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Abstract—The identification of significant patterns, defined
as patterns whose frequency significantly deviates from what
is expected under a suitable null model of the data, is a key
data mining task with application in several areas. We present
PROMISE, an algorithm for identifying significant sequential
patterns while guaranteeing that the probability that one or
more false discoveries are reported in output (i.e., the Family-
Wise Error Rate - FWER) is less than a user-defined thresh-
old. PROMISE employs the Westfall-Young method to correct
for multiple hypothesis testing, a more powerful method than
the commonly used Bonferroni correction. PROMISE crucially
hinges on the generation of (random) permuted datasets with
features similar to the input dataset, for which we provide two
efficient strategies. We also provide a rigorous analysis of one
of such strategies, which is based on a properly defined swap
operation, proving a rigorous bound on the number of swaps
it requires. The results of our experimental evaluation show
that PROMISE is an efficient method that allows the discovery
of statistically significant sequential patterns from transactional
datasets while properly controlling for false discoveries.

Index Terms—Sequential Patterns; Statistical Pattern Mining;
Hypothesis Testing; Permutation Test.

I. INTRODUCTION

Sequential pattern mining [1] is a fundamental data mining
task that finds application in several areas. In its original
formulation [1], it requires to extract all sequential patterns,
defined as sequences of itemsets, that appear in a fraction
at least θ of the transactions of a transactional sequential
dataset, where each transaction is a sequence of itemsets.
Since it formulation, several methods (e.g., [2]–[5]) have
been designed to efficiently extract sequential patterns from
a dataset.

While the frequency of a pattern is an important feature
in some applications, it is usually not sufficient to identify
patterns that provide useful knowledge regarding the process
described by the data. For example, a sequence of itemsets
may appear frequently in a dataset simply because each of
the itemsets has high individual frequency, even if there
is no association between the itemsets in the sequence. A
natural framework to identify interesting sequential patterns
is provided by statistical hypothesis testing, where the goal is
to mine statistically significant sequential patterns, defined as
sequences that appear more frequently than expected under an
appropriate (generative) null model for the data.

The extraction of statistically significant patterns has re-
ceived a lot of attention when patterns are itemsets, with
several methods [6]–[9] that have been proposed to iden-
tify significant itemsets while providing guarantees on false
discoveries (i.e., itemsets flagged as significant but that are
not). The most commonly used guarantee is given by the
Family-Wise Error Rate (FWER), that is the probability that
one or more false discovery is reported in ouput. Strikingly,
only few methods [10], [11] to identify statistically significant
sequential patterns have been proposed. The extraction of
statistically significant sequential patterns is more complex
than the extraction of significant itemsets, mostly for two key
issues: first, the number of sequential patterns that can be built
from a ground set of items is much larger than the number of
itemsets, and the gargantuan number of candidate sequential
patterns poses a multiple hypothesis testing issue, since the
probability of a false discovery increases with the number
of candidate patterns; second, the definition of appropriate
null models for sequential patterns is more difficult, since
reasonable null models do not result in distributions that can
be analytically described and it is therefore crucial to be able
to efficiently compute the statistical significance of patterns.
To the best of our knowledge, no method to rigorously iden-
tify statistically significant sequential patterns with rigorous
guarantees on the FWER for the reported patterns is available
(see also Section I-B).

A. Our Contribution

In this work we focus on the problem of mining statistically
significant sequential patterns from a transactional dataset. In
this regards, our contributions are:
• We introduce a new algorithm, PROMISE, to identify sta-

tistically significant sequential patterns using permutation
testing. PROMISE is the first algorithm to provide rigor-
ous guarantees on the Family-Wise Error Rate (FWER) of
the output, using the Westfall-Young method to properly
correct for multiple hypothesis testing.

• We introduce and formalize two strategies, one based on
itemsets swapping and one on permuting transactions,
to generate (random) permuted datasets for sequential
patterns mining. These two strategies are at the core of
PROMISE, and they sample datasets from the distribution



of all datasets where the number of appearances of each
itemset and the number of itemsets in each transaction
are the same as in the input dataset.

• We provide a formal analysis of the itemsets swapping
strategy, proving that a polynomial number of swaps are
sufficient to uniformly sample a random dataset from the
aforementioned distribution. Moreover, we experimen-
tally show that a number of swaps proportional to the
number of itemsets in the dataset is sufficient to sample
a random dataset.

• We provide a parallel implementation of our algorithm
and conduct an extensive experimental evaluation of its
use to extract significant sequential patterns, showing that
PROMISE allows to efficiently extract significant patterns
from real sequential datasets.

B. Related Work

Since the introduction of the frequent sequential pattern
mining problem [1], a number of methods have been devel-
oped to efficiently extract all frequent sequential patterns (see
also [12] for several references). We focus on the identification
of statistically significant sequential patterns and our algorithm
PROMISE can employ any algorithm to extract frequent pat-
terns from a (real or random) dataset as a subroutine.

Several works have been proposed to identify statistically
significant itemsets where the significance is defined in terms
of the comparison of itemsets’ statistics (e.g., itemsets’ fre-
quencies or number) with a null mode (e.g., [6], [8]). The one
that is most related to ours is the work of Gionis et al. [8],
which introduces a swap randomization approach to assess
the significance of patterns (e.g., itemsets) in 0-1 datasets.
Such technique cannot be applied to sequential transactions,
due to sequential dimension that is absent in 0-1 datasets. In
addition, [8] provides only an experimental assessment of the
number of swaps required to sample a random dataset, while
we also prove an upper bound.

Few methods [10], [11] have been proposed to mine
statistically significant sequential patterns. Gwadera and
Crestani [10] proposes a method based on a null model
obtained by combining two models at different levels, in
particular itemset-wise and sequence-wise, with a maximum
entropy model for the itemset-wise level and a mixture model
for the sequence-wise level. Our null model is much simpler
and allows for the efficient mining of significant sequential
patterns, that is instead not possible with the method of [10],
in particular for large patterns. More recently, Low-Kam et
al. [11] introduce an approach based on the independence
model, where each itemset appears in a transaction with
probability equal to its frequency in the real dataset and
independently of all other events. We consider a null model
where transaction lengths are preserved as well, which is more
appropriate in cases where different groups of transactions are
in the dataset (similarly to what happens for itemsets [8]). In
addition, [11] performs a Bonferroni correction assuming that
candidates sequential patterns are only the frequent patterns
observed in the dataset, while all potential candidate patterns

should be considered, as it has been argued for other pattern
mining problems [6].

