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Project title (Swedish)*
Dataomvandling i tidsdomän

Project title (English)*
Data conversion in time-domain

Abstract (English)*
We aim at finding methods and principles of designing analog-to-digital and time-to-digital converters in deep-submicron 
technologies. The focus is on developing time-domain signal processing implemented with only switches to maximize the 
advantage of available fast and inaccurate components. Time-domain processing utilizes parameters like delay, frequency, 
and phase instead of traditional voltage or current for signal representation. Our goal is to attain converters that have 
much shorter design time, are portable across different technologies, and are well adapted to support and being supported 
by digital signal processing hardware. Application area is low-power wireless communication systems. Test chips will be 
manufactured to show the feasibility of developed theory, proposed models and methods through measurement. Target 
performance is same as the state of conventional analog design. A major benefit of the proposed approach is that most 
future technologies, including beyond currently planned CMOS technology nodes, will be able to accommodate high 
performance converters in close proximity to the vast digital signal processing being offered. Time-domain converters are 
further expected to have improved time resolution as the technology scales down, while becoming more area and power 
efficient. This is in contrast with conventional analog design that relies on high-accuracy components unavailable in small 
scale. In all, we find all-digital time-domain data converter architectures to be very promising for future signal processing.

Popular scientific description (Swedish)*
Dataomvandlare är nödvändiga byggstenar i nästan all elektronik. De används för att översätta signaler som ljud, ljus och 
radio till digitala signaler som kan behandlas av datorer. I detta projekt forskar vi på nya typer av omvandlare som kan 
uppnå mycket höga prestanda utan att komponenter med hög precision krävs. Det låga kravet på precision gör att 
konverterarna blir fördelaktiga att använda i de senaste datorkretsarna och annan elektronik eftersom dessa konstrueras 
med materialskikt som närmar sig några få atomlagers tjocklek. Då skikt inte går att plana ut under atomnivå så går det inte 
heller att konstruera komponenter med högre precision än jämnheten på en atomyta. Med dagens teknik går det dessutom 
inte att tillverka elektroniken så att komponenterna används effektivt om man inte begränsar deras storlek, vilket också 
begränsar precisionen. För att lösa detta problem så tänker vi undvika konventionell databehandling som arbetar med 
strömmar och spänningar och istället använda oss av tidspulser i omvandlingen. Fördelen med detta är att komponenterna 
endast behöver klara av digitala operationer som att slå av och på strömmar, vilket kräver avsevärt lägre precision. På köpet
får man dessutom bra prestanda då tidsupplösningen är mycket god i teknologier med de små avstånd som vi är 
intresserade av. Vårt mål med projektet är därför att finna metoder som möjliggör att de kretsar som är svårast att bygga ska 
kunna ingå i den elektronik som vi alla kommer att använda i framtiden.
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Descriptive data

Project info

Project period

Classifications

2 / 28



SCB-codes* 2. Teknik > 202. Elektroteknik och elektronik > 20205. 
Signalbehandling

2. Teknik > 202. Elektroteknik och elektronik > 20204. 
Telekommunikation

2. Teknik > 202. Elektroteknik och elektronik > 20299. Annan 
elektroteknik och elektronik

Keyword 1*
all-digital

Keyword 2*
signal processing

Keyword 3*
time-domain

Keyword 4
analog-to-digital conversion

Keyword 5
time-to-digital conversion

Select a minimum of one and a maximum of three SCB-codes in order of priority.

Select the SCB-code in three levels and then click the lower plus-button to save your selection.

Enter a minimum of three, and up to five, short keywords that describe your project.

3 / 28



Reporting of ethical considerations*
The increased efficiency of proposed signal processing will extend the possibilities of information technology, which may 
be exploited for malicious purposes. The potential harm is however indirect and of general nature, which we believe is more 
efficiently handled outside a small project like this. Manufacturing of integrated circuits and printed circuit boards involves
many chemical substances that are toxic to the environment. Their disposal must be treated responsibly.
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Data conversion in time-domain 
 

