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Project title (Swedish)*
Målorienterade grepp och manipulationsfärdigheter baserat på inlärning och mutlisensorisk perception

Project title (English)*
Goal-oriented Grasping and Manipulation based on Learning and Multisensory Perception 

Abstract (English)*
Our aim is to enable autonomous task-oriented grasping of novel objects based on multisensory perception (tactile, visual 
and proprioceptive) and learning manipulation capabilities through exploration both from successful and unsuccessful 
grasping trials. It is a core challenge in robotics to equip agents with the ability to intelligently interact with the world. To 
achieve this, a robot needs to gather and interpret sensory information in new, unforeseen situations with minimal prior 
knowledge. However, a man-made environment is challenging for a robot due to the constant change in type and 
placement of objects it needs to interact with. To develop cognitive and behavioural capabilities in such a context, the 
robot needs to learn useful representations for objects and manipulation tasks by being actively engaged in the 
environment. 

To deal with uncertainties, we work on probabilistic methods for object representations and modeling of robot grasping 
tasks. Our robot will learn its low-level sensorimotor ability by exploration to fulfil high-level task requirements, be able to 
interpret outcomes of its actions and apply corrective movements if needed to successfully complete its task. Our 
approach is based on adaptive exploration and enables the agent to update its knowledge based on both successful and 
unsuccessful experiences. After an initial discovery phase, the system will be able to transfer its grasping knowledge 
obtained from training to novel objects and correct its actions when failure is predicted, e.g., place the robotic gripper in a 
different position if the achieved position is estimated to lead to failure based on acquired sensory data. The project 
focuses on addressing three fundamental robotics challenges, grasp hypotheses generation, learning from experience and 
grasp success monitoring and correction using sensory data.

We believe, the proposed research in task-oriented grasp planning, execution and grasp adaptation will pave an important 
pathway towards the development of autonomous artificial agents that can interact with their environments.

Popular scientific description (Swedish)*
För att robotar skall kunna ta steget ut från fabriker, laboratorier och in i våra hem krävs att de kan handskas med den 
osäkerhet som finns i omgivningen. Roboten måste kunna samla in och bearbeta osäker sensorinformation i nya och 
oplanerade situationer med begränsad initial kunskap. Robotarna måste också kunna lära sig om sina egna förmågor och 
miljön de verkar i. De måste kunna lära sig om objekten och representationer för dessa genom interaktion med dem. Utöver 
att kunna detektera och känna igen objekt måste roboten kunna gripa tag i objekten och manipulera dem. Det kan vara för 
att vända på ett objekt för att få en mer komplett bild av det eller för att flytta det från en plats till en annan. Dessa förmågor 
begränsas till viss del av den mängd sensorinformation som finns tillgänglig samt mekaniska och dynamiska egenskaper 
hos roboten. Att lära sig dessa egenskaper och begränsningar är mycket utmanande för ett artificiellt system. Ett exempel 
som visar hur komplicerad denna process är ett nyfött barns utveckling. Det tar ett år innan de kan ta de första stegen och 
långt mycket längre än så innan de kan cykla och hålla kolla på trafiken runt omkring sig.
 
I detta projekt kommer vi att skapa ett artificiellt autonomt system som kan interagera med omgivningen. Systemet måste 
kunna resonera kring vad som krävs för en given uppgift och relatera detta till sin egen sensor motoriska förmåga. Mer 
specifikt kommer vi att fokusera på att utveckla matematiska modeller för att möjliggöra för robotar att förstå objektspecifika
egenskaper som är viktiga för att kunna gripa tag i olika, tidigare okända, objekt och sedan lära sig hur dessa kan användas 
för att uppnå manipuleringsuppgifter genom återkoppling från multipla sensorer så som taktila och visuella sensorer. Vår 
metod baseras på att roboten själv skall lära sig att utforska sin omgivning och kunna lära sig både från lyckade och 
misslyckade försök.

Descriptive data

Project info

Project period
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Goal-oriented Grasping and Manipulation based on
Learning and Multisensory Perception

Yasemin Bekiroglu

1 Purpose and Aims
Robotic systems providing advanced service will be integrated into many aspects of daily

life in the future driven by both industrial and societal needs.1 There are areas where robotic
applications have already been deployed, such as industrial and service sectors. One area of
interest with the potential to have a very positive impact supported by many trials is developing
robotic helpers for the elderly.

One of the key skills for a robot is to physically interact with the environment in order to
achieve basic tasks such as pick-and-place, sorting, carrying, opening doors/drawers etc. For
physical interaction, object grasping and manipulation capabilities along with dexterity (e.g. to
use objects/tools successfully) and high-level reasoning (e.g. to decide about which object/tool
to use) are crucial.

Industrial robotics where operations that are rule based, in environments that are static (un-
changing) and structured (e.g. on fixed known routes) are considered has become a mature
research field and the focus shifted towards autonomous robots and robots in unstructured en-
vironments where unlimited combination of shapes, sizes, appearance, and positions of objects
need to be taken into consideration.

Despite many studies and significant progress over the last decades regarding different steps
in grasping and manipulation2, 3, 4, 5 (see Figure 1.1), a robust and general approach to grasping
for wide variety of tasks and objects encountered in dynamic and unstructured environments and
novel situations, which is close to human grasping skills does not exist yet. Current systems have
severe limitations in terms of dealing with novelty, uncertainty and unforeseen situations.

In this project, we will focus on grasping with multiple sensory modalities (vision, haptics,
proprioception) and investigate a learning approach to encode grasping knowledge acquired from
experience. The aim is to provide robots with means of reasoning about object grasps and their
probability of success, taking into account the information provided by complementary sensory
channels. We consider vision and touch sensing which can complement each other when in
contact with the object, while exploring and manipulating it with the hands.