A different line of works identifies significant patterns,
including sequential patterns, where the significance is given
by the association of the presence of the pattern with a binary
label available from each transaction [13]–[16]. These methods
cannot be applied to identify patterns whose frequency signifi-
cantly deviates from a null model. Several methods (e.g., [17]–
[19]) have been proposed to identify interesting patterns using
some alternative interestingness measure. These measures, and
the methods that employ them, are orthogonal to our approach,
which focuses on the statistical significance of patterns.

II. PRELIMINARIES

We now provide the definitions and concepts used through-
out the paper.

A. Sequential Pattern Mining
Let I = {i1, i2, . . . , ih} be a finite ground set of elements

called items. An itemset S is a (nonempty) subset of I, i.e. S ⊆
I. A sequence s = 〈S1, S2, . . . , S`〉 is a finite ordered list of
itemsets, with Si ⊆ I, 1 ≤ i ≤ `. The length |s| of s is defined
as the number of itemsets in s. The item-length ||s|| of s is the
sum of the sizes of the itemsets in s, i.e., ||s|| =

∑|s|
i=1 |Si|,

where |Si| is the cardinality of itemset Si. A sequence a =
〈A1, A2, . . . , Ay〉 is a subsequence of another sequence b =
〈B1, B2, . . . , Bw〉, denoted a v b, if and only if there exist
integers 1 ≤ i1 < i2 < . . . < iy ≤ w such that A1 ⊆ Bi1 ,
A2 ⊆ Bi2 , . . . , Ay ⊆ Biy . Note that an item can occur only
once in an itemset, but it can occur multiple times in different
itemsets of the same sequence. A dataset D is a finite bag of
(sequential) transactions, D = {τ1, τ2, . . . , τ|D|}, where each
transaction τi ∈ D is a sequence with items from the ground
set I. A sequence s belongs to a transaction τ ∈ D if and only
if s v τ . For any sequence s, the support set TD(s) of s in D is
the set of transactions in D to which s belongs: TD(s) = {τ ∈
D : s v τ}. The support sD(s) of s in D is the cardinality of
the set TD(s), that is the number of transactions in D to which
s belongs: sD(s) = |TD(s)|. Finally the frequency fD(s) of s
in D is the fraction of transactions in D to which s belongs:
fD(s) =

sD(s)
|D| .

Example. Consider the dataset D = {τ1, τ2, τ3, τ4} where:

τ1 = 〈{6, 7}, {7}, {5}〉
τ2 = 〈{1, 4}, {3}, {2}, {1, 2, 5, 6}〉
τ3 = 〈{1}, {2}, {6, 7}, {5}〉
τ4 = 〈{2}, {6, 7}〉

D has 4 transactions. τ1 has length |τ1| = 3 and item-length
||τ1|| = 4. The frequency fD(〈{7}〉) of 〈{7}〉 in D is 3/4,
since 〈{7}〉 is contained in all the transactions but not in the
second one. Note that while 〈{7}〉 occurs twice as subsequence
of τ1, τ1 contributes only once to the frequency of 〈{7}〉.
〈{7}, {6}, {5}〉 is not a subsequence of τ1 because the order
of the itemsets in the two sequences is not the same.

Let S denote the set of all sequences built with itemsets
containing items from I. (Note that S is an infinite set.) Given



a dataset D and a minimum frequency threshold θ ∈ (0, 1], the
sequential pattern mining task requires to output all sequences
from S whose frequency in D is greater than θ, and their
frequencies:

FSP (D, θ) = {(s, fD(s)) : s ∈ S, fD(s) ≥ θ}.

B. Significant Sequential Pattern Mining

The task of mining significant sequential patterns requires
to identify sequential patterns whose frequency is significant,
that is, whose frequency is not due to random fluctuations in
the data. To assess the significance of a pattern, the framework
of statistical hypothesis testing is usually employed. For each
sequential pattern s, let Hs be the null hypothesis that the
frequency fD(s) of s in D well conforms to the frequency
of s in a random dataset, i.e. a dataset taken uniformly
at random among all datasets with properties similar to D.
In this work the properties of interest are i) the number
of times each itemset appears in D; ii) the length of each
transaction in D. Therefore, under the null hypothesis D is
a dataset taken uniformly at random from all datasets where
each itemset appears the same number of times as in D and
each transaction has the same length as in D. As an example
for why preserving these properties in a random dataset is
important, consider a sequential dataset from an e-commerce
website. Each transaction is the ordered list of purchases
made by a single user. The itemsets represent products bought
together. In such a dataset the idea is to preserve the products
that the users bought together (the itemsets and the number of
times they appear) and also to preserve the number of orders
made by the users (the length of the transactions).
Example. Consider the dataset D in Section II-A. A random
dataset D̃ with the same properties of D is the following:

τ1 = 〈{1, 4}, {5}, {5}〉
τ2 = 〈{6, 7}, {2}, {7}, {1}〉
τ3 = 〈{6, 7}, {2}, {6, 7}, {3}〉
τ4 = 〈{2}, {1, 2, 5, 6}〉

Note that each itemset that appears in D a certain number
of times also appears in D̃ the same number of times and
that each transaction has the same length in the two datasets.
Instead the item-lengths of the transactions are not mandatorily
the same: τ1 has item-length 4 in both datasets but the item-
length of τ2 changes from 8 to 5. Also the frequency of the
items (and so of the itemsets and of the sequential patterns) can
change: fD({2}) = fD̃({2}) = 3/4 but fD({5}) = 3/4 6=
1/2 = fD̃({5}).

