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Project title (Swedish)*
Identifiering av linjära tidsberoende system

Project title (English)*
Identification of linear time-variant systems

Abstract (English)*
In many applications a time-varying stochastic process is considered.
For time-invariant processes there are plenty of methods 
for identifying and describing the process in both the time and 
frequency domain.
Most approaches to identification of time-varying processes 
are based on segmentation of the signal, where each segment is 
short enough to be considered as stationary, and then each of 
these segments are identified using one of the methods 
for time-invariant methods.

Here, we will develop methods for estimating dynamic models 
from features obtained from the evolutionary spectrum.
The features will be obtained by applying time-variant 
input-to-state filters to calculate the time-variant
equivalents of (time-invariant) input-to-state covariances.
Given these features we will apply the method of moments 
based framework for generalized maximum entropy estimation
developed by Lindquist, Byrnes, Georgiou, et.al..
The aim is to develop a complete estimation theory that
can handle different model classes and feature sets and 
find robust and high resolution estimates with 
guarranteed stability, as in the stationary case.

Descriptive data

Project info
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Popular scientific description (Swedish)*
De flesta av de ljud, videor, väderobservationer, et.c.,
som vi omges av har en naturlig dynamik. Genom att betrakta 
korta tidsförlopp kan dessa modelleras med icke-dynamiska modeller 
som sedan kan sammanfogas för att t.ex. simulera motsvarande förlopp. 
Men ibland, som när man analyserar seismisk data och EEG är man intresserad av
just ändringarna i dynamiken och det är lätt att missa dessa 
effekter om man utgår ifrån icke-dynamiska modeller. 
Därför vill vi kunna anpassa dynamiska modeller utifrån 
uppmätt data från en observerad process. 
Angreppssättet är att använda metodik som utvecklats för icke-dynamisk
modellering och tillämpa här. 
Den bygger på att man mäter vissa karaktäristiska värden 
från signalen man betraktar och sedan tillpassar en modell 
som man antar har vissa önskade egenskaper. 
T.ex. vill man att modellen ska vara stabil, och man vill 
oftast att den ska ha ett reguljärt beteende, och detta 
åstadkoms genom att använda mått som entropi för att 
styra valet av modell.
Mycket av arbetet kommer att ligga i att bestämma 
hur de karaktäristiska värdena ska utformas för att kunna 
estimeras från uppmätta signaler och ge bra 
modellanpassning, och i utformningen av måtten för att 
man ska kunna bevisa att man erhåller de önskade egenskaperna.
Dessutom kommer algoritmer som använder regularisering och 
numeriskt effektiva och stabila tekniker, som krävs för optimeringen 
som bestämmer den tillpassade modellen, att behöva utvecklas. 

Number of project years*
4

Calculated project time*
2016-01-01 - 2019-12-31

Project period
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SCB-codes* 1. Naturvetenskap > 101. Matematik > 10106. Sannolikhetsteori och 
statistik

2. Teknik > 202. Elektroteknik och elektronik > 20205. 
Signalbehandling

2. Teknik > 202. Elektroteknik och elektronik > 20202. Reglerteknik

Keyword 1*
Spektralestimering

Keyword 2*
Icke-stationära processer

Keyword 3*
Entropimaximering

Keyword 4
Konvex optimering

Keyword 5
Momentproblem

Select a minimum of one and a maximum of three SCB-codes in order of priority.

Select the SCB-code in three levels and then click the lower plus-button to save your selection.

Enter a minimum of three, and up to five, short keywords that describe your project.
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Reporting of ethical considerations*
Inga etiska frågor är aktuella för detta projekt

The project includes handling of personal data
No

The project includes animal experiments
No

Account of experiments on humans
No

Research plan

Ethical considerations

Specify any ethical issues that the project (or equivalent) raises, and describe how they will be addressed in your research. 
Also indicate the specific considerations that might be relevant to your application.