The main objective in this project is to build a robotic system than can learn to grasp
and manipulate objects to accomplish a given everyday manipulation task based on explo-
ration and multisensory modalities, i.e., vision, touch and proprioception. We will follow a
probabilistic learning approach in order to deal with imperfect real sensory data and to have an
adaptive system that can update its knowledge based on its both successful and unsuccessful ex-
periences. After an exploration phase, the system will be able to transfer its grasping knowledge
obtained from training to novel objects and to correct its actions when failure is predicted, e.g.,
place the robotic gripper in a different position if the achieved position is estimated to lead to
failure based on acquired sensory data.

1http://www.robotcompanions.eu and http://www.robotics-platform.eu
2A. Bicchi and V. Kumar. “Robotic grasping and contact: a review”. In: IEEE Int. Conf. on Robotics and

Automation. 2000.
3J.M. Romano et al. “Human-inspired robotic grasp control with tactile sensing”. In: IEEE Transactions on

Robotics 27.99 (2011), pp. 1–13.
4R. B. Rusu et al. “Fast 3D Recognition and Pose Using the Viewpoint Feature Histogram”. In: IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems. 2010.
5Ashutosh Saxena, Justin Driemeyer, and Andrew Y. Ng. “Robotic Grasping of Novel Objects using Vision”.

In: The International Journal of Robotics Research 27.2 (2008), pp. 157–173.

1
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2

1.1 Basic Idea and Scientific Challenges
There are main issues which make grasping difficult for robots: Unknown information re-

quired to plan grasps such as object shape and pose need to be extracted from the environment
through sensors. However, sensory measurements are noisy and associated with a degree of
uncertainty. Therefore, grasp planning is based on noisy data. Even if perfectly accurate infor-
mation is obtained, planning a suitable grasp is still a challenge. There are a huge number of
possibilities to choose from and the parameter space cannot be searched exhaustively.

A good planning strategy should take important factors into account such as frictional prop-
erties, obstacles or the kinematics of the robot. The task that the robot needs to accomplish is
another important factor that greatly influences the decision on grasp selection, namely how to
place the hand on an object. Each task has its own requirements on the geometry and the robust-
ness of the grasp. Thus, objects are grasped differently according to the tasks, e.g., if a mug is to
be placed somewhere else, grasping from the top without applying much force might be suitable.
However to pour water with a mug, the grasp should not block the top or to hand someone an
object it should leave enough free volume.

Since the perceptual observations on which the planner bases its reasoning are noisy, It is
unlikely that the robot’s fingers will come in contact with the object at the exact intended points.
The object will generally move while fingers are being closed, and the final object-gripper con-
figuration, even if geometrically similar to the intended one, may present a prohibitively different
force configuration and thus failures might occur. Thus, executing grasping actions in an open-
loop system is unlikely to prove viable in in real-world environments and a closed-loop system
in which perceptual feedback is constantly monitored and triggers plan corrections is often re-
quired.

In our work we will address these problems, i.e., how to construct grasp hypothesis from
sensory data, how to learn from experience and how to monitor success and recover from
failures, and provide contributions regarding learning manipulation capabilities through
exploration and based on multi-sensory perception, e.g., visual, tactile and proprioceptive.
We will use probabilistic approaches to deal with uncertainties and exploratory strategies to let
the robot discover low-level information it needs to execute its task. We will construct suit-
able object representations from sensory data for grasping purposes and evaluate techniques for
successful grasp and task completion. In summary, our main objectives are:

• to learn grasp-related parameters from sensory data so that the robot will be able to transfer
its knowledge to new situations and execute grasps on previously unseen objects in a task-
oriented way,

• to learn both from failures and successful trials, and

• to monitor the state (success/failure) during grasp execution and apply the obtained knowl-
edge from experience to correct actions if failure is estimated.
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3

Figure 1: Grasping process: Scene understanding where visual input is use to extract descriptors to obtain hand
parameters, Grasp Planning where descriptors along with other parameters of interest such as task requirements
are used to decide hand pose and configuration, Grasp Execution where planned grasp is realized and success is
monitored based on sensory data.

2 Survey of the Field and Progress Beyond the State of the
Art

Grasping is a key building block of autonomous robots and as a result it has received much
attention in the last three decades6, 7, 8, 9,.10 Different approaches have been studied, e.g., ana-
lytic11, 12 and data-driven13, 14,.15 Morevoer, different subproblems have been addressed, e.g.,
grasp planning ,16 force control ,17 stability estimation from sensory data after grasp execution18

or grasp adaptation .19 However, current robotic systems still have severe limitations in terms
of dealing with novelty, uncertainty and unforeseen situations. Limitations arise from multiple
sources: noisy and incomplete perceptual data, insufficient experience and high dimensionality
of the problem involving variables with complex relations.

6V.-D. Nguyen. “Constructing force-closure grasps”. In: IEEE Int. Conf. Robotics and Automation (ICRA).
vol. 3. Apr. 1986, pp. 1368–1373.

7C. Ferrari and J. Canny. “Planning Optimal Grasps”. In: IEEE Int. Conf. on Robotics and Automation. Vol. 3.
1992, pp. 2290–2295.

8A. Bicchi and V. Kumar. “Robotic Grasping and Contact: A Review.” In: IEEE Int. Conf. on Robotics and
Automation. 2000, pp. 348–353.

9A. Sahbani, S. El-Khoury, and P. Bidaud. “An overview of 3D object grasp synthesis algorithms”. In: Robotics
and Autonomous Systems 60.3 (2012), pp. 326–336.