Under the null hypothesis the frequency of pattern s is
described by a random variable Xs. In order to assess the
significance of s, a p-value ps is commonly computed. The
p-value ps is the probability of observing a frequency at least
as large as the frequency fD(s) of s in D under the null
hypothesis:

ps = Pr[Xs ≥ fD(s)|Hs].

C. Multiple-Hypothesis Testing

The statistical hypothesis testing framework is commonly
used to provide guarantees on the false discoveries, i.e., pat-
terns flagged as significant while they are not. When a single
pattern s is tested for significance, flagging s as significant
(i.e., rejecting the null hypothesis) when ps ≤ α, where α is a
threshold fixed by the user, guarantees that the probability that
s corresponds to a false discovery (i.e., is flagged as significant
when it is not) is at most α.

The situation is completely different when several patterns
are tested simultaneously, as in the case of pattern mining. If d
patterns are tested with the approach used for a single pattern
(i.e., each pattern is flagged as significant if its p-value is ≤ α),
then the expected number of false discoveries can be as large
as αd. To solve this issue one identifies a corrected threshold
δ such that all patterns with p-value ≤ δ can be reported while
providing some guarantees on the number of false discoveries.

A common approach is to identify δ that provides guarantees
on the Family-Wise Error Rate (FWER), defined as the proba-
bility of reporting at least one false positive. That is, if FP is
the number of false positives, then FWER = Pr[FP > 0]. For
a given value δ, let FWER(δ) be the FWER obtained when δ
is used as corrected significance threshold, that is by rejecting
(i.e., flagging as significant) all null hypotheses (i.e., patterns)
with p-value ≤ δ. Often FWER(δ) cannot be evaluated in
closed form.

One approach to set δ is to use the Bonferroni correction,
setting δ to δ/d. It is easy to show (using the union bound) that
the resulting FWER satisfies FWER(δ) ≤ dδ = α. However
when d is large, as in the case of pattern mining, δ is very
close to 0, resulting in low statistical power with many false
negatives (i.e., significant patterns that are not reported in
output). Note that this issue is particular severe for sequential
patterns, since if one does not restrict (before analyzing the
dataset) the space of patterns, i.e. hypotheses, the number of
candidate patterns is infinite, and therefore d = ∞. Even
restricting the set of patterns, for example considering only
patterns of length at most `, may result in low statistical power,
since the number of candidate patterns increases exponentially
with `.

More sophisticated techniques have been designed to in-
crease the statistical power. In particular, the Westfall-Young
(WY) method [20] is a multiple hypothesis testing procedure
based on permutation testing that results in high statistical
power [15] and has been successfully applied in other pattern
mining scenarios [15], [16]. The WY method directly esti-
mates the joint distribution of null hypotheses using permuted
datasets, i.e., datasets obtained from the distribution described
by the null hypothesis. In detail, the WY method considers P
permuted datasets D1, . . . , DP obtained uniformly at random
among the space of all possible datasets (under the null hy-
pothesis). Then for every dataset Di, i = 1, . . . , P , computes
the minimum p-value p(i)min over all patterns (hypotheses) of
interest. The FWER FWER(δ) resulting from using δ as



corrected significance threshold can then be estimated as:

FWER(δ) =
1

P

P∑
i=1

1[p
(i)
min ≤ δ]

where 1[·] is the indicator function (of value 1 if the argument
is true, and 0 otherwise). Given a FWER threshold α, the
corrected threshold δ∗ is then obtained as

δ∗ = max {δ : FWER(δ) ≤ α} .

D. Estimating the p-value

Note that the statistical hypothesis testing framework re-
quires to be able to compute the p-value ps. For complex
null hypotheses, such as ours, the p-value cannot be com-
puted analytically. However, when one can sample datasets
uniformly at random from the distribution described by the
null hypothesis, the p-value can be estimated by a simple
Monte Carlo procedure as follows: sample T random datasets
D1, . . . , DT ; for each dataset Di, i = 1, . . . , T , compute the
frequency fDi

(s) of s in Di; then the p-value ps is estimated
as

ps =
1

T + 1

(
1 +

T∑
i=1

1[fDi
(s) ≥ fD(s)]

)
.

III. PROMISE: MINING SIGNIFICANT SEQUENTIAL
PATTERNS WITH PERMUTATION TESTING

In this section we describe PROMISE, our algorithm to
mine significant sequential patterns. PROMISE is described
in Algorithm 1. Given a sequential dataset D, a minimum
frequency threshold θ ∈ (0, 1], and a value α ∈ (0, 1],
PROMISE identifies a set of significant sequential patterns
with FWER bounded by α and frequency at least θ. PROMISE
starts by mining the set FSP (D, θ) of sequential patterns with
frequency at least θ in D. It then uses the Monte Carlo proce-
dure (Section II-D) to estimate the p-value ps for each pattern
s in FSP (D, θ), where the procedure RANDOMDATASET(D)
is used to sample a dataset uniformly at random among all
datasets where each itemset appears the same number of times
as in D and transactions have the same length as in D. A
corrected significance threshold δ∗ is then identified using
the procedure CORRECTEDTHRESHOLD(α,θ). Such proce-
dure employs the WY method (Section II-C) to compute δ∗

and for each random dataset considers only patterns with
frequency ≥ θ since we are interested only in such patterns
(see Section III-B for details). Finally, the output is given by
all patterns in FSP (D, θ) with p-value at most δ∗. Note that
PROMISE crucially hinges on the ability of sampling random
datasets with the desired properties described above.

The following result establishes the quality of the output of
PROMISE and is easily derived by the properties of the WY
method.

Lemma 1: The output of PROMISE has FWER bounded by
α.

Algorithm 1: PROMISE

Input: Sequential dataset D = {τ1, τ2, . . . , τ|D|};
minimum frequency threshold θ ∈ (0, 1];
FWER bound α ∈ (0, 1].

Output: Set of significant sequential patterns with
FWER ≤ α.