Research plan
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Proposed Research Project

”Identification of linear time-variant systems”

Per Enqvist

Abstract

In many applications a time-varying stochastic process is considered. For time-
invariant processes there are plenty of methods for identifying and describing the process
in both the time and frequency domain. Most approaches to identification of time-
varying processes are based on segmentation of the signal, where each segment is short
enough to be considered as stationary, and then each of these segments are identified
using one of the methods for time-invariant methods.

Here, we will develop methods for estimating dynamic models from features obtained
from the evolutionary spectrum. The features will be obtained by applying time-variant
input-to-state filters to calculate the time-variant equivalents of (time-invariant) input-
to-state covariances. Given these features we will apply the method of moments based
framework for generalized maximum entropy estimation developed by Lindquist, Byrnes,
Georgiou, et.al.. The aim is to develop a complete estimation theory that can handle
different model classes and feature sets and find robust and high resolution estimates
with guarranteed stability, as in the stationary case.

1 Purpose and Aim

This research project aims at improving the methods used for estimation of the spectra of
signals such as speech, EEG signals, seismic data, image data, econometric data et.c.. Com-
mon for these signals is that the dynamics changes over time. The aim of this project is to
develop high resolution methods that can accurately follow the changes in the dynamics and
determines stable modelling filters of some specified model class. Using the improved models
and spectral estimates enables deeper analysis of the processes generating the signals, more
accurate synthesis and more reliable predictions.

More precisely, time-varying input-to-state filters are defined to form a versatile tool for
handling the features describing the evolutionary spectra in a concise and uniform way. We
will consider the estimation of these features from measured data with special attention to if
they are realizable or not. Assuming they are, a model in some model class will be selected
using a criteria based on maximum entropy or minimizing the distance to some given prior
model. The aim is to find a criterium that generate a well posed problem so that there is a
unique model with no poles outside the unit circle that comply with it.

1
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For the method to be practically applicable we will also consider two more aspects of the
estimation problems. Since the feaures will be determined from finite data there will be
estimation errors and a regularization should be considered to take the error variance into ac-
count. This will be accomplished by allowing an approximation error in the feature matching.
For stationary processes, circulant covariances can be used to determine an approximative
solution of the original problem that can be solved efficiently using FFT methods, and the
aim is to generalize this approach.

2 Survey of the field

The basic problem considered here is the estimation of evolutionary spectrum and models from
semi-stationary processes [34]. In practice, we base our analysis on some given data from the
process. We can conceptually think of the data as the output signal y of a time-variant system
W (t) that is fed by an input signal e which is an orthogonal process.

input
e(t)−→ W (t, z)

y(t)−→ output

Determining the transfer function W (t, z) can now be regarded as an inverse problem based
on the data {y(t)}. Compared to the time-invariant case which is usually an overdetermined
problem (few parameters in the modell), the time variant case leads to an under-determined
problem (each parameter can take different values at each time t). Some assumption on the
character of the signal has to be imposed in order to obtain the best solution and define in
which sense it is best. Most common is to impose some restriction on how the model can
change over time, for example, it can desired to have as small and smooth changes over time
as possible, or, to be a piecewice constant functions with as few jumps as possible. The classic
approach introduced in [34, 35], is to assume that the model is slowly varying, which is defined
as a bounded width of the Fourier transform of W (t, z) around zero frequency [34]. (n.b. zero
frequency corresponds to a constant)

The local energy content over frequency of a semi-stationary process is varying over time,
and the evolutionary spectrum [34] is used to describe this. If the process e(t) has a spectral
representation e(t) =

∫
eitωdZ(ω), where E[|dZ(ω)|2] = dµ(ω) then the evolutionary spectra

of y(t) is
dHt(ω) = |W (t, z)|2dµ(ω).

Estimation of evolutionary spectra is studied in [34] for slowly varying processes with bounded
width, and in [45] using wavelets.

Wavelet analysis was developed to capture both the time-dependence and frequency de-
pendence of signals [7, 46]. A wavelet is a function of time with a certain frequency content.
From the mother wavelet a basis of L2 is generated by dilations and translations. Wavelets
are used for both compression, such as JPEG2000, and analysis of signals.

