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Project title (Swedish)*
Gleshetsbaserad inlärning av parametriskt separabla modeller

Project title (English)*
Sparsity-Based Learning of Parametric Separable Models

Abstract (English)*
In many technological areas, the reliability of the applied methods highly depends on models as the mathematical 
descriptions of their corresponding environment. Although the models are commonly simplified in favor of their utility, 
increasing demand for higher reliability naturally calls for more sophisticated models. In the field of signal processing, the 
so-called sparsity-based models has recently gained high attention. Apart from the connection of the sparsity-based 
models to a large variety of different applications, their popularity is mainly due to the invention of highly efficient and 
reliable mathematical computation techniques, which are shown to solve difficult sparsity-based problems under mild 
assumptions. Due to their computational stability, the sparsity-based techniques are useful in treating not only large size 
problems, but also a family of challenging problems of a small dimension, called parametric estimation. Still, the reliability of 
the sparsity-based approach depends on the accurate choice of a sparse model.
This project concerns a more recent problem of selecting a proper sparse model, based on a set of observations. As a 
sparse model is identified by its so-called dictionary, this problem is often referred to as dictionary learning. Through this 
research, we aim to obtain generic bounds on the performance of dictionary learning, analyze the existing techniques and 
compare the result to the generic bounds. Further, we aim to improve the existing techniques guided by the results 
obtained by our analysis. Here, the emphasize is on the application of dictionary learning to parametric estimation 
problems. We have taken initial steps in the above direction and identified interesting properties, as well as fundamental 
deficiencies in the existing techniques. Accordingly, some suggestions for further improvement have also been obtained.

Popular scientific description (Swedish)*
Denna forskning handlar om metoder för automatisk inlärning av modeller  för signalbehandling. En modell är en 
matematisk beskrivning av en omgivning som ger möjlighet att manipulera data, dra slutsatser om icke direkt observerade 
fenomen och prediktera framtida egenskaper hos ett system. En noggrann modell kan ibland härledas från fysikaliska 
principer eller enbart erhållas genom experiment och leder ofta till en komplicerad beskrivning. Inom många tekniska 
områden brukar dock noggrannheten tillåtas minska för att förenkla modellen, ofta på grund av begränsad 
beräkningskapacitet. Processen för att skapa sådana approximativa modeller från observationer benämns modellinlärning 
eller systemidentifiering. 

I många tillämpningar är en speciell typ av modell, så kallade separabla eller glesa, av stor vikt. Under de senaste 
årtiondena har en ny matematisk teknik introducerats som leder till en förenkling av hanteringen av denna typ av glesa 
modeller. Dessa metoder har lett till en signifikant förbättring av kvaliteten hos signalbehandlingen, under förutsättning att 
modellen är helt känd. I praktiken måste dock den glesa modellen skapas från observerade data som innehåller osäkerheter. 
Alltså, huvuddelen av detta arbete är att studera metoder för inlärning av glesa modeller. Generella frågor av typen som 
vad som är den bästa prestandan kommer att besvaras i forskningen. Dessutom kommer prestandan för existerande 
metoder att studeras och jämföras med bästa möjliga prestanda, samt undersöka vägar för att förbättra metoderna.
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Sparsity-Based Learning
of

Parametric Separable Models

1 Purpose and Aims

The last few decades have witnessed the emergence of sparsity-based techniques in a variety
of different research fields. Currently, a large body of research is devoted to developing
and studying these techniques in a range of applications, from machine learning and data
acquisition to parameter estimation, system identification and inverse problems. This is
mainly due to the advent of reliable techniques, enhancing the solution of an underdetermined
system of equations under the assumption that the unknown data vector is sparse. These
techniques consider not only, the theoretical quality of the signal processing, but also the
numerical effort to achieve this quality. The inspiring studies of Donoho [1] and Tibshirani
[2], leading to the Least Absolute Shrinkage and Selection Operator (LASSO), suggested
to apply convex optimization to achieve numerical efficiency. Shortly after, many studies
reported successful application of this technique to different practical problems, such as data
acquisition [3], machine learning [4], parameter estimation [5, 6, 7]. Both the theoretical and
implementation aspects of these applications have been studied carefully [8, 9].