F ← FSP (D, θ);
for i = 1 to T do

Di ← RANDOMDATASET(D);
for s ∈ F do

ps ← 1
T+1 (1 +

∑T
i=1 1[fDi(s) ≥ fD(s)]);

δ∗ ← CORRECTEDTHRESHOLD(α,θ);
O ← {s ∈ F : ps < δ∗};
return O;

A. Efficiently Sampling Random Datasets

In this section we describe efficient methods to obtain a
random dataset D̃ where:

• each itemset appears the same number of times as in D;
• each transaction has the same length as in D.

In particular, we consider two different strategies to ob-
tain D̃. Both strategies start from D and perform random
operations (swaps or permutations) at the level of itemsets.
While both strategies preserve the two properties above, they
focus also on preserving additional properties of D. Since
the sequential patterns describe ordered sequences of events
(i.e. itemsets), the idea is to preserve these events, represented
by the itemsets, and to change only the order in which they
occur. The two strategies are described in Section III-A1 and
in Section III-A2.

1) Itemsets Swapping: We now describe a strategy similar
to permutation swapping [21] previously proposed for signif-
icant itemsets mining [8], which cannot be directly used for
sequential patterns since it does not take itemsets order into
account and itemsets can appear more than once in a sequential
transaction.

For each transaction τi ∈ D, i = 1, . . . , |D|, and each
integer j ∈ (0, . . . , |τi|], we use the pair (i, j) to represent the
the j-th itemset in τi. Consider four positive integers i, j, k, `
such that j ∈ (0, . . . , |τi|] and ` ∈ (0, . . . , |τk|).

In itemset swapping we swap the itemset (i, j) with the
itemset (k, `). As mentioned above, such swap preserve the
length of each transaction. Note that the item-lengths of the
transactions are not preserved, since the size of the two
swapped itemsets may not be the same. The frequency of the
swapped itemsets could change after a swap since the new
transaction can contain itemsets that are super-sets of the ones
swapped. For the same reason also the frequency of the items
that compose the two itemsets may change as well.
Example. Consider the dataset in Section II-A. A pos-
sible swap is performed between itemset {1} in po-
sition (3, 1) and itemset {6, 7} in position (4, 2). The
new dataset D̃ after the swap is the following: τ1 =



〈{6, 7}, {7}, {5}〉; τ2 = 〈{1, 4}, {3}, {2}, {1, 2, 5, 6}〉; τ3 =
〈{6, 7}, {2}, {6, 7}, {5}〉; τ4 = 〈{2}, {1}〉. Note that the
length of transactions τ3 and τ4 does not change after the
swap, contrary to their item-length. The frequency of {1} has
remained the same, fD({1}) = fD̃({1}) = 1/2, while the
frequency of {6, 7} has changed, fD({6, 7}) = 3/4 6= 1/2 =
fD̃({6, 7}).

Note that in a dataset D there are m =
∑|D|
i=1 |τi| total

itemsets (not necessarily all distinct). Therefore, we can use
the integer values ` with 1 ≤ ` ≤ m to identify each itemset.
Algorithm 2 shows how to generate a random dataset using a
sequence of r itemsets swaps operations under this indexing of
itemsets. Operation swap(D̃, p1, p2) simply swaps the itemset
of index p1 with the itemset of index p2 in D̃.

We now prove that the dataset produced in output by
Algorithm 2 is a dataset taken uniformly at random among
the set D of all datasets that satisfy the properties described
in Section III-A, provided enough swap operations are per-
formed. To analyze Algorithm 2 we use the Markov chains
framework. Consider the Markov chain M = {S, T}, where
S is the set space and T is the set of transitions. In our case, S
is the set D of all datasets satisfying the two properties define
in Section III-A, while T is defined in terms of neighbors of
a dataset Dj ∈ S where the neighbors of Dj are obtained
by performing a swap operation on Dj . That is, the set T
contains all pairs with datasets (Dj , Dk) such that it is possible
to obtain Dk from Dj (or vice versa) with a single itemsets
swap, with Dj , Dk ∈ S. For each dataset (state) Dj ∈ S,
we define the degree of state Dj in Markov chain M as the
number of possible swaps that can be performed in dataset
Dj .

To prove that the output of Algorithm 2 produces in output a
random dataset from D we prove that Markov chain M admits
a unique stationary distribution π and that such distribution is
uniform among all elements of D.

Algorithm 2: RANDOMDATASET Generates a random
dataset using the itemsets swaps operations.

Input: Sequential dataset D = {τ1, τ2, . . . , τ|D|}.
Output: Random dataset D̃ = {τ ′1, τ ′2, . . . , τ ′|D|}.
D̃ ← D;
m←

∑|D|
i=1 |τi|;

for i← 1 to r do
p1 ← Random(1,m); p2 ← Random(1,m);
swap(D̃, p1, p2);

return D̃;

Theorem 1: The markov chain M admits as unique station-
ary distribution the uniform distribution.

Proof: Note that starting from any dataset Dj , it is
possible to obtain any other dataset Dk with distinct single
itemsets swaps operations, that is the Markov chain M is
irreducible. The Markov chain M has a finite state space,
it is irreducible, and it is aperiodic. A Markov chain with
these properties is called ergodic. The Markov chain M

is also reversible: an itemsets swap can be undone by a
single (reversed) itemsets swap. From the theory of Markov
chains [22], an ergodic Markov chain has a unique stationary
distribution. From the reversibility properties, it follows that
the probability of each state in such stationary distribution is
proportional to the degree of the states. Therefore, in order to
obtain a uniform distribution, all states of the Markov chain
must have the same degree. Using Algorithm 2 to generate
dataset D̃, all the states of the Markov chain have degree
equals to m2, with m =

∑|D|
i=1 |τi|. This proves that the

Markov chain M has a unique stationary distribution that is
the uniform distribution.

In order to bound the number of swap operations that
are required to converge to the stationary distribution we
need to upper bound the mixing time of the Markov chain
M . Upper bounding the mixing time is usually difficult; for
example, for the mixing time of the commonly used swap
randomization procedure [21], [23] has been the object of
theoretical studies [21], but currently there are no conclusive
results and only empirical analyses are available [8], [24].