1 Purpose and aims 
Crosstechnology porting of analog intensive data converters is difficult, expensive, and time 
consuming in deep-submicron CMOS technologies. The high accuracy of the components required 
in conventional converter architectures is increasingly more difficult to attain due to reduced 
voltage headroom, reduced intrinsic gain, high levels of noise coupling and a variety of similar 
reasons [1-4]. Digital components do on the other hand benefit from technology scaling, becoming 
smaller, faster and more power efficient, and enable improved time resolution. Hence a promising 
alternative approach to build data converters in future CMOS processes is to use time parameters 
like delay, frequency, phase etc. for signal representation instead of voltage or current. Resulting 
signal processing is called time-domain or time-mode signal processing [5, 6]. A time-domain 
circuit is expected to improve its performance as the technology evolves besides becoming more 
area and power efficient. Resulting signal processing systems can be implemented with digital 
circuits, using synthesis and place-and-route of an available digital design flow, which enables 
better design space exploration compared to a typical full-custom mixed-signal design flow. Hence, 
it is beneficial to consider time-domain data converter architectures to achieve high performance in 
deep-submicron CMOS. 

A major opportunity in designing time-domain circuits is the possibility to select an architecture 
with the transistor acting as a switch, turning current on and off, which is an operation that requires 
significantly less accuracy than obtaining the linear control used in analog circuits. Use of switches 
and hence large signal swing makes the digital circuits less sensitive to noise than the analog, which 
is a major obstacle to manage also for digital due to large complexity and small distances between 
components and connections. Hence it is likely that switches will be preferred in implementation of 
future signal processing. 

This project aims at finding methods and principles of designing data converters in deep-
submicron technologies, employing mainly digital switch transistors. Our goal is to advance the 
performance of time-domain data converters to be on par with traditional analog-intensive, while 
being synthesizable in digital design flows and implementable in deep-submicron processes. Digital 
design in modern CMOS processes is already difficult due to large process variability, and many of 
the conventional analog solutions are almost inconceivable if we are going to exploit the scaling. 

Intended application area is low-power and high-performance converters for wireless 
communications and similar, where we are focusing on analog-to-digital (ADC) and time-to-digital 
converters (TDC). We hope to achieve ADCs and TDCs that are on par with state-of-the-art analog-
intensive techniques. Test chips are designed in deep-submicron CMOS that can be used to validate 
suggested models, methods and techniques through measurement. 

The project is carried out with expertise in switching circuits and substrate noise provided by the 
principal investigator, Prof. Mark Vesterbacka, active in the Division of Integrated Circuits and 
Systems, Department of Electrical Engineering, Linköping University, Sweden. 

2 Survey of the field 
Low-power, high-performance analog-to-digital converters (ADCs) with signal bandwidths up 

to 20 MHz are of interest in wireless communication. Several all-digital ADCs have been reported 
recently, targeting such a specification [7-9]. An ADC based on a voltage controlled oscillator 
(VCO) was demonstrated as early as in 1997 [10], using 1.2 µm CMOS, even though the relative 
benefits of the technique compared to conventional architectures are not prominent at this 
technology node. In a time-domain ADC, the input signal is first converted into a time-represented 
signal like delay, frequency or phase that varies as a function of time. The resulting signal is 
sampled and quantized to generate corresponding digital codes. An architecture that we have 
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recently investigated is the VCO-based ADC, discussed in next subsection, which utilizes a VCO to 
achieve voltage-to-frequency conversion of the input signal. An interesting architecture within this 
area is the use of a VCO-based quantizer as a part of conventional delta-sigma ADC, achieving high 
resolution [11-13]. The possibility of using phase as the output of a VCO-based quantizer, instead 
of frequency, is explored in [13]. An analog delta-sigma pre-modulator is used in front of a VCO-
based ADC in [14] to mitigate the problem of VCO non-linearity. Attempts to surpass the time 
resolution limited by gate delay are made in [15] and in [16] using active and passive phase 
interpolations respectively. The designs in [17] and [18] are mostly digital, while using custom 
circuits in ring oscillator delay cells for improved VCO performance. Work [14] improves linearity 
by introducing a preprocessing stage performing self-oscillating PWM conversion. Other main 
architectures of interest employ a time-to-digital converter (TDC) to convert the time information 
into high-resolution digital [19-21], where [20] also introduces a gated VCO, and [21] combine the 
TDC with a time amplifier. Other recent extensions to the all-digital field are a digital-to-RF 
converter [22] and an analog amplifier constructed with mainly digital components [23]. 