10J. Bohg et al. “Data-Driven Grasp Synthesis – A Survey”. In: Robotics, IEEE Transactions on 30.2 (Apr. 2014),
pp. 289–309.

11K.B. Shimoga. “Robot grasp synthesis algorithms: A survey”. In: The Int. Journal of Robotics Research 15.3
(1996), p. 230.

12Bicchi and Kumar, “Robotic grasping and contact: a review”.
13Saxena, Driemeyer, and Ng, “Robotic Grasping of Novel Objects using Vision”.
14L. Montesano and M. Lopes. “Learning Grasping Affordances from Local Visual Descriptors”. In: IEEE Int.

Conf. on Development and Learning. 2009.
15Bohg et al., “Data-Driven Grasp Synthesis – A Survey”.
16T. Asfour M. Przybylski and R. Dillmann. “Planning Grasps for Robotic Hands using a Novel Object Repre-

sentation based on the Medial Axis Transform”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2011, pp. 1781–1788.

17Romano et al., “Human-inspired robotic grasp control with tactile sensing”.
18Y. Bekiroglu, R. Detry, and D. Kragic. “Learning tactile characterizations of object- and pose-specific grasps”.

In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. 2011, pp. 1554–1560.
19E. L. Sauser et al. “Iterative learning of grasp adaptation through human corrections”. In: Robotics and Au-

tonomous Systems 60.1 (Jan. 2012), pp. 55–71.
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Vision is one of the modalities which contribute substantially to grasp control and stability
.20 Touch is another one, as supported by numerous studies which show the influence of tactile
feedback on different grasp sub-processes21,.22

In robotics, vision-driven grasping and manipulation have been extensively studied .23 Vision
has typically been used to plan grasping actions, and to update action parameters as objects move
to compensate for manipulator positioning inaccuracies and sensor noise. However, most vision
based approaches have been used only for objects known to the robot prior to task execution,
since they commonly need a desired pose with respect to the object to be defined beforehand,
which is not easy for unknown objects. Touch-based grasp controllers have also been studied,
with emphasis on designing programs for controlling finger forces to avoid slippage and to pre-
vent crushing objects .24

Various approaches for avoiding or recovering unsuitable or potentially failing grasps have
been proposed in the literature. An example is to correct grasps by adapting to local geometry
using the force-closure criterion.25 Contact positions are transferred between objects of the same
functional class by surface geometry warping. Grasps are adapted by moving finger contacts onto
the object’s surface to reach force-closure, or reject the grasp. Compared to our work, this system
does not integrate experience from training data or feedback from grasp execution. Another way
is to include an off-line training phase based on examples demonstrated by a teacher26, 27,.28 The
teacher shows the robot a set of grasps, and the robot autonomously explores more grasps in the
neighborhood of those demonstrated by the teacher. The learning process is thus data-driven,
based on self-exploration without human intervention. Grasp corrections can be synthesized
by matching to a database of stable grasps based on similarity in tactile measurements.29 If a
match similar enough to the current tactile measurements is found in the database, the current
grasp was adjusted accordingly. An unsuccessful look-up initiates tactile-based reconstruction
of local surface geometry and re-planning to adapt the grasps to the actual local object shape.
The assumption is that the recorded stable grasp that resulted in the most similar tactile reading
is the best correction of the current grasp. As a statistical modeling of grasp correction is not
employed, novel grasps cannot be synthesised due to lacking a continuous mapping within a
probabilistic framework. Another method for grasp adaptation is to learn a statistical model
to adapt the hand posture based on perceived contacts.30 Kinesthetic demonstration learning is
used to train a Gaussian mixture model (GMM) for prediction of desired joint values and finger
pressure from contact signatures. For this a human teacher improves robot grasps while the robot

20R.S. Woodworth. “The accuracy of voluntary movement”. In: The Journal of Nervous and Mental Disease
26.12 (1899), p. 743.

21R Johansson and G. Westling. “Roles of glabrous skin receptors and sensorimotor memory in automatic control
of precision grip when lifting rougher or more slippery objects”. In: Experimental Brain Research 56.3 (1984),
pp. 550–564.

22R. Johansson. “Sensory input and control of grip”. In: Novartis Foundation Symposium. 1998, pp. 45–59.
23Danica Kragic, Andrew T. Miller, and Peter K. Allen. “Real-time Tracking Meets Online Grasp Planning”. In:

IEEE International Conference on Robotics and Automation. 2001, pp. 2460–2465.
24Romano et al., “Human-inspired robotic grasp control with tactile sensing”.
25U. Hillenbrand and M.A. Roa. “Transferring functional grasps through contact warping and local replanning”.

In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. 2012, pp. 2963–2970.
26J. Tegin et al. “Experience based Learning and Control of Robotic Grasping”. In: 2006 IEEE-RAS Workshop

on Towards Cognitive Humanoid Robots. 2006.
27J. Tegin et al. “Demonstration-based learning and control for automatic grasping”. In: Intelligent Service

Robotics 2.1 (2009), pp. 23–30.
28Sauser et al., “Iterative learning of grasp adaptation through human corrections”.
29P.K. Allen and P. Michelman. “Acquisition and interpretation of 3-D sensor data from touch”. In: Robotics and

Automation, IEEE Transactions on 6.4 (Aug), pp. 397–404.
30Sauser et al., “Iterative learning of grasp adaptation through human corrections”.
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generates a database of poses and contacts. Examples of failed grasps are not explicitly included.
It has been shown that learning how to grasp from grasping examples is viable. A Bayesian

approach has been proposed to learn local visual descriptors of good grasping points from im-
ages based on a set of trials performed by a robot.31 Grasp densities defined on the space of
6D object-relative gripper poses has been learned from experience with an importance-sampling
algorithm.32 It has also been showed that task parameters can be included in the learning pro-
cess, e.g., learning that grasping from the top of an object is not good for pouring task.33 GMM
models have been learned from grasping examples generated offline in simulation for a given
object.34 Compared to these approaches, this study focuses on modelling uncertainty for predic-
tions and learning from both successful and failed grasp examples capturing common properties
and relations between them.

