highlighted in the images related to bearbins.

3. Problem statement

As mentioned before, the MS Xbox Kinect device implements a low-cost 3D
sensor based on an IR structured light camera. The device acquires an RGB
color image of the scene together with a depth map of the acquired scene. This
information permits building a point cloud model of the 3D scene by mapping
depth pixels into color pixels with a warping operation. Unfortunately, the
acquired depth maps present several artifacts depending on possible calibration
errors, lighting conditions and errors in depth estimation by the processing unit.

Some of the errors occur since the point cloud model is obtained from a
warping operation which relies on camera parameters estimated from a calibra-
tion process. The accuracy of warping depends on the region of the image where
the object is projected, the resolution of the image and the number of images
used in the calibration [37]. Moreover, the estimation process that infers scene
geometry from the deformations of the acquired dot pattern with respect to its
projected version proves to be less accurate along object boundaries. Figure 2
shows that in the warped depth map the borders of the objects are highly irreg-
ular and sometimes prove to be shifted with respect to the corresponding color
signal. Several holes and missing depth values can be noticed since for those
points depth estimation can not provide a sufficiently accurate value. As an
example, the difference between coordinates for point P1 is (+3,+1) (no direct
light), while it is (−10,+3) for point P2 (direct light from window).

From these premises, it is possible to decompose the IR image acquired by
the depth sensor into a desired component, which has been generated by the
IR projector and reflected by the objects in the scene, and a noise component
produced by surrounding light sources or other IR depth sensors in the scene. In
Figure 2, it is possible to notice that most of the holes and the irregularities lie
along the borders directly illuminated by the sun light coming from the window.

This leads to noisy signals that impair the performance of depth processing
application and the accuracy of the generated 3D model. In the following sec-
tion, we will present a depth denoising strategy that aims at mitigating these
effects.
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Figure 3: Block diagram of the proposed algorithm.

4. Description of the proposed algorithm

The structure of the algorithm is summarized in Fig. 3 and consists in two
main operating blocks: a denoising unit that corrects mismatches between the
color image Iin and the warped depth map Din, and an interpolating strategy
that fills holes and missing pixels in the range image.

The values of depth samples Din(x, y) are initially clustered into multiple
classes, and the mismatches between color edges and depth edges are then com-
pensated by correcting the depth values. Then, noisy depth samples along object
borders are removed, and the missing depth data is recovered via an edge-driven
interpolation.

The following subsections will describe each step in detail.

4.1. Clustering depth values

At the beginning of the depth correction strategy, the depth values Din(x, y)
(where (x, y) are the pixel coordinates) are clustered into a set of Nc = 10 classes
Rk, k = 0, . . . , 9, according to their distance from the IR camera using the k-
means algorithm [38]. The choice of using k-means algorithm and computing
Nc classes was driven by the need of having a low complexity architecture.

Each class is characterized by its centroid and two threshold values that
defines the upper and the lower bounds for depth values, which are grouped
into the set of thresholds Th = [Th(k)]k. Therefore, region Rk can be written
as

Rk = {(x, y) : Th(k − 1) ≥ Din(x, y) < Th(k)} . (1)

Note that thresholds adapt to the specific depth map values.

4.2. Computing mismatches

At the beginning of the error correction unit, 3× 3 Sobel operators Sx and
Sy are applied to both the luminance component L of the color image and the
warped depth image Din. Let Sx ∗ L and Sy ∗ L be the convolutions of L with
the horizontal and the vertical Sobel operators, respectively, and Sx ∗Din and
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Figure 4: Example of computation of v∗ for the class R′k (detail from the scene bearbins).

Sy ∗ Din be the convolution of the same operators with Din. Then, the edge
images EL and ED are computed as

EL = round

(
|Sx ∗ L|+ |Sy ∗ L|

2

)

ED = round

(
|Sx ∗Din|+ |Sy ∗Din|

32

) (2)

where quantization steps 2 and 32 have been chosen from a set of experimental
trials. In equation (2), coordinates (x, y) have been omitted for the sake of
conciseness. For all the pixel positions (x, y) such that Din(x, y) is not valid,
ED(x, y) is set to 0.