2.1  Operation of all-digital ADCs 
Figure 1 shows a basic VCO-based ADC (a), which is the predominant architecture of all-digital 

ADCs. Such converters can be implemented entirely using digital circuits and can even be 
potentially synthesized from an HDL description. The frequency of the VCO, measured during the 
sampling intervals defined by a clock signal, provides an estimate of the input signal (b). The 
counter counts the rising or falling edges, or both, occurring at the output of an ideal (linear) square 
wave VCO. Counter output is sampled and the first order difference of the resulting sequence 
constitutes the ADC output (c). Two’s complement arithmetic in the counter and the subtractor 
permits modulo-2n operation of the counter, provided the counter does not go more than a full cycle 
within a sampling interval. Besides being scaling friendly and synthesizable, the ADC has several 
attractive properties like first order noise-shaping and inherent anti-aliasing filtering. The operation 
principles are similar to those of a conventional first order ∑∆ ADC, while using frequency for 
signal representation. It inherits most of the benefits of ∑∆ ADCs, while avoiding analog 
components in its structure, making it simple to design and implement. VCO-based ADCs use 
inherent phase quantization of the VCO to quantize the input signal. Using an Nϕ stage multi-phase 
ring oscillator as the VCO, one VCO cycle results in 2Nϕ transitions at the output including rising 
and falling edges, resulting in a phase quantization step size of π/Nϕ radians. One possible way to 
implement the ADC involves continuous-time accumulation of the quantized VCO phase followed 
by a discrete-time differentiation using sampling clock, as shown in the example of Figure 1 (a), 
yielding samples that are proportional to the average frequency of the VCO. 

A model of the VCO-based ADC is shown in Figure 2. The quantized phase φq(t) of the ring 
oscillator is modeled using a quantizer operating on the continuous phase φ(t) of the oscillator. φq(t) 
is then sampled at rate Fs (=1/Ts) yielding φq(kTs). Discrete-time first-order differentiation on 
φq(kTs) yields y(k). Figure 3 illustrates the progression of φ(t) and φq(t) of the VCO. The 
unquantized phase of the VCO at the end of kth sampling interval, φ(kTs) is 

φ kTs( ) = ψ v t( )( )0

kTs∫ dt  (1) 

where ψ(v(t)) = 2π(f0+Koscv(t)) describes the voltage-frequency relationship of an ideal VCO. Phase 
quantization error at the end of the kth sampling interval is φε(kTs) = φ(kTs)–φq(kTs). The output of 
the ADC can be expressed as 

y k( ) =
N

φ

π
φq kTs( )−φq k –1( )Ts( )⎡
⎣

⎤
⎦=

N
φ

π
Δφ kTs( )−Δφε kTs( )⎡
⎣

⎤
⎦  (2) 

where ∆ is the discrete-time backward difference operation ∆x(n) = x(n)–x(n–1).  
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   (a)            (b) 

 

(c) 

Figure 1. (a) Basic VCO-based ADC with (b) voltage-frequency characteristics, and 
(c) illustration of the signal processing occurring in the different nodes. 

 

Figure 2. Model of a VCO-based ADC. 
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Figure 3. Progression of φ(t) and φq(t) of the VCO. 

Equation (2) becomes 

Y s( ) =
N

φ

π
1− z−1( )

Ψ s( )
s

−Φ
ε

s( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 (3) 

in frequency domain, where z = esTs. The noise transfer function (NTF) and the signal transfer 
function (STF) are obtained as  

NTF =
Y s( )
Φ

ε
s( )

Ψ s( )=0

= −
N

φ

π
1− z−1( )  (4) 

STF =
Y s( )
Ψ s( )

Φε s( )=0

=
N

φ

π
1− z−1( )1s  (5) 

From (4) it can be seen that the phase quantization noise is first-order shaped. Noise shaping 
results from the memory of the VCO, which stores and subtracts the residual phase quantization 
error of one sampling interval from the next. The noise shaping may be exploited by operating the 
ADC in oversampled mode followed by decimation filtering, improving the resolution over Nyquist 
mode operation. Another important property hinted by (5) is that the post-quantization periodic 
continuous-time sampling involves signal integration within sampling intervals, resulting in 
inherent low pass filtering of the input. Applying (1) in (2) and setting the input to a sinusoid 
v(t) = Aincos(ωint), we obtain 

y k( ) =C + KADC Ain cos
ωinTs

2
2k −1( )

