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Project title (Swedish)*
Kombinerad dimensionering och optimal styrning av energibuffertsystem

Project title (English)*
Combined design and control optimization of dynamic systems with energy buffers

Abstract (English)*
The emerging energy-clean and efficient systems, comprising several energy buffers and utilizing predictive information, 
are fundamental in the quest for sustainable economy and environment. However, the new technology introduced to these 
systems aggravates their price, compared to conventional solutions, thus limiting the level of penetration to the market. 
Therefore, significant effort is being invested in optimizing both design and operation that minimize cost and maximize 
efficiency, while satisfying performance requirements. This is a complex optimization problem of combined plant design 
and control that is not being adequately studied. Traditional approaches, such as dynamic programming, typically require 
severe modeling approximations, or high computational resources, which in practice limits their efficacy. 
This project focuses on development of computationally efficient methods for combined design and control optimization 
of dynamic systems with energy buffers. The goal is to replace or augment traditional optimal control techniques with the 
novel technological improvements in convex optimization. Additionally, this project will investigate the synergy between 
convex optimization, mixed-integer programming, dynamic programming and optimal control theory. The second goal is 
adapting the optimization methods from the design phase to the real-time control in the final product. Investigations will be 
performed on functional architecture in the form of hierarchical, decentralized and distributed model predictive control and 
reference governor systems.

Popular scientific description (Swedish)*
Den tekniska utvecklingen mot högre energieffektivitet leder till allt mer komplexa system, såsom autonoma och hybrida 
fordon, energieffektiva byggnader, trådstyrda flygande vindkraftverk etc. De här systemen har ofta flera energibuffertar 
och kan använda prediktiv information till att förbättra energieffektiviteten. Att bättre utnyttja tillgängliga buffertsystemen 
blir således ett steg mot en hållbar ekonomi och miljö. Tekniken kräver viss investering i hårdvara, som vid jämförelse med 
konventionella lösningar måste kunna räknas hem i minskade energi- och driftkostnader. För att få nå ut till marknaden 
måste både design och funktion utformas så att den totala ägandekostnaden minimeras, samtidigt som prestandakraven 
uppfylls. Detta optimeringsproblem, med kombinerad dimensionering och styrning, är ett komplext problem som ännu inte 
studerats tillräckligt. Traditionella metoder, såsom dynamisk programmering, kräver vanligtvis stora modellapproximationer 
eller höga beräkningskrav, vilket i praktiken begränsar metodernas användbarhet.
Den här studien fokuserar på utveckling av beräkningsmässigt effektiva metoder för kombinerad dimensionering och 
optimal styrning av buffertsystem. Målet är att ersätta eller förbättra traditionella optimeringstekniker med de nya 
landvinningarna inom konvex optimering. Genom att använda konvex optimering är det för vissa problem möjligt att 
samtidigt optimera både dimensionering och styrning i polynomisk tid. Fokus kommer även vara på att utveckla metoder 
med samverkan mellan konvex optimering, mixed-integer programmering, dynamisk programmering och optimal styrning. 
De utvecklade metoderna kommer inte bara reducera beräkningsbördan jämfört med traditionella metoder, utan kommer 
också möjliggöra förbättrade modeller och inkludera dynamik som tidigare har utelämnats.
Det andra målet med den här studien är att anpassa optimeringsmetoderna till realtidsstyrning av dynamiska buffertsystem 
och därmed snabba upp utvecklingsprocessen genom att i huvudsak använda samma modeller och metoder både i 
förstudiestadiet som i den slutliga produkten. Med relativt begränsade beräkningsresurser blir den funktionella 
styrarkitekturen central för att möjliggöra modellprediktiv styrning av ett komplext system. Modellprediktiv styrning med 
hierarkisk, distribuerad och decentraliserad funktionell arkitektur kommer därför studeras inom projektet. 
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Project period
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Number of project years*
3

Calculated project time*
2016-01-01 - 2018-12-31

Career age:

Deductible time

SCB-codes* 1. Naturvetenskap > 101. Matematik > 10105. Beräkningsmatematik
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Reporting of ethical considerations*
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The project includes handling of personal data
No
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Account of experiments on humans
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Research plan: Combined design and control optimization of dynamic systems with energy buffers 

 

1. Motivation and background 

The notion of sustainable economy and environment has motivated development of complex 

energy-clean and efficient systems. The development is also driven by governmental 

legislations. For example, the national energy plan of the Swedish parliament states that the 

specific energy use in residential and commercial buildings should be reduced by 20% until 

2020 and halved until 2050 [5]. Similar goals have to be achieved in the transportation sector, 

where electrification of vehicles is being indicated as a possible solution. It has been projected 

that the use of electricity in the transportation sector has the potential of reducing energy 

consumption by 80% of the current level, by downsizing or even eliminating internal 

combustion engines, while facilitating renewable ways of generation in the power sector [4]. 