The sparsity based approaches are suitable for the problems, where a good data model
is available. Some recent studies addressed sparsity-based signal processing under model
uncertainty or mismatch [10, 11]. More generally, recent investigations in this area considered
learning, under the sparsity assumption, a separable model from a sequence of observations,
and simultaneously estimating sparse vectors. The research is termed dictionary learning,
and has received interest in research communities, where learning a model is an immediate
concern [12, 13, 14, 15]. Image-based classification and machine learning are examples of
such. However, dictionary learning rapidly extends its range to other problems, dealing
with sparsity. The works, presented in [16, 17] are good examples in the recent literature.
Dictionary learning has been significantly influenced by the invention of K-SVD, a numerically
efficient learning technique [18]. Despite existence of multiple local minima, its successful
application has been frequently reported. Few recent papers attempt to analyze the behavior
of K-SVD. Still, the reason of its success is, to a great extent, unknown [19]. More importantly,
the effect of noise is also currently neglected. Another observation is that K-SVD has a sharp
performance transition, when its underlying assumptions are slightly violated. In this case,
it is not clear, whether the process of learning can be enhanced by modifying the K-SVD, or
the problem is fundamentally restricted.

We also observe a great potential in applying dictionary learning to a class of parametric
estimation problems with separable models, where it is well-know that the size of a recoverable
set of parameters is restricted by the size of the data set, observed at each time instant. Radar
and sensor array-based estimation are good examples of such problems. As shown in Section
3.1, relying on mild sparsity assumptions, the dictionary learning techniques can remarkably
improve this limit. Accordingly, we propose a research which considers the following issues
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concern [12, 13, 14, 15]. Image-based classification and machine learning are examples of
such. However, dictionary learning rapidly extends its range to other problems, dealing
with sparsity. The works, presented in [16, 17] are good examples in the recent literature.
Dictionary learning has been significantly influenced by the invention of K-SVD, a numerically
efficient learning technique [18]. Despite existence of multiple local minima, its successful
application has been frequently reported. Few recent papers attempt to analyze the behavior
of K-SVD. Still, the reason of its success is, to a great extent, unknown [19]. More importantly,
the effect of noise is also currently neglected. Another observation is that K-SVD has a sharp
performance transition, when its underlying assumptions are slightly violated. In this case,
it is not clear, whether the process of learning can be enhanced by modifying the K-SVD, or
the problem is fundamentally restricted.

We also observe a great potential in applying dictionary learning to a class of parametric
estimation problems with separable models, where it is well-know that the size of a recoverable
set of parameters is restricted by the size of the data set, observed at each time instant. Radar
and sensor array-based estimation are good examples of such problems. As shown in Section
3.1, relying on mild sparsity assumptions, the dictionary learning techniques can remarkably
improve this limit. Accordingly, we propose a research which considers the following issues

• Adapting the dictionary learning setup to the parameter estimation case.

• The basic analysis of dictionary learning, leading to generic bounds on its performance.

• The analysis of the existing methods, such as K-SVD and comparison with the generic
bounds.

• Based on the generic bounds, providing alternative learning solutions, under conditions,
such as variable and/or unknown sparsity.

We discuss the topics above in more details in Section 4.
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3 Survey

In this section, we present a brief introduction to the context of sparsity-based estimation and
model learning, demonstrating basic ideas and techniques. For the interested reader, more
specific references are provided in the text.

3.1 Sparsity-Based Estimation

Consider a problem, where an unknown vector s is to be estimated by observing a data vector
x, obtained by

x = As + n, (1)

where n is the observation noise and A is a known matrix, representing the relation between
the observation x and the unknown variables s. The simple relation in (1) underlies an
enormous number of applications, and can be simply solved by the least square method,
providing a statistically optimal result. Modern applications, however, demand a large size
of the unknown parameters, while technological issues restrict the size of observation vector,
leading to a situation, where the system of equations in (1) is underdetermined and hence (in
the generic case) have infinite many solutions. On the other hand, the physical assumptions
usually impose a strong structure on s, which is essentially neglected in (1). Hence, a large
body of research is devoted to incorporating data structure into the linear model in (1). A
common case is where the vector s contains few non-zero elements. The position of the non-
zero elements is unknown. Thus, the information in the data vector should amount for both
the position and the value of nonzero elements. Hence, the required size of the observation
vector is considerably smaller than the size of unknown vector s. Solving (1) under the
sparsity assumption is called sparsity-based estimation [8].