Learning models of grasping-related parameters has also been targeted.35 Generative mod-
els have been trained allowing for inference of any variables involved in the learning problem.
However, compared to our approach the differences are that, in those approaches a large set of
training data is needed to learn the parameters of the model, learning explicitly from negative
examples is not addressed and an independent preprocessing step with variable selection, which
is not inferred from data, or dimensionality reduction, which changes the data space possibly
leading to a loss of information, is needed.

Progress beyond the state of the art:
Problems such as selecting the relevant information from the environment, merging different

sources of information to reduce uncertainty and, making use of experience (even from failures)
by relating sensor data to previous knowledge remain open. There is no system addressing all
these problems in a principled manner in one framework. These three aspects of reasoning will
be addressed based on a probabilistic learning approach in this project. In our approach, we will
show that learning can be achieved with smaller amount of training data, we make use of failed
grasps during training, and we use a latent space which acts as a feature extractor, an automatic
view consolidation and an intermediate low dimensional space for regression. In addition, within
the same model feature selection is performed which allows for testing the influence of different
grasp-related parameters without deterioration in learning performance and also confidence in
predictions can be provided.

3 Project Description: Workplan and Milestones
In this project, we will address problems related to three steps of the grasping process. Firstly,

we will perform segmentation of the given scene and extract object models based on sensory
measurements. Based on these models we will construct grasp hypotheses to achieve a given
task. As a final step of the grasping system, we will study how to evaluate achieved grasps based
on sensory data and trigger plan corrections if needed. In all these steps, we will follow an
exploration based learning strategy.

Grasp Hypotheses Generation (month 12): In order to learn an empirical representation
of stable and unstable grasps, the robot will explore objects and execute grasps planned based
on their models. This way it is possible to learn which configurations lead to successful task

31Montesano and Lopes, “Learning Grasping Affordances from Local Visual Descriptors”.
32R. Detry et al. “Refining Grasp Affordance Models by Experience”. In: IEEE Int. Conf. on Robotics and

Automation (ICRA). 2010, pp. 2287–2293.
33D. Song et al. “Learning Task Constraints for Robot Grasping using Graphical Models”. In: IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems. 2010.
34B. Huang et al. “Learning a real time grasping strategy”. In: Robotics and Automation (ICRA), 2013 IEEE

International Conference on. May 2013, pp. 593–600.
35Song et al., “Learning Task Constraints for Robot Grasping using Graphical Models”.
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completion so that later it can plan suitable grasps. The robot will execute multiple grasps in
a region of objects. The aim is to make experiments feasible and also let the robot learn the
relations between perceptions and the stability outcomes in a region of an object. The sensor
signals issued during the execution of grasps, either suggested by a human or generated from
low-level visual descriptors, will be observed with the aim of learning what it feels like to grasp
an object from a specific side, and learn which grasping configurations lead to a stable grasp.
This is important because on real platforms it cannot be guaranteed that the robot will always
be able to grasp an object exactly at the same place. We would like to allow part-based grasps
which are important for task-oriented grasping. Different tasks may require different parts of the
objects to be grasped. Example task, object and grasp requirements can be seen in Fig. 2.

Measure of Success: The first stage scenario will involve demonstration of a robot that can use
visual data extracted from a given scene and be able to generate reachable grasps on different
parts of the objects.

Learning from Experience (month 30): We will look at using object segmentation that will
identify different parts of the object, e.g., handle, container. This way, we can associate task
requirements with object parts, e.g., grasping an object from its handle for a certain task.

We will study modeling techniques to encode high-level task knowledge from humans and
low-level planning to meet the task and stability requirements. We will develop a probabilis-
tic model for joint representation of several sensory modalities and action parameters for goal-
oriented grasping. The model will allow us to answer different grasping-related questions within
the same framework. We will initially use a latent variable model referred to as Manifold Rel-
evance Determination (MRD)36 that learns a structured representation of all available sensor
modalities, and of robot action parameters, and extend the approach later for online learning
(Figure 3). We will study the effects of different parameters in terms of generalization properties
and choose the most efficient ones leading to best results, e.g., how the object shape should be
represented taking segmented parts into consideration.

We will focus on multiple sensor modalities, aiming to automatically learn which modalities
contain information that correlates with another modality or with action parameters, and how to
learn the structure of these relationships. The model will provide a conditional structure which
allows for feature selection and merging. The structure of the model will be learned from data
which means that it encodes previous knowledge. We will compare this model with a more
traditional discriminative approach which does not address selecting the relevant information
from the environment, merging different sources of information to reduce uncertainty or, making
use of experience by relating sensor data to previous knowledge. The MRD model will learn
a single latent representation consolidating several observation modalities or views through the
use of Gaussian process priors. Views and modalities will be general vector valued observations
and in our specific application, firstly, they will consist of the hand pose and the tactile sensing
for both the successful and the unsuccessful grasp, the object orientation and the object type,
resulting in six different views in total. Measure of Success: The second stage scenario will
demonstrate that the robot can choose the right objects and suitable grasps for the task.