A common way of improving energy efficiency is to modify existing systems by appending 

energy buffers that increase the system degree of freedom. Examples of such systems are 

electrified vehicles [1], zero energy buildings [2], irrigations and drainage systems [3], etc. 

Additionally, the energy efficiency of the emerging dynamic systems depends on the way the 

plants are operated. The controller synthesis often includes predictive information, introducing 

the ability to recognize an entire or part of a fore coming trajectory based on user inputs, sensory 

information (e.g., radars, cameras, GPS), or previously collected measurements. The predictive 

information can be utilized to improve the system’s energy efficiency, by deciding on 

distribution and arbitration of power among the energy buffers.  

The additional degree of freedom, however, conveys an additional complexity in how these 

systems are designed and operated. The traditional approach which aimed at pursuing a feasible 

solution has now shifted focus to optimality. It is a quest for the best approach where both the 

operational and component cost within the system’s lifetime are minimized. Hence, to be price-

competitive, emerging dynamic systems often employ tools from mathematical optimization.  

The optimal control of dynamic systems is a mature and thoroughly studied topic. However, 

the problem of combined plant design and control optimization merits further investigations. 

The survey of the field is deferred to Section 3, while the detailed problem description and 

examples of the two most common applications are provided in the reminder of this section. 

Combined design and control optimization of dynamic systems with energy buffers 

To obtain a cost effective solution that minimizes energy consumption while keeping total cost 

down, both the operational and component costs within the system’s lifetime have to be 

minimized. These two objectives are strongly coupled, since a non-optimal controller may lead 

to non-optimal sizes of system’s components, and vice versa [6]. The best approach is to 

simultaneously optimize the combined cost, also known as total cost of ownership (TCO). The 

optimization is subject to constraints derived from laws of physics, system’s dynamics, 

limitations, performance requirements, etc. Without going into a detailed mathematical 

description, the problem is verbally formulated in Table 1. 

The optimization results are twofold: 

 Optimal sizes of components, e.g., power limits and energy capacity.  

 Optimal control based on predictive information. 

However, there is a layer on top of these results, which requires investigations that typically 

translate to: 1) interface and interplay among the system and infrastructures, such as electric 
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grid, weather satellites, telecommunication, navigation and traffic infrastructures; 2) 

configuration and choice of components; 3) selection of appropriate technology (e.g., electric 

capacitors, lithium-ion batteries); 4) reference and disturbance patterns (e.g., driving cycles for 

vehicles, weather forecast for buildings) upon which system’s design and performance is to be 

optimized; 5) varying and future-projected prices for energy and components. As a 

consequence, the TCO problem in Table 1 has to be solved many times, in the order of 

thousands, which puts harsh requirements on computational efficiency. 

A clearer picture of the problem of TCO minimization is provided by the following two real-

world examples. 

Example 1: Design and control of a hybrid electric vehicle (HEV) 

An HEV is a vehicle with at least two sources of energy from which one is electric [7]. The 

HEV has an electric buffer (typically a battery and/or a supercapacitor) and one or more electric 

machines that may also generate electricity, e.g., while braking. The other energy source is 

typically petroleum or hydrogen. Compared to conventional vehicles, HEVs must also possess 

an additional controller, a  power-split controller, which for a given level of requested power 

originating from the driver pressing the gas pedal, decides how big fraction of this power will 

be delivered by the fuel tank (e.g., via combustion engine) and the electric buffer.   

