

DIPARTIMENTO DI INGEGNERIA

DELL'INFORMAZIONE

A high level perspective on 5G technologies and applications

Andrea Zanella, **zanella@dei.unipd.it**

University of Padova (ITALY)

Main research areas...

Energy harvesting & smart grids

Plus more exotic stuff...

Future Internet Security

Andrea Zanella – <u>zanella@dei.unipd.it</u> Human Inspired Technologies (HIT) Dep. of Information Engineering (DEI) SIGNET research group

- office: +39 049 8277770
 - fax : +39 049 8277699
- email: zanella@dei.unipd.it
- web : http://www.dei.unipd.it/~zanella

Future Internet Security

THE (SHORT) HISTORY OFIndext<t

From 1G to 4G

1G - TACS

Cellular network concept & analogue communications

2G - GSM

Digital communication and centralized Network Control

3G - UMTS

- Multi-Rate & Adaptive Modulation and Coding
- Scheduling & Fairness
- Soft Handover

4G - LTE

- Channel
 Aggregation
- Small cells & Network densification
- MIMO & Comp

Future Internet Security

From 1G to 4G

- IG: established seamless mobile connectivity introducing mobile voice services
- **2G:** introduced the multi standards (GSM, CDMAone), applied frequency reuse
- **3G:** optimized mobile for data enabling mobile broadband services with faster and better connectivity
- 4G: more capacity with faster & better mobile broadband experiences

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

4G capacity evolution

- G started with 150 Mbps with contiguous 20 MHz band
- Latest devices supports already 600 Mbps
- Chipset capability allows 1 Gbps devices already in end 2017 which requires typically 80-100 MHz spectrum

Future Internet Security

Where does 4G fall short?

- Generation 4G monolithic 'one-fit-all' architecture cannot actually meet very disparate service requirements
- 4G cannot provide truly differentiated services while maintaining high efficiency
- Latency, capacity, & reliability do not match the requirements of most challenging new applications

Which applications?

Source: NGMN Alliance, "NGMN 5G White Paper" - v1.0, 17th February, 2015 Fhttps://www.sigmmyorg/uploads/media/NGMN 5G White Paper V1 0.pdf

5G Latency requirements per type of service

DIPARTIMENTO DI INGEGNERIA

DELL'INFORMAZIONE

Future Internet Security

WHAT DO WE EXPECT FROM 5G?

User perspective

Infinite capacity

Everyone gets enough to be "happy"!

Ubiquitous coverage

No more connectivity gaps

Pervasive connectivity

"Every" object is Internet-enabled

Customization

Services adapt to the context and the personal requirements

Flexibility

Easy development and integration of new services

User demands

Infinite capacity

Everyone gets enough to be happy Engineers answer...

- □ More data rate
- Higher spectrum efficiency
- More spatial reuse
- QoE-based RRM
- Dynamic content caching
- □ ...

User demands

ubiquitous coverage

No more connectivity gaps! **Engineers answers**

 multiple RATs
 new frequency bands
 multiple antennae & beamforming
 cell densification
 higher sensitivity

better handover

□ ...

User demands

pervasive connectivity

"Every" object is Internet-enabled **Engineers** answers

- protocols protocols protocols!
 - 6LowPAN, RPL, CoAP,...
- massive access management
- energy efficiency
- security

□ ...

User demands

customization

Services adapt to the context and the personal requirements

Engineers answers

software adaptability

- quality of experience
- service differentiation
- context awareness
 - Machine learning
 - Unsupervised learning
 - Emergent behavior, ...

User demands

flexibility

Easy development and integration of new services

Engineers answers

- semantic web
 - Ontologies
- data accessibility
- heterogeneous sources
 - wideband services (voice, video, web,...)
 - machine-type devices
 - Highly mobile users (VANET, trains,...)

DIPARTIMENTO **DI INGEGNERIA DELL'INFORMAZIONE**

Requirements on 5G

Source: 5G-PPP (https://5g-ppp.eu/)

1000x more data rates Towards 0-5ms E2E latency 1M/km² devices 500km/h high mobility 99.999% reliability <90' service deployment time 90% energy efficiency

The basic ingredients

More CAPACITY

A single user-centric view

- Current coding techniques are very close to the theoretical Shannon spectral efficiency bounds for single user capacity
- Most techniques for 5G increase the bandwidth and degrees of freedom to exploit diversity

More capacity

Densification

DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

- Small cells, Relays, mobile Relays and Drones
- larger bandwidth per user in each cell

More bandwidth

- new spectrum @ higher frequencies (above 6 GHz)
- mmWave
- Visible Light Communications

More antennas

- Massive MIMO
- Dynamic beamforming
- Spectrum sharing
- Multiple-RATs

Network densification

Classic Challenges:

- 1. Interference
 - Cross-tier & co-tier
 - Near-far effect
- 2. Uncoordinated operations
 - Inter-cell interference
 - Mobility management

New Challenges:

- 3. Unplanned deployment
 - **Overlaying** coverage
 - Over-dimensioned capacity
- 4. Energy consumption
 - High number of <u>always</u>
 <u>on</u> APs
 - Traffic unbalance at APs

Massive MIMO

- Massive MIMO use a large arrays at BSs
 - e.g., *N*≈200 antennas, *K*≈40 users
- □ Key: Excessive number of antennas, $N \gg K$
- Very narrow beamforming
- Little interference leakage
- Disruptive for 5G
- Channel Estimation is critical

More spectrum

New frequency bands

- mm-Wave communications (3 to 300 GHz)
- 5 9 GHz of unlicensed bandwidth
- Ever heard of WiGig (IEEE 802.11ad)?
 - 1 Gbps at 60 GHz
 - <u>http://www.wi-fi.org/discover-wi-fi/wigig-certified</u>
- □ Very sensitive to blockage...

mmW channel intermittency due to blocking

Causes of blocking

- Human body shadowing
- Object blocking
- Types of blocking
 - Short term blocking: shorter than the tolerable time live of the service

Long term blocking: is longer than the tolerable time to live of the service

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Counteract strategies

With Short term blockages:

- Catch up approach: compensate the time lost for blockage with higher average information transmission rate
 - Multi-link communications over same or different Radio Access Technologies (RATs) such as LTE, 5G, WiFi,...
 - Overprovisioning of resources
- □ With Long term blockages:
 - Overprovisioning is not sufficient
 - Make offloading robust by

EMPORAR ROAD CLOSURE

- Multi-link communications for spatial error-correcting codes with resource overprovisioning
- Block erasure **channel code design** over multi-links

 Multiple frequencies bands: dedicated licensed spectrum complemented with various forms of shared spectrum

"Toolbox" of different sharing enablers required

In order for 5G system to work under such scenarios

Future Internet Security

Massive Access

M2M reference architecture

Machine Network Traffic

- M2M devices generate traffic of the following types
 - Periodic: smart metering application
 - *Event-driven*: emergency event report
 - Continuous: surveillance camera
- Large volume of different types of traffic at core network
 - Guarantee of diverse QoS traffic requirements
 - Reliability of both human-to-human and M2M traffic

Future Internet Security

The issue of short packets

- Today's cellular systems are designed mainly for broadband traffic sources
 - Can easily accommodate 5 clients transmitting at 2 Mbit/s each, but not 10.000 clients transmitting at 1kbit/s
 - Coding and control overhead may become predominant
 - Preambles for channel estimation may be longer than data payload!

wireless M2M

□ some challenges:

- highly reliable connections despite coverage problems
- Iow latency
- Iong battery lifetime
- massive number of nodes with sporadic use

□ some opportunities:

- correlation of machine-type data across space and time
- predictability and/or periodicity of data/control traffic
- header compression using implicit/context information
- advanced PHY/MAC techniques

Densification and diversification

Heterogeneous networks (HetNets):

- Small cell networks including macrocells and small cells of all types
- Provide improved spectrum efficiency (bps/Hz/km²), capacity, and coverage
- Small cells can support wireless applications for homes and enterprises as well as metropolitan and rural public spaces
- Require solutions for cell selection, handover, dynamic content caching, …

Softwarization & Cloudification

Planes of Networking (1/2)

Data Plane

- All activities involving as well as resulting from data packets sent by the end user, e.g.,
 - Forwarding
 - Fragmentation and reassembly
 - Replication for multicasting

Control Plane

- All activities that are necessary to perform data plane activities but do not involve end-user data packets
 - Making routing tables
 - Setting packet handling policies (e.g., security)
 - Base station beacons announcing availability of services

Data plane runs at line rate

- ■e.g., 100 Gbps for 100 Gbps Ethernet → Fast Path
- Typically implemented using special hardware
- Few activities handled by CPU in switch → Slow path
- e.g., Broadcast, Unknown, and Multicast (BUM) traffic
 All control activities are generally handled by CPU

OpenFlow key idea

- Separation of control and data planes
- Centralization of control
- Flow based control
 - Control logic is moved to a controller
 - Switches only have forwarding elements
 - One expensive controller with a lot of cheap switches
 - OpenFlow is the protocol to send/receive forwarding rules from controller to switches

OpenFlow basics

One packet arrives to the switch

- Switch logic compares header fields with flow entries in a table
 - **\square** if any entry matches \rightarrow take indicated actions
 - \square If no header match \rightarrow
 - packet is queued and header is sent to the controller
 - Controller sends a new rule to the switch
 - subsequent packets of the flow are handled by this rule

Doesn't all of this sound somehow familiar?

What do we need SDN for?