In a second step, the mismatches between Iin and Din are computed for each
class Rk independently generating the pixel sets

R′k = {(x, y) ∈ Rk : ED(x, y) > 0} (3)

which comprises points in depth layer k with edge strength greater than 0. For
each class R′k, the algorithm computes the displacement vector v∗ = [v∗x, v

∗
y ] in

the search window WSR such that

v∗ = arg max
v∈WSR

∑
(x,y)∈R′

k

EL(x, y). (4)

where the coordinates (x, y) depend on the coordinates of the principal point
C = (Cx, Cy) so that

x = x+ (2 I(x > Cx)− 1) · vx

y = y + (2 I(y > Cy)− 1) · vy

(I(·) is the indicating function).
In this way, the algorithm models the mismatch between edges of the color

component and edges of the depth information (see Figure 4). Despite object
profiles result irregular in the depth component, the algorithm assumes that er-
rors vary symmetrically with respect to borders and maximizing edge matching
permits a correct alignment.

7



4.3. Correcting depth values

Given the mismatch v∗, it is possible to compensate it computing new values
for the related depth samples.

This correction can be obtained differentiating the equations of the pinhole
camera model  x

y
1

 =

 fx 0 Cx 0
0 fy Cy 0
0 0 1 0



x′

y′

z′

1

 (5)

and combining it with the function that maps values D(x, y) into distance values

z′ = 1/(t1 − t2 D(x, y)). (6)

Coordinates (x′, y′, z′) identifies the location of the 3D point associated to
Din(x, y), fx, fy are the focal lengths, and constants t1, t2 are obtained from
the calibration.

In this way it is possible to model how a change in the edge position may
affect the values of depth samples.

In our implementation, the algorithm corrects the positions of pixels in Rk

and replaces the associated depth values Din(x, y) with the value

D′(x, y) = Din(x, y) +
δxD(x, y) + δyD(x, y)

2
(7)

where

δxD(x, y) =
∂D(x, y)

∂x
v∗x δyD(x, y) =

∂D(x, y)

∂y
v∗y , (8)

and x∗ = x+ (2 I(x > Cx)− 1) v∗x, y∗ = y + (2 I(y > Cy)− 1) v∗y .
In order to simplify the calculation, we approximated ∂D(x, y)/∂x as

∂D(x, y)

∂x
=
∂D(x, y)

∂(1/z)

∂(1/z)

∂x
(9)

(and similarly for ∂D(x, y)/∂y). The partial derivative ∂D(x, y)/∂(1/z) was ob-
tained from equation (6), while ∂(1/z)/∂x was derived from the pinhole camera
equation z(x − Cx) = fx x

′. Combining these derivatives into equation (8), it
is possible to obtain

δxD(x, y) =
−v∗x/t2
fx x′

' v∗x
t2 Din(x, y)− t1
t2(x− Cx)

δyD(x, y) =
−v∗y/t2
fy y′

' v∗y
t2 Din(x, y)− t1

t2(y − Cy)
.

(10)

Note that the amount of depth correction is inversely proportional to the
distance: the further the points, the smaller the change. This can be related to
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the adaptive strategies reported in [20], where the amount of tolerated difference
between temporally-adjacent samples depends on the depth value.

At this point, the resulting depth map D′ has to be extended in order to fill
holes and gaps that lie wherever the depth values estimated by the sensor are
not sufficiently reliable.