⎛

⎝
⎜

⎞

⎠
⎟− Eq  (6) 

where C = 2Nφf0Ts represents the DC component at the output, and 

KADC = 2N
φ
KoscTs sinc

Tsωin

2π

⎛

⎝
⎜

⎞

⎠
⎟  (7) 

represents the ADC gain component where sinc(x) = sin(πx)/(πx), Aincos((ωinTs/2)(k–1)) term 
represents the signal component at the output and Eq = (Nϕ/π)∆φε(kTs) represents the first-order 
shaped quantization noise component. Equation (7) shows that the ADC performs a sinc filtering of 
the input, which relaxes the anti-alias filter design.  
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2.2  ADC non-idealities 
Some of the ADC non-idealities and issues are briefly outlined below. A more detailed 

discussion is provided in [17]. 
 1) Non-linearity: The distortion terms resulting from VCO non-linearity are filtered by the sinc 

filter described by (7) before getting folded by sampling. 
 2) VCO phase noise: VCO phase noise observed at the phase taps of the ring VCO can be 

modeled as a noise added to the phase signal, similar to the phase quantization error. Hence, like 
quantization error, VCO phase noise is also first-order shaped by the ADC. 

 3) Mismatch of the delay cells: The mismatch among delay stages in the ring VCO results in a 
deterministic error in the phase which can also be modeled as an error added to the phase signal, 
that also becomes first order-shaped by the ADC. 

 4) Clock jitter: For a given amount of clock jitter, higher VCO frequencies result in larger 
errors, leading to a signal level dependent sensitivity to jitter. Hence it is beneficial to limit the 
VCO frequency if jitter estimate is known, such that jitter induced errors shall not dominate the 
noise sources in the ADC. 

 5) Partial sampling: In contrast to traditional ADCs, the input is first digitized in amplitude and 
then quantized in time. However, since the time quantization is performed on a digital word, partial 
sampling errors due to metastability and rise and fall time asymmetry needs to be addressed. 

Note that for real all-digital VCO designs, the voltage-frequency conversion characteristics are 
far from linear as was illustrated in Figure 1 (b). Digital post correction is a necessity, but in our 
early experiment a scheme based on characterization of the ADC and fitting a static polynomial to 
an average dynamic condition proved to work surprisingly well. This topic remains to be further 
investigated. 

2.3  Switching noise 
Increasing the amount of digital logic often has the side effect of an increased di/dt of the supply 

current, which causes analog circuits and oscillators to experience more problems from power-
ground noise [24–27]. Reason for the noise is that digital switching causes a voltage fluctuation on 
the digital supply rails due to the inductance, resistance, decoupling capacitance and switched 
capacitance within the package, and the inductance and resistance of the power supply lines, 
including pin, bond wire, and PCB trace parasitics. This disturbance triggers voltage oscillations on 
the power lines as can be seen in Figure 4 where noise measurements on a test chip are shown [27]. 
On the chip we have a digital filter that generates switching noise, and two analog filters that are 
affected by it. In the left plot we observe the potential of a digital guard used to provide low 
impedance from the digital ground to the digital circuits, useful for preventing latch up by reducing 
noise. The initial peak is larger than 50 mV and is followed by a damped oscillation. The noise is 
cyclostationary in nature, with its characteristics varying periodically with time [28]. Although the 
substrate used in this chip is lightly p-doped, yielding high impedance, measurements on the bottom 
plate available in the middle graph shows that most of the noise has propagated through the 
substrate. Finally it can is seen in the right graph that there is a significant disturbance in the output 
of one of the analog filters. Clearly we need to use more efficient methods to prevent problems with 
noise to obtain good performance. 

General techniques to combat the noise can be to add more on-chip bypass capacitors, many 
strategically placed power supply bond wires or use a special package. There are also a number of 
special circuits and data encoding schemes that reduce the di/dt. Our own work in this area includes 
a circuit technique that reduces the supply noise by shaping its frequency content, and a supply 
noise filter for digital oscillators [29]. 
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Figure 4. Test circuit with digital and analog filters implemented on substrate with high 
impedance. The digital filter generates simultaneous switching noise, transferred via 
substrate and bottom plate to the analog filters as shown by the measurements. 

2.4  Digital oscillators 
On-chip oscillators are generally sensitive to supply noise, and active oscillators like ring 

oscillators are especially sensitive [30, 31]. In this project we are interested in exploring coupled 
oscillator architectures [32–35] and other special circuits that recently have been shown to improve 
the sensitivity to supply noise [36–38]. Cyclic coupled ring oscillators have traditionally been used 
to increase the frequency by oscillator pushing, or to implement frequency multiplication. Our 
objective is to use them for reducing phase noise or increasing the accuracy after combining the 
phase outputs. A cyclic coupled architecture is depicted for a set of ring oscillators in Figure 5. For 
a set of M ring oscillators (bold drawing), N weaker coupling paths are provided (fine drawing). 
This architecture is shown to improve the resulting phase noise with M times over a single oscillator 
[38]. Another option may be to improve the phase noise by using the structure to increase the 
frequency, and then divide the phase output(s) to wanted frequency. 