The sparsity based estimation has a long history, but has been recently brought into sharp
focus. As a result, a number of powerful techniques, such as Orthogonal Matching Pursuit
(OMP) [20], basis pursuit (BP) [1] and Sparsity Adaptive Matching Pursuit (SAMP) [21] has
been recently developed. The main advantage of these techniques is that they guarantee a
good performance with a reliable numerical technique. In particular, BP is shown to achieve
the performance bound in the case of large random models A, where it also enjoys numerical
stability through convexity.

3.2 Sparsity-Based Model Learning

In many practical situations, the matrix A in (1) is either unknown, or partially known.
Thus, it should be inferred along with the vector s. This is only possible if a sequence of
observations is provided as follows

x(t) = As(t) + n(t) t = 1, 2, . . . , T (2)

Should there be an occasion to obtain the sequence {x(t)} from a known sequence {s(t)}, the
matrix A is simply obtained by solving a least square problem. In many applications, this is
not the case, and the unknown vectors should be estimated together with the matrix A in a
blind fashion.

The above problem of blind estimation is generally ill-posed. This means that the matrix
A cannot be uniquely inferred from the sequence of observations. Similarly to Section 3.1,
this may be resolved by imposing a structure on the unknown vectors {s(t)}. In this context,
the sparsity assumption has recently received considerable attention. It is often assumed that
the vector s(t) has few nonzero elements at each time t, but the sparsity pattern (the position
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of the nonzero elements) vary by time, such that every column of A fairly often contributes
to the observations. Then, it is expected that under some assumptions on the sparsity level
(number of nonzero elements), the value of nonzero elements and the matrix A, the model in
(2) is uniquely resolved even if A is underdetermined (has less rows than columns). This is
generally called the dictionary learning problem.

The previous research on dictionary learning has led to an iterative procedure, commonly
considered in the recent literature [22, 23]. Each iteration starts by assuming the matrix,
obtained from the previous iteration, and solving (2) for the unknown vectors s(t) by a
suitable sparsity-based technique. The iteration is continued by assuming the sparsity pattern
obtained from the sparsity based estimation, and simultaneously updating the matrix and the
unknown nonzero entries of s(t). Performing the final step has been central in many recent
research contributions. For example, the K-SVD approach proposes a cyclic approach to
update the columns of A iteratively [18].

3.3 Parameter Estimation

In this section, we address the application of the framework, introduced in the prequel, to
parameter estimation. We have previously studied the role of sparsity-based techniques in
the parametric estimation problems.

Many problems, such as frequency and sensor array based estimation, including radar
and sonar are related to a special type of model, referred to as separable. According to this
model, the observed vector x is obtained by two sets of parameters {θk} and {sk(t)} known
as positions and amplitudes, respectively. This is given by

x(t) =
n∑

k=1

a(θk)sk(t) + n(t), t = 1, 2, . . . , T, (3)

where n denotes the observation noise and a(θ) is a vector-valued function of θ. Introducing
A = [a(θ1) a(θ2), . . . ,a(θn)] and s(t) = [s1(t) s2(t) . . . sn(t)]T , the relation in (3) is commonly
written as in (2). It is immediately seen that the parametric estimation problem is equiv-
alent to model learning, introduced in Section 3.2, where the matrix A is restricted to be
structured. We refer to this as parametric model learning. As seen, the parametric learning
is subject to similar arguments to the general model learning problem, introduced in Sec-
tion 3.2. For example, the identifiability of (3), in the absence of further assumptions on
the amplitudes {sk(t)}, is limited to the over determined matrices A. However, we observe
that according to the studies on dictionary learning, stated in Section 3.2, mild and realistic
sparsity assumptions on the amplitude vector s(t) abandons this limitation. There are few
recent studies on this topic, but a general analysis is lacking in the literature [13].