4.4. Removal of noisy depth samples

In order to improve the accuracy of the estimated 3D model, noisy depth
samples need to be removed from the input data and replaced with more accu-
rate estimates that have been obtained interpolating reliable depth information.
As observed in Section 3, object borders in depth maps are highly irregular and
often neighbor unavailable depth samples. On the contrary, depth data inside
objects are more stable and precise because of the characteristics of the depth
estimation process. As a matter of fact, it is reasonable to use the latter to
correct the first. This operation is performed in two steps. At first, border
pixels neighboring with regions of unavailable pixels are removed and labelled
as unavailable. Then, unavailable pixels are interpolated from the valid ones
according to the edge information computed from the color component. In this
section, we present the removal strategy.

Given the depth map D′, a binary mask M(D) is generated placing “1” val-
ues in the locations of valid depth samples in D′ and “0” otherwise. An erosion
operation is applied to the mask using as structuring element a diamond with
radius 3. In this way, the regions of unavailable depth sample grow including
part of the samples along object boundaries.

The resulting depth map D′′ is obtained taking from D′ only the samples
which corresponds to a “1” in the eroded mask. The map D′′ is then processed
by the interpolation routine that estimates the value of unavailable depth pix-
els when this is possible. The details of this process will be presented in the
following subsection.

4.5. Depth interpolation

Like other algorithms for depth processing [39], our approach resorts to seg-
mentation in order to partition the input depth map into segments where depth
signal is assumed to be planar. From this assumption, it is possible to inter-
polate the missing depth samples from the available valid ones. Unfortunately,
segmentation routines require significant additional computational complexity.
In order to mitigate the computational load, it is possible to replace the segmen-
tation and interpolation strategy with a simpler interpolation where the weights
are computed according to the edge information.

In case the depth sample D′′(x, y) at position (x, y) need to be interpolated,
the algorithm identifies the locations of the upper, lower, left, and right neigh-
boring valid depth samples, referenced as (xu, yu), (xb, yb), (xl, yl), and (xr, yr),
respectively. Note that xu = xd = x and yl = yr = y. A valid upper neighbor
D(xu, yu) is obtained as

yu = min{y′ : y′ > y ∧ (EL(x, y′) > TL ∨D(x, y′) > 0)}, (11)
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and the corresponding distance is computed as

du = |xu − x|+ |yu − y|. (12)

Note that in case a valid upper neighbor is not available, the algorithm sets du
to 0. Lower, left, right neighbors and the corresponding distances db, dl, dr are
defined similarly.

From the distance values, it is possible to compute the weights wn = dn/(du+
db + dl + dr), n = u, b, l, r. Then, in case wn > 0, the algorithm sets

wn =
1/wn∑

n′:wn′>0

1/wn′

; (13)

otherwise wn = 0.
The final estimated depth sample is then computed as

Dout(x, y) = wuD
′′(xu, yu) +wbD

′′(xb, yb) +wlD
′′(xl, yl) +wrD

′′(xr, yr). (14)

In case the depth sample D′′(x, y) does not need to be interpolated, the algo-
rithm set Dout(x, y) = D′′(x, y).

4.6. Differences with respect to prior work

The proposed solution was developed starting from the approach presented
in [19], but it currently departs from it in many of its aspects. It is worth
underlying that the depth correction strategy (equations (2) and (9-13)) was
completely changed computing the depth error propagation from pinhole cam-
era model equations. All the mathematical derivations have been presented in
the previous sections. Moreover, depth interpolation does not rely on segmenta-
tion any more since the interpolation filter parameters are computed from edge
information. This has allowed to improve the performance of the whole strategy
and mitigate the computational complexity. Note that the proposed solution
operates in real time and requires a limited amount of calculation with respect
to other denoising solutions like the joint bilateral filter. In order to provide
an experimental evidence for this, the following section presents a performance
evaluations for different strategies in terms of accuracy, density, and processing
time.

5. Experimental results

The performance of the proposed approach was compared with that obtained
by the JBF[21] (with W = 7 and σ = 20 as suggested in [28] and by a set of
experimental trials) and that obtained by the TD algorithm in [20]. Four differ-
ent scenarios were considered in order to test the performance of the algorithm
with different geometries: bear, plants, pillows, and ballbook (see Fig. 5).
Different data sets were acquired changing the illumination of the rooms, and
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Figure 5: Color and depth components for different acquisition scenarios. a,e) bear; b,f)
plants; c,g) ballbook; d,h) pillows.