- 1 **Virtualization**: Use network resource without worrying about where it is physically located, how much it is, how it is organized, etc.
- **Orchestration**: Manage thousands of devices
- **3 Programmable**: Should be able to change behavior on the fly
- **4 Dynamic Scaling:** Should be able to change size, quantity
- **5** Automation: Lower OpEx
- **6 Visibility**: Monitor resources, connectivity
- **Performance**: Optimize network device utilization
- 8 Multi-tenancy: Sharing expensive infrastructure
- **9** Service Integration
- **Openness**: Full choice of Modular plug-ins
- **Unified management** of computing, networking, and storage

5G is changing 'the Equation'

The issue of **5G is not only more capacity** but also more reactive, smart and connected devices

5G is changing 'the Equation'

"*Latency*" is based on 3 major component:

Future Internet Security

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Local processing to reduce the latency: the ECM

The Cloud Computing Model

The Edge Computing Model

Latency reduction versus reliability

Machine Learning

The cognition cycle

Future Internet Security

 Sense: nowadays devices are crammed with transducers/sensing apparatuses
 needs efficient data handling

- Learn: optimization algorithms can be run at each node individually
 - needs (i) efficient algos (ii) harmonization
- Act: network modifies the environment
 requires convergence of multiple devices

Cognition-based Network

Each node of the network:

exploits local information to achieve its goal shares it with its neighbors

Self-adaptation to the environment to achieve network wide goals

Cognition applied to the entire network

Multimedia growth

Exabytes per Month

18

61% CAGR 2013-2018

Mobile File Sharing (2.9%)
Mobile M2M (5.7%)
Mobile Audio (10.6%)
Mobile Web/Data (11.7%)
Mobile Video (69.1%)

source: Cisco report (2014)

- We consider a test set of 38 video clips, all encoded in an H.264-AVC format
- All the videos are encoded with a 16-frame structure (1 I-frame, 15 P-frames) and compressed with 18 different rates
- Depending on the content, the perceived quality of a compressed version changes
 We used the SSIM indicator to capture it

SSIM versus rate

Requirements for video delivery

QoE-based and content-aware resource allocation

- Rate-distortion curve depends on video content
- Video content affects size of the encoded video frames
- RBM can be used to infer rate-distortion curve of a video by observing the size (not the content) of video frames

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

"Our" Video Classes

Future Internet Security

QoE-aware proxy vs legacy video clients

Future Internet Security

Future Internet Security

WHAT'S ABOUT 5G SECURITY?

Winter is coming...

Cloudification/Softwarization

Cloudification

- In legacy networks, security of function network elements relies largely on physical protection
- In 5G, virtual network elements will run on cloudbased infrastructure → 5G infrastructure security must be taken into consideration!

Softwarization

- SDN improves flexibility, but introduces single pointof-failure issues
- Network slicing isolates applications to provide better service differentiation. Source traffic policing becomes an issue

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Multi-RAT but also multi-network

- Issue: building security architecture suitable for different access technologies
- IoT devices represent a security threat
 - many ways to access networks (directly, via a gateway, or through a multi-hop mesh) → need to develop security trans-technology mechanisms
 - security management must be efficient and lightweight

Low-Delay Mobility Security

- Vehicles network, remote surgery,...
 require high reliability with a delay < 1 ms, also in mobility
- Need for fast security algos and mobility security may be redesigned & optimized for 5G

It's Surprisingly Easy to Hack the Precision Time Protocol

A simple attack can knock off a system's timing by 48 years ^{19 Jun}

Pervasivity & privacy

- IoT is gonna spread basically everywhere, and it is already in most of our houses
 - Smartphones, google/amazon assistants, smart lighting, surveillance systems, roomba...
- □ a great amount of user privacy information will be carried over the 5G network → any information leak may lead to severe consequences

Technologies & privacy

□ mmWaves, beamtracking, RF tomografy, ... a lot of private information can be obtain from (or wormed out of) radio signals analysis

Household Radar Can See Through Walls and Knows How You're Feeling

Modern wireless tech isn't just for communications. It can also sense a person's breathing and heart rate, even gauge emotions

By Fadel Adib

Image: Fadel Adib

Hidden Figures: These images of human figures were obtained using radio waves. Each column contains two images of the same person.

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Technology frailties

- mmWave: can provide ultra-fast directional links, but it is easy to block
- Reflecting surfaces may help improve coverage or confuse tracking/beamforming algos
- ML can be used to solve very complex problems, but their black-box nature raises questions about their trustability

CVPR 2018 Robust Physical-World Attacks on Deep Learning Visual Classification

Today IT and telco are converging

- Telcos are requested to support a large and rapidly expanding set of applications/services
- Telco need to define new models to valorize their infrastructure
- The new trend: telcos are becoming more cloud platforms than just a communication system

Trillions of devices are expected to be connected in the next years

This revolution will bring along a wealth of new applications and technologies that will open new business cases, application scenarios, research opportunities...

but... we all have to bear in mind

one

important

WINTERISCOMING

Game of Thrones Night King mural by Jonas Never at Brennan's | Photo: @never1959, Instagram

DELL'INFORMAZIONE

Acknowledgments

The author wishes to thank Dr. Emilio Calvanese Strinati of CEA-LETI for contributing a few slides and ideas to this presentation