Grasp Success Monitoring and Correction (month 48): We will focus on how perceptual
feedback (e.g., visual and tactile and proprioceptive) available to a robot, before attempting to
manipulate an object, can be utilized to predict grasp stability during grasp execution. This
enables a robot to be aware of the outcome of its grasping action and allows it to trigger plan
corrections. We will demonstrate the applicability of the trained models to correcting unstable
grasps, when a grasp is estimated to lead to a failure based on the available sensory data after

36Andreas C Damianou et al. “Manifold Relevance Determination”. In: International Conference on Machine
Learning. June 2012, pp. 145–152.
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Figure 2: Task-oriented grasping: Task-constrained grasp examples using different hand models on the left and
example task requirements on objects and grasps.

Figure 3: The system overview: Our approach involves exploration, training and inference steps in order to answer
grasp-related questions. During grasping trials, the robot gathers visual and tactile observations as well as success
outcomes of each grasp, i.e., whether or not lifting leads to slippage or rotation. The extracted data from these
observations are used to train MRD models and obtain model parameters,φ. These MRD models are then used to
infer grasp parameters, G, given a set of observations, O, based on the obtained models with the aim of using those
parameters for grasping and potentially plan corrections.

grasp execution before lifting. Our approach will learn associations between stable and unstable
grasps that the robot experienced during the exploration phase. During inference our models
will produce stable grasps that reflect the characteristics of the unstable grasps. We will use a
Gaussian process prior to model a functional relationship between unstable and stable grasps.
The model will also be able to handle scenarios where an unstable grasp can be corrected in
several different ways due to its multi-modal structure. This is not possible in a regression model
which is unimodal and will model the response by the mean of the stable grasps for which there
is no guarantee that it will be stable.

Measure of Success: The third stage scenario will demonstrate that the robot can estimate if
the grasp it executed is likely to lead to a failure (e.g., prediction of success given grasp config-
uration and obtained tactile readings) and apply corrections (e.g., synthesize a grasp configura-
tion that is likely to lead to success, given the current grasp configuration and object features).

4 Significance
To our best knowledge, very few works have engaged in developing a comprehensive embodied-

cognitive system for object grasping and manipulation in real-world settings. In such situations,
robots need to engage in a large collection of sensorimotor modalities such as visual recognition
of objects and actions, visuomotor transformations for grasp planning, and low-level sensorimo-
tor coordination for stable, robust grasping and manipulation under any task requirements. Our
proposed work is dedicated to constructing such a comprehensive system. We will show how
sensory information, e.g., visual and tactile, can be used to extract object attributes, how these
attributes will be used for grasp planning under the guidance of high-level task requirements,
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and when combined with haptic (tactile) cues, how the grasp execution can be adapted on-line to
enable successful, goal-oriented object manipulation to assist the human users in their everyday
lives. We believe, the proposed research in task-oriented grasp planning, execution and grasp
adaptation will pave an important pathway towards the development of autonomous artificial
agents that can interact with their environments.

5 Preliminary Results
Regarding the first part of the project, we have previously studied how to generate37 and

transfer38 grasps between objects given 3D data, how to explore a given scene to understand
if there are one or multiple objects39 and construct approximate object models40 from visual
and tactile measurements. In this part of the project we will build upon the experiences gained
through these works and prepare the tools to obtain suitable data to learn how to grasp from
sensory data.

We presented preliminary results regarding grasp success evaluation41, 42, 43 where we had
constrained settings with limited grasp configurations on a limited set of objects. We will extend
that method to deal with more objects, more variant grasping configurations. We will study
learning models that characterize only a part of an object which would be applicable to novel
objects that share the same part.

We proposed a probabilistic framework44 for grasp modeling and stability assessment. The
framework facilitated assessment of grasp success in a goal-oriented way, taking into account
both geometric constraints for task affordances and stability requirements specific for a task.
We integrated high-level task information introduced by a teacher in a supervised setting with
low-level stability requirements acquired through a robot’s self-exploration. The conditional
relations between tasks and multiple sensory streams (vision, proprioception and tactile) were
modeled using Bayesian networks. In that we assumed that object models and the class they
belong to were given. A human teacher was labelling each grasp hypothesis as being suitable for
the defined tasks. This inspection was being done by checking the geometry of the grasps, i.e.,
visually. Then, the robot was exploring each grasp hypothesis by executing the tasks to further
eliminate unsuitable hypothesis.

The trained models were generative allowing for inference of any variables involved in the

37Yasemin Bekiroglu, K. Huebner, and D. Kragic. “Integrating grasp planning with online stability assessment
using tactile sensing”. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on. May 2011,
pp. 4750–4755.

38F.T. Pokorny, Y. Bekiroglu, and D. Kragic. “Grasp moduli spaces and spherical harmonics”. In: Robotics and
Automation (ICRA), 2014 IEEE International Conference on. May 2014, pp. 389–396.

39Marten Bjorkman and Yasemin Bekiroglu. “Learning to disambiguate object hypotheses through self-
exploration”. In: Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International Conference on. Nov. 2014,
pp. 560–565.

40M. Bjorkman et al. “Enhancing visual perception of shape through tactile glances”. In: Intelligent Robots
and Systems (IROS), 2013 IEEE/RSJ International Conference on. Nov. 2013, (CoTeSys Cognitive Robotics Best
Paper Award Finalist), pp. 3180–3186.

41Yasemin Bekiroglu et al. “Assessing Grasp Stability Based on Learning and Haptic Data”. In: Robotics, IEEE
Transactions on 27.3 (June 2011), pp. 616–629.

42Yasemin Bekiroglu, D. Kragic, and V. Kyrki. “Learning grasp stability based on tactile data and HMMs”. In:
RO-MAN, 2010 IEEE. Sept. 2010, pp. 132–137.

43Yasemin Bekiroglu, R. Detry, and D. Kragic. “Learning tactile characterizations of object- and pose-specific
grasps”. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. Sept. 2011,
pp. 1554–1560.