4 Proposed Project

The proposed project mainly focuses on the parametric model learning problem in (3), when
a proper sparsity assumption on {sk(t)} is considered. Examples of such a model in practice
are considered and discussed in Section 5. From a more technical point of view, this prob-
lem is the intersection of two lines of research; dictionary learning and parameter estimation.
Accordingly, it is referred to as parametric dictionary learning. The result of the proposed
project is useful in both areas of research, namely dictionary learning and parameter esti-
mation. More specifically, we will consider the following issues, for some of which we have
obtained some preliminary results.
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4.1 Fundamental Bounds on Model Learning

In the study of any estimation problem, it is necessary to develop bounds on the best per-
formance of the estimator, serving as a benchmark for a future analysis of specific estimation
techniques. In the area of signal processing, these bounds are obtained by framing the desired
problem statistically and using popular bounds such as Cramer-Rao and Chapman-Robinson
inequalities, as well as Ziv-Zakai and Weiss-Weinstein bounds in the case of Bayesian estima-
tion [24].

Consider the general model learning problem in Section 3.2. The statistical analysis is
based on the notion of the likelihood function p(x(t) | A, s(t)), as well as the estimator as

a function Â({x(t)}), assigning to any sequence of observations {x(t)} an estimate Â of the
true model A. The likelihood can be simply obtained by (2), or more elaborately by (3).
Then, the general statistical results lead to expressions, imposing bounds on the precision of
Â. This is usually measured in terms of the error Â−A. However, the sparsity assumption
complicates this approach. A more recent method is proposed in [25] to simplify the analysis
in presence of sparsity.

In this project, we will consider the above statistical framework and examine both, the
classical and the recent statistical results to obtain bounds on the estimation error. We aim
to evaluate these bounds, at least in some asymptotic cases, such as a high SNR scenario, or
the one with a large number T of observations. In particular, we will identify under which
assumptions on the size and the structure of the matrix A, together with the sparsity pattern
in s(t), the asymptotic cases may lead to the true matrix Â = A.

4.2 The analysis of existing methods

To obtain a parametric dictionary learning, an existing method can be considered and adapted
to the parametric setup. In particular, the parametric dictionary learning by K-SVD has
recently gained attention. This project is aimed to provide an analysis for the application
of K-SVD to the parametric problem, which at the same time, sheds light on the general
behavior of K-SVD. The behavior of K-SVD is know to be difficult to analyze.

We perform the analysis in a statistical sense, where the model Â = Â({x(t)}), obtained
by performing K-SVD is considered as an estimator. A typical analysis of an estimator usually
assumes an asymptotic case, where it comprises of two stages. In the first stage, known as
convergence analysis it is verified that Â = Â({x(t)}) converges to the true model A in
(2) when the setup approaches to an ideal one. Then, the estimator is generally said to be
consistent. Two popular ideal cases are obtained, when the noise term ‖n(t)‖2 converges to
zero and/or the sample size T grows to infinity. Our preliminary results show that K-SVD
has a different behavior in the two ideal cases. In particular, we have discovered that it is
consistent only in the noiseless case. In fact, we have identified a large class of inconsistent
estimators, with the so-called joint-maximum-likelihood underlying structure.

In the second stage, the near ideal behavior of the estimate, under the consistency as-
sumption, is analyzed. This is known as asymptotic error analysis, where, the mathematical
tools of perturbation theory, such as Taylor expansion is commonly used to simplify the anal-
ysis. We have taken initial steps toward the error analysis of K-SVD, in an asymptotically
low-noise n(t) setup.

4.3 New approaches

Along with the previous observations, our preliminary findings suggest that the K-SVD ap-
proach may not provide a statistically efficient result, in certain situations. High noise and
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variable sparsity are examples of such. Hence, we suggest alternative approaches. Here, the
relation of the problem of interest to parameter estimation and machine learning provides
a variety of different ideas. These ideas often lead an optimization expression. Emphasiz-
ing on the implementation aspects, the convexified approaches can be utilized to simplify
the optimization procedure. Moreover, the statistical framework leads to a number of dif-
ferent nonlinear optimization procedures, which may suffer from local minima. Our analysis
may also provide an occasion to introduce heuristic techniques. We introduce an interesting
example in Section 6.3.