Most slowly varying processes are analyzed by segmenting the signals into windows that are
short enough so that each of them can be considered as a snapshot of a stationary process and

Per Enqvist 2 710922-0439
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modelled as such. The original signal is typically prefiltered with a window function that is
designed to give emphasis to the central part of the window and minimize the influence of the
edges of the window. Then each windowed signal is modelled independently using the the the-
ory for time-invariant, stationary, processes. Hence, the methods for time-invariant processes
are an important basis for the time-variant processes and most methods are developed on the
same basic principles. The advantages of this method are that the modelling can be done
independently for each window, and therefore applied sequentially as new data arrive, and
that well studied methods for time-invariant processes can be directly applied. A disadvantage
is that the segmentation is usually not adapted to the natural transitions between different
dynamics in the process. Entropy and wavelets can be used to find an adapted segmentation
[6], but using this method you have already taken the first step towards using a time-variant
basis.

We proceed by considering a number of approaches that have been considered for time-
variant processes and then go back to consider the time-invariant case.

One approach is to use a set of time-variant basis functions and describe the model pa-
rameters as a linear combination of them. This was done for AR models in [29], applied on
speech signals in [23, 38], and for ARMA models in [22]. A main consideration is which basis
functions to choose, and how many, since the variance and numerical properties depend on
this choice. A second order expansion was used in [35], an arbitrary order expansion in [29],
Legendre polynomials in [24], prolate spherical coordinates in [22], the Fourier basis in [23]
and wavelet bases in [47, 21]. It was noted in [23, 38] that the roots of the time-dependent
AR models sometimes wanders outside the unit circle. Even if this does not imply instability
in the time-variant case, it will cause spikes in simulations and these models are generally
avoided.

Then there are so called random coefficient models. Kitagawa and Gersch [25] approach the
problem of fitting a time-varying AR model by assuming that the coefficients in the model
are changing with independent normally distributed increments at each time step and then
apply Kalman filtering and maximum likelihood estimation.

Next we will describe some different approaches used in the field to estimate the model W
when the process is stationary, i.e., the shaping filter W is time-invariant.

In practice it is common to first estimate the power spectral density (psd) Φ(eiθ) = |W (eiθ)|2,
which describes the distribution of power in the frequency representation of the signal, and
then determine W by spectral factorization.

If one wants to estimate the psd the Maximum Likelihood method is known to provide
efficient estimates. As the data length increase the estimate will then tend to the true psd

in the conceptual situation described above. But it is also well known that it is necessary
to solve a non-convex optimization problem to find the estimate and the convergence of the
available optimization methods is a problem, in particular for short data sequences and when
there is no exact generating model.

Another common approach to estimation problems is to use the method of moments. The
idea is that if you want to approximate a function and you know some moments, e.g., function
values or values of the derivatives, then a reasonable choice is to find a function, in some
function class, such that it matches the given moments, i.e., it interpolates them. In our
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case the function to be determined is the (psd) and the moments to be matched are often
chosen as the covariances of the process y. In general, these interpolation problems have
infinitely many solutions and traditionally the Burg entropy [1] is used to single out one
particular solution. This so called central solution assumes a minimum of prior information,
and in particular it holds no information on the zeros of the psd. Given prior information
about filter zeros, a Bayesian method would incorporate this information in the conditional
probabilities and likewise the Burg entropy has been modified to reflect this information and
improve on the central solution [5, 19]. During the last fifteen years the development of the
theory for covariance interpolation has progressed a lot and these methods can now deal with
bi-tangential and matrix valued interpolation constraints as well as multivariable densities
[17].

I have worked on several aspects of this approach and next some of the contributions that
are expected to be relevant for this project are described.