44Y. Bekiroglu et al. “A probabilistic framework for task-oriented grasp stability assessment”. In: Robotics and
Automation (ICRA), 2013 IEEE International Conference on. May 2013, (Best Manipulation Paper Award),
pp. 3040–3047.
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learning problem. We will build upon that work and extend it so that: we can learn from limited
data, learn both from successful and unsuccessful examples, test the influence of different grasp-
related parameters without deterioration in learning performance, perform grasp correction based
on experience, provide confidence in estimates, involve object features obtained from segmented
parts to associate them with task parameters and to deal with novel objects.

We have tested an initial implementation of the proposed system45 regarding encoding grasp-
ing knowledge from sensory data and have submitted a journal paper based on the findings. We
have shown that the chosen visual and tactile parameters can be successfully learned and ob-
tained models can be used for goals such as correcting grasps given object type and failing grasp
configurations (Figure 4). Other goals such as predicting expected tactile readings given grasp
configuration, or object recognition given tactile readings could also be achieved.

The initial results are promising, however further evaluations on different objects of varying
shapes and sizes and also tasks need to be performed. This requires involving more task parame-
ters and object related paramaters encoding object shape. Regarding grasp correction/adaptation
strategies, we have also studied different approaches46, 47 and plan to investigate the feasibility
of merging crucial findings from those with the current research.

Figure 4: An application of our MRD model: Our method enables inference of better grasping poses (right) given
that the current pose (left) is predicted to lead to failure (rotation during lifting).

6 Independent line of research
In this project, a novel scientific area will be explored by the PI independently and a new

approach that no other researcher in CVAP is addressing will be followed. This work is sub-
stantially different from the PI’s previous research. This project will enable the PI to conduct
research by supervising more closely a PhD student and explore the proposed methodology in
depth independently from her main supervisor. This project relates to the other projects in the
group as it will provide important tools to support systems with manipulation needs. The re-
search findings in this project will be complementary to the ongoing project that finances the PI’s
postdoctoral research currently.

7 Form of employment
The PI will be employed for four years as a researcher. It is also planned that one doctoral

student will be funded through this project who will also take part in another project in CVAP.
This way the student will be able to collaborate with other researchers and gain more experience.

45Yasemin Bekiroglu et al. “Probabilistic Consolidation of Grasp Experience”. In: The International Journal of
Robotics Research, under review ().

46Kaiyu Hang et al. “Hierarchical Fingertip Space for Synthesizing Adaptable Fingertip Grasps”. In: IEEE Inter-
national Conference on Robotics and Automation, ICRA 2014 Workshop: Autonomous Grasping and Manipulation:
An Open Challenge. 2014.

47Miao Li et al. “Learning of grasp adaptation through experience and tactile sensing”. In: Intelligent Robots and
Systems (IROS 2014), 2014 IEEE/RSJ International Conference on. Sept. 2014, pp. 3339–3346.
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Figure 5: Robots PR2, Kuka arm and Schunk Hand, the dual arm platform with the two-finger gripper and the
Robotiq hand.

The student will have background in: machine learning and robotics, will be involved in all
stages of the project and will work closely with the PI. There are several ongoing projects in
CVAP and the student will benefit from the direct interaction with these. The PI also plans to
invest a significant amount of her research time on the project.

8 International and national collaboration
Currently the PI is involved in the EU project RoboHow with the vision of a cognitive robot

that autonomously performs complex everyday manipulation tasks and extends its repertoire
of such by acquiring new skills using web-enabled and experience-based learning as well as
by observing humans. Collaboration with the RoboHow project can lead to efficient progress
as RoboHow focuses on comprehensive knowledge-enabled robot control models for complex
manipulation tasks. During the project, it is also planned to visit several research laboratories
where similar goals are pursued and the PI is already in contact with, Robot Learning Group
at Max-Planck Institute for Intelligent Systems in Germany, Learning Algorithms and Systems
Laboratory at EPFL in Switzerland.

9 Equipment
There are several state-of-the-art robot equipments in CVAP, Fig. 9: a mobile dual arm robot

with 7 DOF Schunk arms, ATI Mini45 6DOF force/torque sensors at the wrists, a two-finger
gripper and a three-finger Robotiq hand with self-adaptive fingers; a 6 DOF industrial KUKA
arm with a three-finger 7 DOF Schunk hand; and a PR2 which is a mobile humanoid robot with
two backdrivable arms, two-finger grippers, stereo head cameras and fore-arm cameras. In those
setups, there are also calibrated Kinect cameras that deliver RGBD Images, i.e., a combination of
three color channels (red, green and blue) and another for the depth data. As for the touch sensors,
the Schunk hand is equipped with six pressure-sensitive tactile array sensors, the PR2 has similar
pressure sensors with lower resolution on its grippers and there are three BioTac sensors attached
to the Robotiq hand. Among these, the BioTac sensors provide the richest information. They are
capable of detecting the full range of sensory information that human fingers can detect: forces,
microvibrations, and thermal gradients.
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Curriculum Vitae-Yasemin Bekiroglu
1. Higher Education Qualifications

– Ph.D., November 2012, Computer Science, Royal Institute of Technology KTH, Sweden
– M.S., 2008, Applied Artificial Intelligence, Dalarna University, Sweden, Non-Stationary

Feature Extraction Techniques for Automatic Classification of Impact Acoustic Signals
– M.S., 2007, Computer Engineering, Karadeniz Technical University, Turkey, Evaluation

of Similarity Between Human Faces with Principal Component Analysis
– B.S., 2005, Computer Engineering, Karadeniz Technical University, Turkey

2004-2005, Computer Science, Erasmus Student, Roskilde University, Denmark
2. Doctoral Degree