5 Significance

Signal processing under the model in (3) is exercised in a wide range of different applications,
from data acquisition (sampling), sensor array signal processing and seismology to the finan-
cial and social sciences. Further assumption on the nature of the amplitudes is also widely
common. Many signals such as speech and electroencephalogram (EEG) are well known to
be sparse in certain domains. In the applications concerning these signals, the principle of
sparsity has been widely used. However, parametric models are less discussed, due to their
non-linear nature. Hence, the dictionary learning approach, especially in its parametric form
is expected to have a huge impact on the future methods of diagnosis by EEG, speech coding
algorithms and other disciplines, dealing with naturally sparse signals.

Another area of interest for the parametric dictionary learning is electromagnetic imaging.
In applications, such as Synthetic Aperture Radar (SAR) and medical imaging, the sparse
model in (3) is commonly valid. The sparsity, induced by the directionally selective behavior
of the reflectors prolongs and degrades the process of obtaining a reliable image. In this case,
the parametric dictionary learning approach will be highly useful. General radar and sonar
systems may also benefit from the dictionary learning approach, especially in the long-range
detection problems, where the combination of the scan process and the long range delay
leads to the range ambiguity problem. In this case, viewing the model as a sparse separable
one, the range ambiguity may be highly alleviated by the dictionary learning techniques.
This is similar in nature to the frequency-domain aliasing effect by sampling a signal. From
this perspective, the application of sparsity and dictionary learning is similar to the recent
sparsity-based randomized sampling techniques [3].

The dictionary learning problem is directly connected to the well know blind source sepa-
ration and blind deconvolution problems. In particular, it can be used for channel estimation
in the wireless communication scenarios, where the channel estimation problem may be viewed
as a blind separation problem. In this case, the parametric techniques promote faster and
more reliable techniques than the current ones. Interestingly, the blind separation techniques
also promote asynchronous communication in a multiuser wireless system, where synchro-
nization and scheduling is widely used to cope with the intermittent data transmission and
congestion. Considering the difficulties with synchronization and efficient scheduling in these
scenarios, the sparsity based channel estimation by the dictionary learning techniques are
expected to have a great impact on the quality of communication.

6 Preliminary Results

According to the research framework, posed in Section 4, we have discovered some preliminary
results, identifying some key characteristics of the dictionary learning problem. In particular,
we have shown that the K-SVD may not be consistent in presence of noise, while the general
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dictionary setup is identifiable under mild sparsity assumptions. We formulate these ideas in
the sequel and present methods to overcome inconsistency.

6.1 General Bounds

We have considered the model in (3) and studied conditions, under which the model is con-
sistent, i.e. the sequence of observations uniquely determines the parameters θ1, θ2, . . . , θn.
In particular, we considered the large-sample-size case, where T →∞ as well as the low-noise
case, where ‖n(t)‖2 → 0. The main findings are summerized below:

• Considering the case where T → ∞, we have shown that the true parameters in (3)
can be uniquely obtained under very mild conditions. Suppose that the amplitudes
sk(t) are temporally independent and at every time instant t, the nonzero amplitudes,
corresponding to the index set I(t) = {k | sk(t) 6= 0} are uncorrelated, centered and
Gaussian-distributed. Define the collection I = {I1, I2, . . . , IM} of all index sets Ik =
I(t), occurring with a nonzero frequency and the M × n adjacency matrix G = (gi,j),
where gi,j = 1 if i ∈ Ij . Then, the model in (3) is identifiable if the matrix G has full
column rank. In fact, this condition is surprisingly weak. Take an example, where the
set I consists of all the index sets, missing exactly one index. This means that at every
time, exactly one of the amplitudes is zero. Then, it is simple to see that the matrix
G is not only of a full column rank, but also invertible, guaranteeing identifiability. Of
course in this case, the model in (3) can remain highly underdetermined at each time
instant.