We now prove an upper bound to the number of swap
operations that are required for the Markov chain M to
converge to the stationary distribution. In our proof we use
the path coupling technique. In brief, given a Markov chain
M , a coupling for M consists of two copies of the Markov
chain M running simultaneously, where the two copies do
not visit the states in the same order nor perform the same
transition at the same time, but are defined on the same state
space of M and have the same transition probabilities as M .

Theorem 2: The mixing time of Markov chain M is
O(m2 logm), where m =

∑|D|
i=1 |τi|.

Proof (sketch): We use path coupling to prove that after
O(m2 logm) itemsets swaps, the Markov chain M converges
to the stationary distribution. Let D`, Dh ∈ S be two datasets
that differ only for the position of two itemsets. We say that
D`, Dh are at distance dist(D`, Dh) = 2. The idea is to
start with a coupling for such pair of datasets, that differ in
just two itemsets, and then extend the coupling over all pairs
of datasets. Denoting with a and b the two positions where
datasets D` and Dh differ, we define a coupling where the
first Markov chain M1 is M , while the second Markov chain
M2 is defined in terms of the transitions of M for a pair of
datasets (D`, D

′

`). Let D` be the state of M1 =M at a given
iteration, and let Dh be the state of M2 at the same iteration.
Let (D`, D

′

`) denote the transition performed by M1 = M
(from state D`). In particular, let the itemsets swap performed
by M1 = M be between the itemset in position p1 and the
itemset in position p2 in dataset D`, (remember that p1 and p2
are sampled uniformly at random between all the positions).
We then define the transitions (Dh, D

′

h) for M2 (from state
Dh) as follows: i) if p1 = a and p2 = b, M2 swaps the itemset
in position a with itself in the dataset Dh; ii) if p1 = b and
p2 = a, M2 swaps the itemset in position b with itself in the
dataset Dh; iii) if p1 = p2 = a or p1 = p2 = b, M2 swaps
the itemset in position a with the itemset in position b in the
dataset Dh; iv) otherwise M2 swaps the itemset in position



p1 with the itemset in position p2 in the dataset Dh. Note
that for both chains the probability of any given transition
is still 1/m2. Most of the moves of such coupling maintain
the distance dist(D

′

`, D
′

h) = 2. The only moves that result in
dist(D

′

`, D
′

h) = 0 are the 4 moves described by i-iii, i.e. the
moves that swap, in one of the two datasets, the two itemsets
that are in different positions. Since each move occurs with
the same probability 1

m2 and since dist(D`, Dh) = 2 we have:

E
[
dist(D

′

`, D
′

h)|D`, Dh

]
=

(
1− 4

m2

)
· 2 + 4

m2
· 0

≤ (1− β) · dist(D`, Dh),

with β ≥ 4
m2 . Thus by applying the path coupling theo-

rem [22] we can extend the coupling to arbitrary pairs of
states (D0

` , D
0
h) obtaining a bound on the mixing time of

τmix = O( 1β logD), where D is the maximum distance
between any two states. Since in our case we have D = m
and β ≥ 4

m2 we obtain that the mixing time of M is bounded
by τmix = O(m2 logm).

2) Random Permutations: We now introduce a different
strategy to obtain a random dataset. This strategy produces
a random dataset that still satisfies the properties on itemsets’
presence and transactions’ lengths defined in Section III-A, but
it also forces itemsets to appear in the same transactions as in
the original dataset D. In particular, this strategy ensures that
only the order with which itemsets appear in each transaction
is random, while everything else (e.g., itemsets frequencies,
transactions in which each itemset appears, etc.) is fixed.

As a motivation, consider a dataset containing movies rated
by some users. In such a dataset the items are the ID’s of the
movies rated by the users. Each transaction contains the ID’s of
the movies rated by a single user and movies rated in the same
temporal interval, i.e. in the same day, are grouped in a single
itemset. The transactions represent the temporal sequence of
sets of movies rated in the same temporal interval. Since an
user usually rates a movie only once, a movie is present at
most once in each transaction. This feature of the data is not
preserved by the random dataset generation strategy described
in section III-A1.
Example. Consider again the dataset D in Section
II-A. A random dataset D̃ generated from D
using this approach is the following: τ1 =
〈{7}, {6, 7}, {5}〉; τ2 = 〈{3}, {1, 4}, {1, 2, 5, 6}, {2}〉; τ3 =
〈{5}, {1}, {6, 7}, {2}〉; τ4 = 〈{6, 7}, {2}〉. Note that each
transaction of the new dataset has the same length, and also
item-length, of the transactions of the dataset D. Also the
frequency of the items and of the itemsets remains the same
in the two datasets. Instead the frequency of the sequential
patterns can change: fD(〈{1}, {2}〉) = fD̃(〈{1}, {2}〉) = 1/2
but fD(〈{6, 7}, {5}〉) = 1/2 6= 1/4 = fD̃(〈{6, 7}, {5}〉).

The random permutation strategy, described in Algorithm 3,
produces a random dataset by permuting each transaction
independently of all other events.1

1] in Algorithm 3 is the addition of an element to a multiset.

Algorithm 3: RANDOMDATASET Generates a random
dataset by permuting each transaction independently.
Input: Sequential dataset D = {τ1, τ2, . . . , τ|D|}.
Output: Random dataset D̃ = {τ ′1, τ ′2, . . . , τ ′|D|}.
for i← 1 to |D| do

τ ′i ← Permute(τi);
D̃ ← D̃ ] τ ′i ;

return D̃;

B. Parallel Implementation

Note that PROMISE, as all approaches based on permutation
testing, is well-suited to parallelization. In particular, the
generation of random datasets and the computation of p-values
for patterns with frequency above θ in the dataset D can
be easily parallelized: when k cores are used to compute
the p-values using T permuted datasets in the Monte Carlo
estimate (Section II-D), each core computes the p-values on
T/k permuted datasets, and the results are then aggregated at
the end.