Table 1: Different light conditions.

Label Description
gas gas light
low low natural light

strong strong halogen light
no light no illumination

the different light conditions are reported in Table 1. Moreover, a second set of
acquisitions was taken with a second Kinect projecting its dot patterns on the
subject from different angles a (see Fig. 6).

In order to evaluate the performance of the proposed algorithm, we per-
formed 10 different acquisitions of distinct 3D scenes using the MS Kinect sensor
under different noise conditions. The resolution of color and depth images are
640× 480, and the device was calibrated using the Kinect Calibration Toolbox
[40]. The noise level was modified by varying the light conditions and by adding
a second Kinect sensor in the scene with different viewing angles (in order to
change the amount of interference with our device).

Every scene was also acquired using a NextEngine 2020i 3D laser scanner in
order to generate a reference high-quality point cloud model P0 of the scene as
comparison term. Datasets are available at [41].

The quality of the Kinect signal was measured converting depth and color
images into a 3D point cloud model P and comparing it with P0. The compari-
son was performed by mapping the 3D points of P into the points of P0 via the
ICP algorithm [42]. Each 3D point p ∈ P was then associated to the closest
point p0 ∈ P0, and the final Mean Square Error (MSE)

MSE = E
[
‖p− p0‖2

]
(15)
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Figure 6: Viewing angles for acquisition sets using an additional Kinect sensor.
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Figure 7: Results for plant gas acquisition set for different Nc and TL values. a) MSE, b)
Number of 3D points.

was computed. In addition, the number of valid depth samples is also used as
a density measurements for the generated 3D models. Both parameters were
averaged over 10 different acquisitions. This averaging was performed in or-
der to smooth the performance of the different algorithms over different noise
realizations.

At first, we evaluated the performance of the algorithm for different param-
eter values. Figures 7 (a) and (b) report the average MSE and the number of
points obtained on the acquisition set plants gas changing the values of Nc

and TL. It is possible to notice that the influence of the number of classes Nc

on the final performance is quite limited. Experimental results show that the
optimal values range from 8 to 10. On the other hand, the threshold TL affects
both MSE and the number of interpolated points. It is possible to notice that
the higher the threshold, the higher the number of points in the final model.

Figures 8 and 9 report the average MSE values and the number of points for
different scenarios. It is possible to notice that the proposed denoising strategy
improves the quality of the 3D model under different illumination conditions.
The displayed data shows a 12 % reduction of the average MSE value for the
acquisition set plants. Note also that the difference between the performances
of JBF is limited with respect to that of the proposed approach (as it was
also noticed in [28]). It is also possible to notice that the density of 3D points
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Figure 8: Average MSE values for different scenarios under different illumination conditions
and noise conditions. a) bear, b) plants, c) pillows, d) ballbook.

increases as well (see Fig. 9). This effect was possible thanks to the interpolation
of the missing depth samples.

The displayed results are averaged (for the different acquisition scenarios)
and summarized in Table 2.

Figure 10 shows the average MSE for the reconstructed model when the
acquisition process is disturbed by a side Kinect device with a viewing angle a
with respect to the objects. The proposed solution proves to be helpful also in
this case since the average MSE values are reduced. It is possible to notice that
the average precision depends on the angle. Whenever devices are positioned at
90 degrees with respect to the scene, the interference is minimal since the amount
of radiation emitted by the second Kinect and acquired by the first one is very
low. In case the angle decreses, the superposition between different IR patters
gets maximum and therefore, the amount of noisy samples increases. Anyway,
the fact that the dot patterns of the two devices change and are uncorrelated
mitigates the cross-talk interference granting a minimum quality level.

The displayed results are averaged (for the different acquisition scenarios)
and summarized in Table 3.