Minimizing HEV’s TCO requires careful consideration of the choice of powertrain topology 

(e.g., series, parallel, series-parallel), choice of powertrain components (e.g., battery, 

supercapacitor, flywheel, air tank, internal combustion engine. fuel cell system, continuously 

variable transmission, fixed-gearing transmission) and choice of typical driving patterns 

(described by, e.g., speed and slope vs. time). A plug-in HEV may also require additional 

considerations for a charging infrastructure that may have to be designed at the same time as 

the vehicle. (This is more relevant for public transportation, where decisions have to be taken 

about electrification of roads, distribution of chargers, charging durations and magnitude of 

charging power.) The problem of combined component sizing and control has to be solved for 

all these choices, where the operational cost includes cost for consumed fuel, electricity, and 

air pollutants. This cost will strongly depend on the HEV ability to recognize the receding 

horizon [1]. For example, information that a downhill driving is soon approaching can be 

exploited to run the vehicle on electric power, thus depleting the battery and making room for 

recuperation of the braking energy at the downhill segment.  

Table 1: Optimization problem for simultaneous component sizing and 

power-split control of a dynamic system. 

Minimize:  

Operational + component cost 

Subject to: 

Reference trajectory tracking and environmental constraints, 

Energy conversion and balance constraints,  

Performance requirements, 

Physical limitations, 

System dynamics, 

… 

For all time instances within a time-horizon 
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Example 2: Design and control of an energy efficient building 

The energy efficiency of buildings could be increased by 1) improving the building’s thermal 

insulation and replacing the lightning and equipment/appliances with more efficient 

equivalents, and 2) by improving the ability to store energy for a later use [2]. Energy can be 

stored by using the building’s structure as a thermal buffer. However, to improve efficiency 

even further, emerging buildings are augmented with additional thermal and electric buffers in 

order to store energy generated by, e.g., solar/photovoltaic panels, or wind turbines.  

To minimize TCO, decisions have to be taken over many possible choices of components. This 

includes units that capture renewable energy (such as thermal solar collector, photovoltaics and 

wind turbine), diesel-electric generator, battery, heat storage tanks, waste water tank, cooling 

systems, electric or water heaters, etc. The number of combinations to configure these 

components is even greater than with HEVs, as every building may have a unique configuration. 

Then, the optimal component sizes that maintain desired level of heating, ventilation, air 

conditioning and humidity, can be obtained by solving the optimization problem described in 

Table 1. The operational cost may include electricity from the grid, diesel, fresh and hot water 

consumption, and emissions that pollute the environment. This cost will strongly depend on 

predictive information [2], e.g., thermal and electric loads of the building, electricity cost, 

weather forecast, rooms’ occupancy, etc. 

2. Purpose and aims 

The overall objective of this project is to develop mathematical modeling and optimization 

methods for combined design and control of dynamic systems with energy buffers. The key 

ingredient is to study modeling steps that allow convex optimization techniques to be applied 

in order to exploit the computational efficiency of convex solvers [9].  

The proposed study builds upon Nikolce’s previous research [8] in the field of dimensioning 

and control of HEV powertrains. It has been shown, by Nikolce et al [10] (being the first to 

show this) that, although non-convex in its original form, the combined HEV design and control 

problem can be reformulated as a convex optimization problem. The strategy employs 

mathematical steps of disciplined convex programming, model approximations/linearization 

and reformulations, constraints relaxations, transformation from time to space domain, and 

projections from one search space to another. To give an example, consider the problem of 

optimal sizing and power control of a capacitor represented as a voltage source in series with a 

resistor. This model has been used in decades, but only recently has been proved, by Nikolce et 

al [11], that the problem can be remodeled as convex for both dimensioning and control 

purposes, and without any loss of modeling accuracy. As various buffer dynamics can be 

represented by equivalent resistor-capacitor (RC) circuits [12], the convexity of the capacitor, 

and thereby the RC circuits, will be exploited to extend the convex modeling steps to other 

energy buffers.  

Based on these assertions, the following research goals are formulated, which will be detailed 

later, in Section 4: 

 Convex modeling. The dynamic models for fluid tanks, fluid pumps, fans, battery aging, 

engine exhaust system, catalytic converters, cooling systems, and thermal modeling will 

be studied in terms of convexity, for efficient use in optimal dimensioning and control. 

 Optimization methods development.  The development of optimization methods will 

focus on employing the computational efficiency of convex solvers. The synergy 
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between convex optimization, optimal control theory and mixed-integer optimization 

will be studied in order to deal with integer variables that infringe convexity.  

 Adaptation to real-time control. Development of dedicated convex solvers, and 

adaptation to real-time control of the methods used for TCO optimization will be 

investigated. This is a crucial ingredient for the autonomous operation of many systems. 

Hierarchical, distributed and decentralized optimization [26] will be also studied. 