Such parallel implementation is particularly advantageous
for PROMISE, since the Monte Carlo estimate of patterns p-
values is also required by the CORRECTEDTHRESHOLD(α,θ)
procedure that computes, for each random dataset Di, i =
1, . . . , P , the minimum observed p-value in dataset Di. That
is, the p-values of patterns extracted from Di are computed
by analyzing the T permuted datasets with the parallel scheme
described above.

Note that since we are interested only in patterns with
frequency ≥ θ, the computation of the minimum p-values
p
(1)
min, . . . , p

(P )
min for the WY method is restricted to patterns

that have frequency ≥ θ in the random datasets. That is,
p
(i)
min is computed as the minimum p-value for patterns in
FSP (Di, θ) with frequency ≥ θ in Di. This corresponds
to employ the WY method to estimate the probability of
observing any pattern with frequency ≥ θ and with p-value
below the threshold δ under the null hypothesis, that is what
we need in order to estimate FWER(δ) when we are interested
only in patterns with frequency ≥ θ.2 If FSP (Di, θ) = ∅,
we then set p(i)min = α, corresponding to an uncorrected
threshold. Note that any efficient implementation for mining
frequent sequential patterns from a dataset can be used to
obtain FSP (Di, θ).

The final architecture of our implementation is presented in
Figure 1, where the p-values of patterns in FSP (Di, θ) for
i = 1, . . . , P are computed using the parallel implementation
of the Monte Carlo procedure, as described above.

IV. EXPERIMENTAL EVALUATION

We implemented and tested our algorithm PROMISE on
real and synthetic data. Our experimental evaluation has three

2Note that in this way we are still allowing patterns s with frequency
fD(s) < θ to appear with frequency higher than θ in a random dataset, thus
properly accounting for such patterns in our multiple-hypothesis correction.
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Fig. 1. Parallel implementation of PROMISE.

goals. First, to empirically estimate the number of swaps
needed to reach the stationary distribution for the itemsets
swaps strategy (see Section III-A1). Second, to evaluate the
performance of our approach in terms of true and false discov-
eries, using random datasets. Third, to assess the performance
of PROMISE on real datasets.

A. Implementation and Environment

The code used for the evaluation has been developed in
Java and executed using version 1.8.0 201. Our experiments
have been performed on a machine with 512 GB of RAM
and 2 Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.3GHz, with
a total of 64 threads. To mine the sequential patterns we
used the PrefixSpan [3] implementation provided by the SPMF
Library [25]. The parallel algorithms have been implemented
using the Apache Spark Java API version 2.2.0. We also used
fastutil3, a library that provides efficient data structures.
The code developed for the tests and the implementation of
PROMISE are available in our repository.4

B. Real data

We performed our experiments with 5 real sequential
datasets:
• BIBLE5: A conversion of the Bible into a sequence

dataset. A word is an item and a sentence corresponds
to a sequence.

• BIKE6: Los Angeles Metro Bike Share Trip Data. An
item is a bike-sharing station and a transaction is the

3http://fastutil.di.unimi.it
4Removed for anonymous submission. It will be available for camera ready.
5http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
6https://www.kaggle.com/cityofLA/los-angeles-metro-bike-share-trip-data

sequence of bike-sharing stations in which a given bike
was;

• FIFA5: A dataset of sequences of click-stream data from
the website of FIFA World Cup 98. An item represents a
web page;

• LEVIATHAN5: This dataset is a conversion of the novel
Leviathan by Thomas Hobbes (1651) as a sequence
database. A word is an item and a sentence corresponds
to a sequence;

• SIGN5: a dataset of sign language utterance.
While BIBLE, FIFA, LEVIATHAN, and SIGN are public
datasets that did not require any preprocessing, we prepro-
cessed the BIKE dataset as described in Section IV-F. The
characteristics of the datasets are reported in Table I.

TABLE I
DATASETS STATISTICS. FOR EACH DATASET THE TABLE REPORTS: THE

NUMBER OF TRANSACTIONS |D|; THE NUMBER OF ITEMS |I|; THE
AVERAGE TRANSACTIONS ITEM-LENGTH; WHETHER ITEMS APPEAR

MULTIPLE TIMES IN A TRANSACTION.

Dataset Size |D| |I| Avg. trans.
item-length

Repeated
items

BIBLE 36369 13905 21.6 Yes
BIKE 21078 67 7.28 Yes
FIFA 20450 2990 36.2 Yes
LEVIATHAN 5835 9025 33.8 Yes
SIGN 730 267 52.0 No

C. Convergence

In this section we empirically study the number of itemsets
swaps needed to reach the stationary distribution, that is, to
obtain a dataset drawn uniformly at random. Theorem 2 gives
us an upper bound of the number of swaps to perform. In
practice, the stationary distribution may be reached with a
smaller number of swaps. To evaluate whether this is the case,
we analyzed how the average relative frequency difference
changed with the number of itemsets swaps.

Given the (real) dataset D, let the set FSP (D, θ) be
the frequent sequential patterns extracted from D using
θ as minimum frequency threshold, and D̃t be the (ran-
dom) dataset obtained performing a series of t item-
sets swaps from D. We define the average relative fre-
quency difference ARFD(D̃t) for D̃t as ARFD(D̃t) =

1
|FSP (D,θ)|

∑
s∈FSP (D,θ)

|fD(s)−fD̃t
(s)|

fD(s) .
If ARFD(D̃t) does not change much after t > t∗ swaps for

some value t∗, then the distribution of the sequential patterns
does not vary much in the datasets generated with more than
t∗ swaps, and the stationary distribution is reached with t∗

swaps. We computed ARFD(D̃t) for t = im, where i is a
positive integer and m =

∑|D|
i=1 |τi|. For each real dataset

we performed this computation five times (i.e., generating
different random datasets D̃t starting from D) and then we
compute the average value of ARFD(D̃im). Figure 2 shows
the value obtained with all the real datasets. For the dataset
SIGN we showed all values of im up to m2 logm (the value
obtained with Theorem 2).