It is also possible to notice that the acquisition set plants shows smaller
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Figure 9: Average number of 3D points for different scenarios under different illumination
conditions and noise conditions. a) bear, b) plants, c) pillows, d) ballbook.

differences since most of the objects present sharp edges, and therefore, a limited
amount of lateral IR radiation produced by the side device if reflected towards
the acquiring Kinect. Instead, the objects in bear acquisition sets are rounded
and highly reflecting. As a matter of fact, it is possible to appreciate a more
evident difference in the results.

In order to provide a visual evidence for the adopted algorithms, Fig. 11
shows some details of the processed depth maps taken from different scenarios.
It is possible to notice that the object borders of depth maps processed by the
proposed solution are sharper and more defined.

In the end, we tested the performance improvements with respect to the
solution in [19]. Table 4 reports the average MSE and number of 3D points for
the acquisition scenarios plants and pillows. It is possible to notice that the
proposed solution permits obtaining a higher accuracy although the solution
in [19] generates denser point clouds thanks to the adoption of segmentation.
The segmentation algorithm permits defining interpolation areas more accu-
rately but requires a significant computational effort with respect to the overall
calculation. This fact will be evaluated in the following paragraph.

As for the computational complexity, we evaluated the calculation effort of
the algorithm for the acquisition set bear - gas averaging the execution time
for 10 realizations. The average computational time on a Intel R© QuadCore i7
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Table 2: Average performance for different algorithms.

Avg. MSE Num. 3D points ( ×105)

Dataset JBF TD prop. JBF TD prop.

gas 0.207 0.208 0.191 2.564 2.564 2.688

low 0.197 0.195 0.184 2.563 2.563 2.677

strong 0.212 0.212 0.193 2.562 2.563 2.654

no light 0.211 0.211 0.192 2.562 2.563 2.689

Table 3: Average performances for different algorithms with side device noise.

Avg. MSE Num. 3D points ( ×105)

Dataset JBF TD prop. JBF TD prop.

90 0.220 0.216 0.206 2.622 2.622 2.668

72 0.216 0.211 0.200 2.618 2.618 2.665

54 0.227 0.221 0.210 2.621 2.621 2.663

36 0.231 0.225 0.215 2.622 2.622 2.658

18 0.242 0.235 0.222 2.619 2.619 2.643

0 0.250 0.241 0.228 2.615 2.615 2.630

CPU running at 1.80 GHz with 12 GB RAM was about 58 ms, which allows
denoising at approximately 17 frame/s. The computational effort is partitioned
as reported in Table 5. It is possible to notice that interpolation is the most time
consuming operation, but further optimizations are still possible. With respect
to the JBF approach, the computational complexity of the proposed solution is
much lower. Moreover, the TD strategy requires more than one depth frame,
while our approach can be applied instantaneously.

As regards the solution in [19], the average running time on the same machine
for the bear - gas data is approximately 136 ms (which allows acquiring and
denoising 7 frame per second). Most of the computational effort is dedicated to
the segmentation and interpolation of the available samples. Therefore, a real
time implementation becomes quite difficult.

6. Conclusion

The paper presents a joint denoising and interpolation approach for the MS
Kinect sensor. The algorithm is based on an initial correction of depth values in
the sequence, which then will be interpolated in order to fill holes and missing
depth values. The proposed solution permits obtaining significant improvements
for 3D models acquired under different light conditions. Experimental results
also show that the proposed solution permits rejecting the cross-talk noise which
can be generated by a second Kinect device operating in the same environment.
Future work will be devoted to optimize the computational complexity of the
approach and extend the denoising strategy to Kinect v2.0 devices. Moreover,
additional improvements can be obtained by integrating the depth information
along the time.
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Figure 10: Average MSE and number of 3D points for scenarios bear and plants with different
cross-talk noise levels. The noise level is changed varying the angle a which determines the
position of the second Kinect device. a) plants MSE, b) plants NUM, c) bear MSE, d) bear
NUM.
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