• The situation is slightly different for the low-noise case where T is finite and fixed, and
n(t)→ 0 for every time t = 1, 2, . . . , T . In this case, we can show that (3) is identifiable
if in addition to the condition on the matrix G, there exists for every index k an index
set I(t) such that k ∈ I(t) and the model is over-determined (size of I(t) is less than
m).

6.2 Analysis of K-SVD

We also considered the convergence properties of the K-SVD method. It should be noted that
K-SVD is an algorithm to solve the following optimization

min
A,{s(t)}

T∑
t=1

‖x(t)−As(t)‖22 (4)

which we refer to as the Joint Maximum Likelihood (JML) estimator, as it jointly considers
the ML principle for the model A and the amplitudes. Note that s(t) is assumed to be sparse.

The K-SVD algorithm locally solves the JML optimization. We discovered that the JML
estimator is inconsistent in presence of noise and when T →∞. This means that the global
minimum of (4) is different to the true model A. Furthermore, the difference is proportional to
the variance of the noise term n(t). Thus, JML is consistent for the low-noise case. However,
the local optima should be further studied.

6.3 Alternative Approaches

The K-SVD approach suffers from local minima and is suitable, only when the order n and
the number of nonzero amplitudes at each time is known and fixed. We present an alternative
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approach in the sequel. We are interested in studying this approach in more detail through
this project.

In a parametric model learning problem such as (3), the JML optimization is solved
over a structured dictionary A, each column of which is given by a(θk). Since the function
a(θ) is often nonlinear, ML leads to difficult optimization problems. It has been recently
discovered that the sparsity-based estimation in Section 3.1 can be utilized to overcome the
difficulty with the ML optimization. This is examined in an underdetermined case with
non-sparse amplitudes. Here we generalize it to the parametric model learning case. We
propose to consider a large (known) discretization θ̃1, θ̃2, . . . , θ̃N and calculate the matrix

A0 = [a(θ̃1) a(θ̃2) . . .a(θ̃N )]. Then, the relation in (3) can be approximately written as

x(t) = A0s̃(t) + n(t), (5)

where s̃ = [s̃1(r), s̃2(r), . . . , s̃N (r)]T is a sparse vector. This is similar to (1), where A is
replaced by A0. Thus, a sparsity-based technique can be applied to obtain s̃. In particular,
we propose to solve

min
{s̃(t)}

T∑
t=1

‖x(t)−A0s̃(t)‖22 + λ
N∑
k=1

√√√√ T∑
t=1

|s̃k(t)|2 + µ
N∑
k=1

T∑
t=1

|s̃k(t)|, (6)

where λ, µ > 0 control the order n and the average sparsity of the amplitudes, respectively;
and should be properly chosen. Then, the position of the nonzero elements and their values
give the estimates for the positions and amplitudes, respectively.

Previously, we have studied this technique when µ = 0. We have developed methods to
improve its implementation [26, 27, 28]. Since no specific assumption on the amplitudes sk(t)
was made, the research was limited to the case, where A = [a(θ1) a(θ2), . . . ,a(θn)] was over-
determined. Generalization of this technique to the dynamic sparsity setup is also cinsidered
[29].

7 Staffing, national and international collaboration

The proposed project will be conducted at the Signal Processing Group, Dept. of Signals
and System, Chalmers. The research will be performed by post-doctoral researcher Ashkan
Panahi under guidance by Prof. Tomas McKelvey. The project will also benefit from the
other seniors in the group: Prof. Mats Viberg, Assoc. Prof. Lennart Svensson and Adjunct
researcher Mikael Coldrey from Ericsson Research. The signal processing group has a long
record in statistical signal processing and estimation and has well developed contacts in the
area of sparse methods with Prof. Christoph Mecklembräuker at Technical University of
Vienna and Prof. Babak Hassibi at California Institute of Technology. The proposed project
will also complement the research performed on antenna systems in the Vinnova competence
center CHASE (Chalmers Antenna Systems Excellence Center) hosted at our department.
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