Note that just after 2m itemsets swaps, the ARFD(D̃m)
of the generated dataset is very close to the one computed
with the random dataset generated with m2 log(m) itemsets
swaps. For the other datasets we limited the number of
swaps to be at most 100m. For all datasets 2m swaps are

Fig. 2. Average relative difference ARFD(D̃t) between the frequencies of
the frequent sequential patterns in D and their frequencies in random datasets
generated with t itemsets swaps, for all datasets. Legend shows the values of
θ used to compute the ARFD.

enough to convergence to the stationarity distribution. In all
the experiments performed and reported below we consider a
number of 2m itemsets swaps to generate a random dataset.
Note that the ARFD obtained with the same relative number
of swaps in the five real datasets are very different. This is
due to the different distributions of the sequential patterns in
the datasets. In particular the datasets SIGN, that has values
greater than the other datasets, does not contain repeated items
in its transactions, and therefore a series of itemsets swaps
changes its distribution more than on the other datasets.

D. Synthetic Data

To prove the correctness of our strategies, we ran PROMISE
on random data, obtained with itemsets swaps or permutations,
starting from BIKE. Since sequential patterns flagged as
significant in a random datasets are false positives, we aimed
to check if our algorithm returned some significant sequential
patterns in some random datasets. We generated five random
datasets for each generation strategy. In all cases PROMISE
correctly did not return any significant sequential pattern.

To assess the ability of our method to identify significant
patterns, we planted a sequential pattern of size 2 in the
random datasets generated for the previous tests. For each
transaction τ in the random datasets, we insert the pattern
in τ with probability 0.6 independently of other events. We
inserted the first itemset of the candidate sequential pattern
in a random position inside the transaction, and the second
itemset in a random position after the first itemset. We then
run PROMISE with α = 0.05, P = 100 and T = 10048:

PROMISE correctly returned the planted pattern for all the
datasets with both strategies.

E. Significant Sequential Patterns in Real Datasets

We used the SIGN dataset to evaluate the impact of the
number P of permuted datasets for the WY method and of the
number T of permuted datasets for the Monte Carlo estimate
of the p-value. For all the tests we fixed the commonly used

TABLE II
RESULTS OF PROMISE FOR DATASET SIGN. FOR EACH TEST PERFORMED
THE TABLE REPORTS: HOW RANDOM DATASETS ARE GENERATED (I.S. FOR

ITEMSETS SWAPS, PERM. FOR PERMUTATIONS); THE NUMBER P OF
RANDOM DATASETS USED FOR THE WY METHOD; THE NUMBER T OF

RANDOM DATASETS FOR THE MONTE CARLO ESTIMATE OF p-VALUES;
THE NUMBER FSP OF FREQUENT SEQUENTIAL PATTERNS FOUND IN THE

DATASET; THE NUMBER SFSP OF SIGNIFICANT FSP RETURNED BY
PROMISE.

Dataset Strategy P T FSP SFSP

SIGN (θ = 0.4)

I.S.

1000 1024

518

518
100 10048 518

1000 10048 518
100 100032 518

Perm.

1000 1024

518

/
100 10048 457

1000 10048 457
100 100032 457

value α = 0.05 as FWER threshold. We tested multiple
combinations of the parameters P and T . We tested values
of T that are multiples of 64 (the number of cores of our
machine). Table II reports the tests we performed and their
results. The tests with the itemsets swaps flagged as significant
all the frequent sequential patterns considered, with all the
combinations of P and T : this is due to the absence of
repeated items in the transactions of SIGN that is therefore
extremely different from a random dataset (see Section IV-C).
With permutations, no significant sequential patterns had been
found with T = 1024, since the Monte Carlo estimates of
the p-values are too coarse (the smallest p-value that can
be estimated is 1/1025). For all the other combinations,
the number of significant sequential patterns returned by the
algorithm remains the same. We therefore fixed the values
P = 100 and T = 10048 for all the remaining analyses.

TABLE III
RESULTS OF PROMISE FOR FOUR REAL DATASETS. SEE TABLE II FOR THE

MEANING OF THE REPORTED VALUES.

Dataset Strategy P T FSP SFSP

BIBLE (θ = 0.1)
I.S. 100 10048 174 120

Perm. 121

BIKE (θ = 0.025)
I.S. 100 10048 163 37

Perm. 31

FIFA (θ = 0.275)
I.S. 100 10048 182 181

Perm. 142

LEVIATHAN (θ = 0.15)
I.S. 100 10048 225 87

Perm. 100

Tables III reports the results obtained for other real datasets.
For all the datasets and for both generation strategies,
PROMISE returned some significant sequential patterns. In



addiction the sequential patterns flagged as significant are
always less than the frequent sequential patterns, confirming
that frequency by itself is not enough to provide statistical
significance. For the FIFA dataset, only one sequential pattern
is flagged as non significant using itemsets swaps. This is due
to the fact that such dataset contains very few transactions with
repeated itemsets, therefore, similarly to what we observed for
SIGN, the itemsets swaps greatly change the distribution of
patterns’ frequencies. Note that for some datasets, the number
of significant sequential patterns found with the permutations
are greater than the one found with the itemsets swaps,
though the permutations can not detect sequential patterns
of length one or sequential patterns composed by a single
itemset repeated multiple times. Such results depend on the
distribution of the sequential patterns in the real datasets.
This highlights that our two strategies for datasets generation
provide complementary assessments of patterns’ significance.

Table IV reports the execution times required to obtain a
single random dataset, for both strategies. For the itemsets
swaps we considered 2m swaps. Table IV also reports the time
required for mining a random dataset in order to compute the
supports of the frequent sequential patterns. For each dataset
the minimum frequency threshold θ is shown in Table III.
Table IV shows that our strategies to generate random datasets
is very efficient, with all generation times being lower than
1 second. As expected, the generation of the datasets using
the permutations approach is faster than the approach with
itemsets swaps, since it only requires to permute the itemsets
in each transaction. For both strategies the time to generate
a random dataset is usually smaller or at most comparable to
the time for mining a (random) dataset.

TABLE IV
EXECUTION TIME FOR THE GENERATION OF A RANDOM DATASET AND

EXECUTION TIME TO MINE THE RANDOM DATASETS WITH BOTH
GENERATION STRATEGIES (I.S. FOR ITEMSETS SWAPS, PERM. FOR

PERMUTATIONS).