 

 
Figure 5.  Cyclic coupled ring oscillator. 
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3 Project description 
In this project we aim at finding methods and principles of designing data converters in deep 

submicron technologies, where the focus is on new time-domain and switch-only techniques to take 
advantage of future technologies with fast, inaccurate switch components. Main activities follow 
below. 

•  Study and improve the sampling technique (occurs in reverse order compared with traditional) 
•  Investigate differential all-digital ADC architectures 
•  Improve latency and resolution of our Vernier TDC architecture (investigate time 

amplification, cyclic, gated and ungated architectures) 
•  Study cyclic coupled oscillators to improve phase noise and resolution (voltage control 

schemes are needed) 
•  Investigate digital dynamic linearity post correction 
•  Explore design parameter tradeoff (full tradeoff unknown since field is relatively new) 
•  Maximize design space exploration by designing ADC architectures that can be synthesized in 

traditional digital design flows 
Intended application area is low-power, high-performance ADCs suitable for wireless 

communications and similar applications. We aim to achieve ADCs that are on par with state-of-
the-art analog-intensive techniques. Test chips are designed in deep-submicron CMOS technologies 
that can be used to validate suggested models, methods and techniques through measurement. A 
time plan for the project is outlined in Figure 6. 

The project starts with a theoretical study and modeling of the reversed order of sampling in 
VCO-based ADCs. A chip that tests the findings is designed and measured. Next, cyclic coupled 
oscillators are investigated and modeled, with attention to voltage control. A chip is designed and 
measured. VCO linearization is studied with subsequent experiment and measurement. Our TDC 
architecture is improved, designed, and measured. A combination of the findings are collected into 
a final chip where a differential ADC is designed, which appears to be a promising way to improve 
performance. Finally digital post correction is studied and applied to previous measurement data. 
We will disseminate results successively at conferences and in international journals. 

 

Figure 6.  Project time plan. 

Study quantization & sampling
Design Q&S chip
Measure Q&S chip
Study cyclic coupled oscillators
Design CCO chip
Measure CCO chip
Study oscillator linearization
Design linear VCO
Measure linear VCO
Study TDC architecture
Design TDC chip
Measure TDC chip
Study differential architectures
Design differential ADC
Measure differential ADC
Investigate postcorrection
Dissemination

2016 2017 2018 2019 2020
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4 Significance 
Previous work has already given us new principles, methods, and architectures for reducing 

substrate noise as well as achieving a digital ADC and a high performance TDC designed using 
switch transistors only. This project aims at exploiting the previous work to fully synthesize ADCs 
and TDCs, and improve their resolution and power performance such that they are competitive with 
those of conventional state-of-the-art converters. The benefit of this approach is that most future 
technologies, including beyond currently planned CMOS technology nodes since any technology is 
likely to contain switch components, will be able to accommodate high performance converters in 
close proximity to the vast digital signal processing hardware being offered. Target figure-of-merit 
is same as the state of conventional analog design. Theory and methods we suggest will be 
validated by measurements on actual implementations showing the feasibility of our proposals. 

5 Preliminary results 
We have recently designed a VCO-based ADC and a new TDC architecture where we have 

started to address some of the issues in this application. 

5.1  VCO-based ADC  
In a recent experiment we aimed for an all-digital VCO-based ADC design, which uses standard 

digital circuits in contrast to some of the recently published works that employ custom designed 
analog delay cells in the VCO. Major inventions is a technique that limits the instantaneous error 
resulting from metastability and sampling of digital data to one LSB, and a new digital post 
correction method. The design was fabricated in a commercial 65 nm digital CMOS technology and 
the measured results are available in Figure 7 (a) along with a comparison with state-of-the-art. Our 
design has competitive performance and uses only switch transistors. Table is taken from our recent 
article [39]. 

5.2  Vernier TDC 
We have proposed a TDC Vernier-chain architecture based on a new type of delay latch that 

saves power. This architecture performs well and we would like to investigate some ideas on how to 
improve and use it in this project. Measured data from a test chip is presented and compared with 
state-of-the art in Figure 7 (b) [40]. 

 

 

 (a) (b) 

Figure 7.  Comparison of recent (a) VCO-based ADCs, and (b) TDCs with our work. 
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