 Robust system design. The sensitivity of the optimal system design to uncertainties in 

reference and disturbance trajectories, energy and component prices, and non-optimal 

control due to limited or no access to predictive information will be investigated. 

 Optimization tools and libraries. The developed optimization methods will be packed in 

publically accessible tools, in order to disseminate results and ease researchers share 

and reuse system models and optimization tools. 

3. Survey of the field 

Techniques for optimal control of dynamic systems, such as the famous dynamic programming 

[16], have been known for more than 50 years ago. However, the problem of combined plant 

design and control optimization has not been adequately studied. Existing approaches handle 

the problem by decoupling the plant and controller, and then optimizing them sequentially or 

iteratively [30]-[32]. This approach is currently state of the art in optimization of energy 

efficient buildings, where the system is first designed by engineering decisions and then the 

controller is optimized for the pre-defined system [2][13]. Sequential and iterative strategies, 

however, generally fail to achieve global optimality [31]. 

For the problem of dimensioning and control of HEVs attempts have been undertaken to 

optimize these two objectives simultaneously. There are two main approaches; the first 

approach relies on heuristic algorithms [14][15], while the second approach employs optimal 

control theory. Heuristic methods could be computationally efficient in obtaining a solution, 

but they do not provide a mechanism to qualify the optimality of the solution. Hence, such 

solutions are pursued by decision makers only when optimal control methods are not available. 

From the optimal control methods, dynamic programming (DP) is the most commonly used. 

The solution is typically sought in a nested optimization strategy, where an outer loop optimizes 

system’s objective over the set of feasible plants, and an inner loop generates optimal control 

for plants chosen by the outer loop [31]. This approach delivers the globally optimal solution, 

but it may induce heavy computational burden, if e.g., DP is used for the optimal control, or 

may require substantial modeling approximations. A serious limitation of DP is that the 

computational time increases exponentially with the number of states and design variables [16]. 

As a consequence, the models are typically limited to only one, or possibly two states [17][18], 

which may not be sufficient to correctly describe the actual system dynamics. 

Another well-known strategy for optimal control of HEVs is the Equivalence Consumption 

Minimization Strategy (ECMS) [1]. The strategy is based on the Pontryagin’s maximum 

principle [25], and could essentially be used for combined plant design and control in a nested 

optimization fashion, as described above. However, ECMS is only an approximate procedure 

in control problems where state constraints are activated. This is typically the case in most 

control applications. 

In terms of computational efficiency a more promising approach has been recently presented 

by Nikolce et al [19], where convex optimization has been proposed for dimensioning and 
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control of HEVs with either a series, or a parallel powertrain topology. The method is based on 

splitting the optimization into two nested levels, which allow the problem to be broken down 

into several convex sub-problems. Integer control variables, such as engine on/off and gear, are 

decided in the outer level, using Pontryagin’s maximum principle [24][33] or DP [34]. The 

optimal component sizes and optimal control and state trajectories of the real-valued signals are 

obtained in the inner level, by using direct optimal control techniques, such as convex 

optimization. For given values of the integer variables, the convex optimization guarantees 

optimality (and provides a certificate for optimality). By decoupling the integer and control 

variables, the proposed method provides solutions in few minutes (very often in seconds, or 

milliseconds) on a standard PC. Moreover, the computational time does not increase 

exponentially with the number of states, which allows enhancing the models with essential 

dynamics that have been omitted in previous studies.  

4. Project description 

Detailed description of the proposed research studies can be described by the following tasks: 

T1. Convex modeling and simulation environment:  

T1.1. Enhanced battery model: This task investigates convex modeling of battery cells 

including thermal and aging phenomena [20]. The goal is to address the dynamics of 

fast charging and discharging impulses which may significantly influence battery 

aging and losses.  

T1.2. Energy storage units: The convex modeling of fluid storage tanks, fuel cells, 

flywheels and thermal buffers will be investigated. The key step is to employ our most 

recent findings [11] about convexity of RC circuits, and the analogous electric RC 

description of different energy buffers. For a mobile system, such as a vehicle, the 

system itself could be considered a buffer that stores kinetic and potential energy. We 

have already shown initial results on the convex modeling of buffers for storing 

potential and kinetic energy [35]. 

T1.3. Enhanced models of actuators and other components: This task investigates convex 

modeling of fluid pumps, fans, condensers, retarders, catalytic converter1, cooling 

units, room/passenger compartment. The possibility to augment the existing convex 

models of internal combustion engine and electric machine [8] with boost pressure 

and thermal dynamics will also be investigated.  