– 2012, November, Computer Science, KTH, Sweden, Thesis: Learning to Assess Grasp
Stability from Vision, Touch and Proprioception, Supervisor: Prof. Danica Kragic

3. Postdoctoral Position
– 2012, December - Present Computer Science., Computational Vision and Active Percep-

tion Lab (CVAP/CAS), KTH, Sweden,
4. Qualification required for appointments as a docent

– The applicant plans to file the application during 2016
5. Current Position

– Postdoctoral Researcher, CVAP/CAS, KTH, Full-time research (100%) on grasping and
manipulation, computer vision and machine learning, December 2012 - Present

6. Previous Positions and Periods of Appointment
– Ph.D. Student, KTH, CVAP/CAS, Sweden, September 2008-November 2012
– Research Assistant, Karadeniz Technical University, Department of Computer Enginee-

ring, Turkey, September 2005-August 2008
7. Interruption in research

– None
8. Supervision

– None in the capacity of main supervisor, but co-supervising 3 PhD students:
– Kaiyu Hang, Ph.D. studies on grasping and manipulation
– Puren Guler, Ph.D. studies on tracking deformable objects
– Johannes Stork, Ph.D. studies on in-hand manipulation

9. Other Merits of Relevance to the Application:
Project Involvement

– RoboHow.Cog Web-enabled and experience-based cognitive robots (FP7-ICT-288533),
2012-Present

– eSMCs: Extending Sensorimotor Contingencies to Cognition (FP7-IST-270212), 2012-
2014

– CogX: Cognitive Systems that Self-Understand and Self-Extend (FP7-ICT-215181), 2008-
2012

Awards and Scholarships
– KTH Innovation Competition 2014 Prototyping and user testing
– IEEE/RSJ IEEE/RSJ International Conference on Intelligent Robots and Systems IROS

CoTeSys Cognitive Robotics Best Paper Award Finalist Tokyo, Japan, 2014
– Best Manipulation Paper Award, IEEE International Conference on Robotics and Auto-

mation (ICRA) ICRA, Karlsruhe, Germany, 2013
– Best presentation among PhD students at CogX project, 2011
– Scholarship by The Scientific and Technological Research Council of Turkey, 2005-2007
– Erasmus Scholarship for Exchange Studies, 2004-2005
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Teaching
– Supervision, KTH, 2010 - Present

Judith Butepage, intern on grasping and manipulation, ongoing, main supervision
Francisco Vina, Ph.D. studies on grasping and manipulation, co-supervision, 2012-2014
Johannes Exner, intern on shape modeling, main supervision, 2014
Mateusz Herczka, intern on robotic software, main supervision, 2014
Lu Wang, “Learning Task-Based Robotic Grasping, with Vision, Haptics and Propriocep-
tion”, M.S., 2012, co-supervision
Claudio Giovanoli, “Potential Field Based Tactile Exploration”, M.S., 2011
Maren Leithe, “Use of tactile sensors for object modelling”, Intern, 2010
Anaı̈s Peyrucq, “Learning grasp stability based on tactile data”, Intern, 2010

– Lecturer, KTH, 2014-2015: Scientific Programming
– Lab examiner, KTH, 2014: Image Analysis and Computer Vision
– Teaching Assistant, KTH, 2012: Image Analysis and Computer Vision; Karadeniz Tech-

nical University 2005-2007: Microprocessors, Computer Systems, Data Structures, Arti-
ficial Intelligence

Journal and Conference Reviewer
– Member of the Program Committee of the International Conference on Computer Vision

Systems (ICVS) 2015, reviewer for Advanced Robotics 2015, International Conference
on Advanced Robotics (ICAR) 2015, IEEE-RAS International Conference on Humanoid
Robots (Humanoids) 2014, IEEE Transactions on Robotics 2014 - current, Journal of
Intelligent and Robotic Systems 2013 - current, IEEE Transactions on Haptics 2013 -
current, IEEE IROS 2011 - current, IEEE ICRA 2009 - current

Research Visits
– University of Bremen, May, 2013, building a ROS package for grasp stability assessment
– University of Bremen, March, 2014, integrating the package with CRAM, a Cognitive

Robot Abstract Machine
Conference Talks

– Humanoids 2014, IROS 2014, ICRA 2014, ICRA 2013, IROS 2012, IROS 2011, ICRA
2011, Ro-Man 2010, Workshop organizer at 2015 Robotics: Science and Systems (RSS)

International Co-authors in Publications
– Prof. Ville Kyrki, Aalto University; Dr. Renaud Detry, University of Liége; Prof. Au-

de Billard, École Polytechnique Fédérale De Lausanne; Miao Li École Polytechnique
Fédérale De Lausanne;Dr. Jimmy Alison Jørgensen, University of Southern Denmark;
Dr. Florian T. Pokorny UC Berkeley

Journal Publications in Preparation and Submission
– Bekiroglu, Y., Detry, R., Ek., C. H. (2015), Learning grasp stability from vision and touch,

to be submitted to IEEE Robotics and Automation Magazine.
– Bekiroglu, Y., Exner, J., Bjorkman, M. (2015), Object Shape from Vision and Touch, to

be submitted to IEEE Transactions on Haptics, Special Issue on Active Touch Sensing in
Robots, Humans and Other Animals.

– Bekiroglu, Y., Detry, R., Damianou, A., Stork, J. A., Ek, C.H. (2015), Probabilistic Con-
solidation of Grasp Experience, International Journal of Robotics Research under review.

– Bekiroglu, Y., Pokorny, F. T., Pauwels, K. (2015), A collaborative grasping and manipu-
lation database, to be submitted to International Journal of Robotics Research.
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Publication List – Yasemin Bekiroglu

1 Peer-reviewed Original Articles
(*) Bekiroglu, Y., Laaksonen, J., Jørgensen, J. A., Kyrki, V. & Kragic, D. (2011), Assess-

ing grasp stability based on learning and haptic data. IEEE Transactions on Robotics,
Vol.27, No.3, 616–629, (Impact Factor: 2.649), [47].