Dataset
Execution Time (ms)

Dataset Generation Mining
I.S. Perm. I.S. Perm.

BIBLE 624.84 22.35 525.23 445.01
BIKE 73.32 4.13 127.03 114.79
FIFA 595.26 18.42 409.29 378.44
LEVIATHAN 96.82 7.71 164.38 159.55
SIGN 11.85 1.73 40.81 32.45

Since the number of items in BIKE is relative small, we also
tested the use of the Bonferroni correction and we compared
the results with the ones obtained with PROMISE. Note that
BIKE is the only dataset that allows this type of tests, since for
the other datasets the Bonferroni correction results in a very
small corrected threshold and thus requires an extremely large
number of random datasets to identify a pattern as significant.
For the test with the itemsets swaps we considered sequential
patterns of sizes 1 and 2. Since the itemsets of BIKE are
composed by single items, the number of sequential patterns
of size 1 and 2 are respectively |I| and |I|2, thus we used
α/(|I| + |I|2) as corrected significance threshold. For the

test with the permutations, we considered only the sequential
patterns of size 2, since the ones of size 1 can not be flagged
as significant. For both tests, we generated T = 512 · 103
datasets for the Monte Carlo estimate of the p-values. The
minimum frequency threshold θ is the one showed in Table
III. Table V shows the results obtained. For both strategies,
PROMISE, that use the WY method, returns a number of
significant sequential patterns larger than the ones returned
using the Bonferroni correction. Note that all the significant
sequential patterns returned using the Bonferroni correction
are returned also by PROMISE (for either strategies, itemsets
swaps and permutations, to generate random datasets).

TABLE V
SIGNIFICANT SEQUENTIAL PATTERN MINING FOUND WITH BONFERRONI

CORRECTION IN BIKE. FOR EACH TEST PERFORMED THE TABLE
REPORTS: THE SIZE L OF THE FREQUENT SEQUENTIAL PATTERNS

CONSIDERED; THE TOTAL NUMBER #SP OF SEQUENTIAL PATTERNS OF
THAT SIZE CONSIDERED; SEE TABLE II FOR THE MEANING OF THE OTHER

REPORTED VALUES.

L Strategy FSP # SP SFSP T
1 and 2 I.S. 163 4556 36 512 · 103

2 Perm. 163 4489 28 512 · 103

F. Analysis of BIKE’s Results

The BIKE dataset is obtained from public data available
online and therefore allows us to analyze the results more
in detail. We obtained the BIKE dataset by downloading the
Los Angeles Metro Bike Share Trip Data and performing the
following preprocessing steps in order to create a sequential
dataset. The Los Angeles Metro Bike Share Trip Data contains
a series of trips performed in Los Angeles using the bike
sharing service. For each trips the following information are
available, among others: the starting station, the ending station,
an unique identifier of the bike, the starting time, the ending
time. We collected all the trips made with each bike and
we sort them using the temporal information available. In
particular for each bike we collect the ordered sequence of
station where the bike was. The items in our dataset are the
ID of the stations. Each transaction represents the ordered list
of stations in which a certain bike was. The first station in each
transaction is the starting station of the first trip available for
that bike. The second is the ending station of that trip, which
becomes the starting station for the following trip and so on.
If for some reason one series of stations contained gaps, i.e.
the end station of a trip does not correspond to the starting
station of the next trip, we split the sequence where the gap
happens creating two transactions. We extracted the significant
sequential patterns from the BIKE dataset with PROMISE
using the parameters showed in Table III. Figure 3 shows the 4
most significant (i.e., with smallest p-value) sequential patterns
with highest frequency found with itemsets swaps, and the 4
most significant ones with highest frequency found with the
permutations (without considering the 4 patterns from itemsets
swap). The two patterns found only with itemsets swaps can
not be detected using permutations, since they are composed



by two equal itemsets and such patterns have always the same
frequency in random datasets generated with permutations.
Our algorithm flagged as significant the sequential pattern
starting from Union Station West Portal and ending in the same
bike station. Such bike station is located near Union Station,
the main train station of Los Angeles. Another significant
sequential pattern, analogous to this one, starts from 7th &
Flower and ends again in the same station. Such station is
located near the Metro Center station in the financial district.
We investigated if in the transactions the two itemsets that
composed these sequential patterns are consecutive, indicating
that they correspond to single trips or if they are a combination
of multiple trips. We considered that the two itemsets of a
sequential pattern are consecutive in a transaction if there
was at least one instance of such pattern with itemsets in
consecutive positions in the transaction. For both the sequential
patterns that start and end in the same station, the percentage
of single trips is about 25%. The only significant sequential
pattern that has a lower percentage of single trips is the one
that starts from Main & First and that ends in 7th & Flower.
This is probably due to the large distance between the two
stations. Instead the pattern with higher probability of single
trips is the one that starts from Main & First and that ends in
Union Station West Portal. This pattern probably catches the
flow of people that ride to Union Station.

Fig. 3. Map of the Los Angeles Metro Bike stations with some significant
sequential patterns found with PROMISE. The red stars are the bike stations
involved, with respective names. Each arrow is a significant sequential pattern.
Black arrows are significant sequential patterns found with both dataset
generation strategies. Blue arrows are found only with permutations while
purple arrows only with itemsets swaps.

CONCLUSION

We presented PROMISE, an efficient algorithm to extract
sequential patterns with a frequency that is significantly higher
than expected in random datasets where both the number of
times each itemset appears in the dataset and the length of
the transactions are as observed in the data. We proposed two
efficient strategies to sample random datasets from such null
model and employed them within a WY scheme to properly
control the FWER. Our extensive experimental evaluation

shows that PROMISE efficiently identifies significant sequen-
tial patterns in real datasets. There are several directions for
future research, including using our randomization techniques
to identify significant patterns while controlling the False
Discovery Rate (FDR) and devising efficient strategies to
identify the k most significant sequential patterns.
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