ARMA models can be estimated using an extended maximum entropy problem [27, 9,
20], where in addition to using a window of covariances as moments, a window of cepstrum
parameters is also given. In particular, cepstrum parameters are calculated as the Fourier
coefficients of the logarithm of the spectrum and the first coefficients thus roughly describes
the envelope of the spectral density [31]. The cepstrum data substitutes the zero information,
and even if there is a close relationship between the methods, this change of prior information
changes some of the fundamental properties. The use of cepstrum data is well established in
speech processing, [30], but has been a bit overlooked in spectrum estimation.

When the estimation is performed on data from real applications there are usually no true
W , the input e is not a white noise signal, and there are noisy measurements of the output
signal y. Then it is important to consider robust estimation methods that can be adapted
to different assumptions on how the data is generated and to analyze how the determined
transfer function model approximates the real system. When the moments are estimated it
makes sense to consider approximative moment matching [14]. Some approaches that deal with
interpolation of spectral densities of uncertain parameters, such as [39, 33] and [4, 41], used
hard constraints in the form of prespecified ellipsoidal, or interval, regions for the parameters
that had to be met. Soft constraints on the interpolation parameters have also been considered
by introducing some regularization. For the combined covariance and cepstrum matching
problem there is often no exact solutions and then it is critical that a good approximative
solution can be found and regularized approaches are given in [9, 11].

The state of the art methods of moments uses input-to-state covariances [16], which gen-
eralizes the covariances, can be used to solve Nevanlinna-Pick interpolation problems, and
their practical importance is that they can be used to adapt the resolution of the method to
fit the application [3]. An important problem in practice for applying the methods is to find
good estimates of the input-to-state covariances from data that has the right structure and
are non-negative. This problem was recently studied in [32, 26, 13, 48], and generalizes the
problem to estimate structured covariances [2]. Alternatively, rough estimates of the input-
to-state covariances can be used with the approximative interpolation approach, in which case
the regularization of the solution is handled in the approximative interpolation step [11].

An important fact to note is that the optimization formulation of these moment problems
are global, i.e., they are posed for general psd functions, and no structure is imposed on the

Per Enqvist 4 710922-0439 9 / 30



Research Proposal Application Research Grant VR

psd. This structure is a consequence of the distance measure and thus the information theory
description. Some different distances have been advocated by different research groups. It has
been shown that by replacing the Kullback-Leibler distance in [19] with the Hellinger distance
[15], Itakura-Saito pseudo-distance [43, 44, 12], or optimal smoothing criterium [18] another
set of spectral densities are obtained, but many good properties are preserved. I have also
shown that the approximative interpolation approaches can be used in these methods [10],
and can improve their robustness.

Problems with Circulant covariances have been studied to model periodic and skew-periodic
random signals [28, 36]. The spectral measure then have discrete mass points which leads to
that most calculations can efficiently be performed using FFT. This approach can also be used
to approximate the solution to non-periodic signals.

All of the methods just described have their roots in the maximum entropy solution. A
generalization to evolutionary spectrum estimation of the maximum entropy method [40] and
Burgs method [8] was derived twenty years ago but despite reporting good results did not
receive any attention. With the modern framework available we will use this result as a
starting point for this program.

3 Project description

The purpose of this project is to draw from the knowledge and framework developed for the
time-invariant modelling that I have participated in the development of, as described above.

As argued in Section 2, for time-invariant systems, entropy based interpolation methods
for modelling of ARMA models can be formulated as a well posed problem, and solved using
convex optimization. Furthermore, stability was guarranteed and excellent resolution could
be obtained for short data sequences.

Here we will introduce time-varying input-to-state filters, generalize the maximum entropy
approach and develop efficient optimization solvers to numerically determine the time-varying
models. We divide the project into four tasks described next.

A: Feature Extraction
The first step is in introducing the time-varying input-to-state filters,

G(z, t) = (zI − A(t))−1B(t),

which will enable us to develop the theory for a large class of basis functions in a unified set-
ting. This will also set the scene for applying the machinery developed for the time-invariant
case. The time-varying input-to-state filters will be used to reduce the information in the
evolutionary spectrum to a time-varying input-to-state covariance matrix function. We will
think of this as a feature that describes the process and its changes over time. The depen-
dendence of time is what makes this more complicated than for the stationary case and the
implications of this will be investigated, in particular the geometric properties of the map has
to be analyzed. Coupled to this development is the practical estimation problem of determin-
ing the time-varying input-to-state covariances that define the interpolation constraints. Here
the theory in [13, 48] should be possible to extended to the time-varying case.