2 Peer-reviewed Conference Papers
Stork, J. A., Ek, C. H., Bekiroglu, Y., & Kragic, D., Learning Predictive State Representation

for In-Hand Manipulation. IEEE International Conference on Robotics and Automation
(ICRA), 2015, Seattle, Washington, USA, accepted.

Bjorkman, M., Bekiroglu, Y., & Kragic, D., Learning to Disambiguate Object Hypotheses
through Self-Exploration. IEEE-RAS International Conference on Humanoids Robots
(HUMANOIDS), 2014, Madrid, Spain.

Guler, P., Bekiroglu, Y., Gratal, X., Pauwels, K., & Kragic, D., What is in the Container?
Classifying Object Contents from Vision and Touch. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2014, Chicago, USA, [2].

(*) Li, M., Bekiroglu, Y., Kragic, D., and Billard, A., Learning of Grasp Adaptation through
Experience and Tactile Sensing. IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2014, Chicago, USA, [1].

Pokorny, F. T., Bekiroglu, Y., Bjorkman, M., Exner, J., and Kragic, D., Grasp Moduli Spaces,
Gaussian Processes and Multimodal Sensor Data. RSS 2014 Workshop: Information-
based Grasp and Manipulation Planning, Berkeley, USA.

Hang, K., Li, M., Stork, J. A., Bekiroglu, Y., Billard, A., and Kragic, D., Hierarchical Fin-
gertip Space for Synthesizing Adaptable Fingertip Grasps. ICRA 2014 Workshop: Au-
tonomous Grasping and Manipulation: An Open Challenge, Hong Kong, China.

Pokorny, F. T., Bekiroglu, Y., & Kragic, D., Grasp Moduli Spaces and Spherical Harmonics.
IEEE International Conference on Robotics and Automation (ICRA), 2014, Hong Kong,
China, [1].

Vina, F., Bekiroglu, Y., Smith, C., Karayiannidis, Y. & Kragic, D., Predicting Slippage and
Learning Manipulation Affordances through Gaussian Process Regression. IEEE-RAS
International Conference on Humanoid Robots (Humanoids), 2013.

Bjorkman, M., Bekiroglu, Y., Hogman, V., Kragic & D., Enhancing Visual Perception of
Shape through Tactile Glances. IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2013, IROS CoTeSys Cognitive Robotics Best Paper Award Fi-
nalist, [4].

(*) Bekiroglu, Y., Song, D., Wang, L., & Kragic, D., A Probabilistic Framework for Task-
Oriented Grasp Stability Assessment. IEEE International Conference on Robotics and
Automation (ICRA), 2013, Best Manipulation Paper Award, [9].
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(*) Bekiroglu, Y., Detry, R., & Kragic, D., Learning Tactile Characterizations of Object-
And Pose-specific Grasps. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2011, [14].

(*) Bekiroglu, Y., Hübner, K., & Kragic, D., Integrating Grasp Planning with Online Stabil-
ity Assessment using Tactile Sensing. IEEE International Conference on Robotics and
Automation (ICRA), 2011, [14].

Bekiroglu, Y., Kyrki, V., & Kragic, D., Learning grasp stability with tactile data and HMMs.
IEEE International Symposium on Robot and Human Interactive Communication (RO-
MAN), 2010, [11].

Bekiroglu, Y., Detry, R., & Kragic, D., Grasp Stability from Vision and Touch. IEEE IROS
2012 Workshop: Advances in Tactile Sensing and Touch-based Human-Robot Interaction,
[2].

Bekiroglu, Y., Song, D., Wang, L. & Kragic, D., Learning Task- and Touch-based Grasping,
IEEE IROS 2012 Workshop: Beyond Robot Grasping - Modern Approaches for Dynamic
Manipulation.

Bekiroglu, Y., Detry, R. & Kragic, D., Joint Observation of Object Pose and Tactile Imprints
for Online Grasp Stability Assessment, IEEE ICRA 2011 workshop: Manipulation Under
Uncertainty, [2].

Bekiroglu, Y., Laaksonen, J., Jørgensen, J. A., Kyrki, V. & Kragic, D., Learning grasp stability
based on haptic data, Robotics: Science and Systems (RSS) 2010 workshop: Representa-
tions for object grasping and manipulation in single and dual arm tasks, [11].

3 Monographs
Bekiroglu, Y., Learning to Assess Grasp Stability from Vision, Touch and Proprioception,

2012, PhD Thesis, ISBN 978-91-7501-522-4.

Bekiroglu, Y., Elementary grasping actions for grasping polyflaps, 2009, technical report,
Skolan för datavetenskap och kommunikation, Kungliga Tekniska högskolan, TRITA-
CSC-CV, 1653-6622 ; 2009:4, Stockholm.

4 Research Review Articles
None

5 Books and Book Chapters
None

6 Patents
None
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7 Open Access Databases
Real and simulated tactile data from grasping experiments with the Schunk Dexterous hand,

url: http://www.csc.kth.se/˜yaseminb/

8 Popular Science Articles/Presentations
None

Summary
The conferences listed are the leading international conferences in the robotics field. IEEE

Transactions on Robotics is with the impact factor 2.649 and the rank: 1/21-Q1 in 2013. The
five publications that are the most relevant to the project are marked with an asterisk (*). The
number of citations is indicated at the end of the references. Citation statistics is provided from
Google Scholar on the 30th of March 2015. The total number of citations and the h-index are
118 and 6 respectively.
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