B: Model realization
The next step is the generalization of the maximum entropy problem. First we have to
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consider the entropy concept for evolutionary spectra and analyse how the spectral distances
considered for stationary spectra [19, 15, 18, 43, 44, 12] should be generalized to retain the well-
posedness of the optimization formulations. A starting point is the evolutionary maximum
entropy method in [40]. It would be most important to show that the models determined
by this method have poles inside the unit circle, as for the time-invariant case. Considering
different distance measures will have a direct impact on the model structure, both in the
time and frequency domain. We saw earlier that different distances for stationary process
leads to different rational and non-rational modelling filters. Using different distances to
measure the change in the shaping/modulating function over time is also expected to generate
corresponding variations of solutions. Here it expected that transportation measures can play
an important role since they often agree better with our intuition of what it means for two
spectrums to be close to each other than, e.g., the L2 norm.

C: Regularization
Approximative interpolation is used in the time-invariant [9, 11, 10] case both to obtain
smoother solutions and also to determine the best candidates when no exact interpolants are
available. The need for this kind of regularization is expected to be even more important for
this more complex estimation problem.

D: Numerical optimization
In this task we consider how the optimization problems defined in task B can be solved, the
optimization algorithms, the numerical properties of the basis functions generated by the time-
varying input-to-state filter. Furthermore, we also consider the possibility to approximate
these problems with a numerically more tractable class of problems. The approach using
circulant covariances [28, 36] for stationary processes leads to a class of problems where many
of the calculations can be performed using FFT. It will be investigated how this can be
performed for the time-varying case, the aim would be to achieve computationally efficiency
using FFT and fast wavelet computations.

I expect that the approximative interpolation, the input-to-state covariance estimation and
the numerical implementation of the optimization solver are the key elements to take this
project from a theoretical construction to a practical applicable tool.

A rough plan for the distribution of time on the different tasks is given in Table 1. The long
time span denoted for numerical optimization can be explained by numerical testing that will
be initiated early on, but will not be in focus until later.

4 Significance

In the field of spectral estimation, there are many examples where an increased resolution of
the estimates can have significant, and even life saving, impact. However, it is not only the
resolution that is important; robustness and stability of the estimated models are also of great
importance, as well as the numerical computations efficiency. By addressing all of these issues
we hope to make important contributions to the field and next we mention a few of these
application areas.

Seismic ground motion can be described by oscillatory processes [42]. The evolutionary
power spectrum can be estimated and time-varying models can be determined from it and be
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2016 2017 2018 2019

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

A. Feature extraction

B. Model realization

C. Regularization

D. Numerical optimization

Table 1: Time plan for the work.

used for analysis and predictions. In turn, seismic waves cause damage to structures and can
cause them to loose some of its functions and even collapse. Structured systems accumulate
damage under service load and environmental excitations [21]. Dynamical models can describe
the mode of operation, and changes in stiffness and damping, hence they are important to
assess the condition of the system and diagnose failures.

Electroencephalography (EEG) signals [37, 47] are important for medical diagnosis. The
dynamics of the signals changes very quickly. Fourier transforms and AR modelling have
problems to capture these changes and therefore wavelets and time-varying AR modelling are
increasingly popular.

In speech and audio processing the maximum entropy method of Burg is widely used.
However, the duration of phonems vary a lot between, e.g., plosives and nasals, and therefore
have a naturally time-dependent dynamic [22, 38].

In image processing, models are used for smoothing as well as increasing resolution of
images. An image usually have several areas of different characterisics and if we describe the
position of a pixel using the “time” index, this corresponds to time-varying dynamics. Using
this technology, we can address magnetic resonance spectroscopy, ultrasound, telemedicine
and similar important imaging applications.
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