T2. Optimization method development: This task follows our initial research in [24] 

[33][34], investigating the synergy between convex optimization, mixed-integer 

optimization and optimal control methods such as Pontryagin’s maximum principles 

and DP.  

T3. Adaptation to real-time control:  

T3.1. Hierarchical and distributed optimization: The state of the art solvers allow convex 

problems to be solved in a distributed fashion [26], and additional research is needed 

to remodel the studied problem as a distributed convex program. Distributed 

optimization may enable different sub-systems co-optimize their own objective, while 

negotiating on values of shared signals (similar to trading, where parties negotiate 

over a commonly acceptable price). In the process of manufacturing a dynamic buffer 

                                                 
1The influence of the catalytic converter on the optimal system’s design has been very little studied. The catalytic 

converter is a device that filters out pollutants such as carbon monoxide, hydrocarbon and nitrogen oxides. 

Therefore, with the goal of sustainable environment, it is vital to include a model of this device within the system’s 

design phase. 
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system, this will allow different departments optimize the sub-system they are 

specialized on, where models are built upon a signal that is shared by the sub-systems. 

Thus, very complex systems can be simplified into sub-systems that are easier to deal 

with. 

T3.2. Dedicated convex solvers: This task focuses on adapting the TCO optimization 

methods, to methods for real-time model predictive control [28]. The goal is to design 

a functional architecture, and exploit problem sparsity, in order to decrease 

computational time and memory requirements, and to fit and run the code on existing 

embedded control units.  

T4. Robustness: This task investigates the dependence of the optimal design to 

uncertainties in reference/disturbance trajectories, e.g., driving behaviors and climate 

changes. Uncertainties in projected future energy and component prices, and non-

optimal control due to limited or no access to predictive information will also be 

studied.  

T5. Optimization tools and libraries: The developed optimization methods are being 

packed in tools that are publically accessible by other researcher. Several examples of 

convex optimization in electromobility studies are already published [13]. Our goal is 

to continuously add new tools and examples, following the increased research interest 

by the research community.   

The project’s timetable, including the tasks listed above, is given in Figure 2. 

5. Significance 

The emerging complex energy-clean and efficient systems come with an increased cost. The 

technology introduced to these systems, especially electric batteries and supercapacitors, 

influence price the most. Furthermore, if not operated properly, the life expectancy of batteries 

may significantly suffer. Hence, to improve the market penetration of the emerging dynamic 

systems, solutions are sought that minimize the system’s TCO, i.e. operational and component 

cost. Optimization tools are required that not only provide the optimal solution, but they do so 

with low computational demands. This is necessary for a detailed investigation of system’s 

dependencies triggered by the paradigm change of the new technology. One of the goals of this 

study is to provide a tool that addresses the problem of TCO minimization. The tool is being 

 

Figure 1: Timetable for the research tasks. Teaching activities are intermittent throughout the entire 

study period.  
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built by using techniques from convex optimization, which has recently reached hype in the 

research community, and has already been regarded as the most promising technology [9]. 

The second goal of this study is to adapt the TCO optimization methods to real-time control of 

dynamic buffer systems and thus speed up the development process, by essentially using the 

same models and methods both in the pre-design phase and in the final product. The automated, 

real-time control of emerging dynamic systems is fundamental now and will be necessary in 

near future. Increased usage of automatic control in houses can be expected [2], while 

autonomous driving is on the horizon. The requirements on performance of these systems is not 

only being feasible, but also optimal in all respects. Hence, many optimization algorithms will 

run in real-time, under limited physical resources. It has been shown that convex optimization 

is the most promising technology to meet these requirements [9][21]-[23][27]. This study will 

investigate the real-time implementation of convex solvers. Furthermore, state of the art 

techniques will be investigated, such as distributed optimization [26], and decentralized 

hierarchical control.  

6. Preliminary results 

After the principal methods for combined design and control via convex optimization have been 

provided by Nikolce et al [10], they have been significantly improved and successfully 

implemented by researchers and engineers. A major reason for the success of these methods is 

in the performed transformations that exactly reformulate the problem to a form that is easier 

to solve. Typical examples of such contributions are our papers N. Murgovski et al, Convex 

modeling of energy buffers in power control applications [11] and N. Murgovski et al. Convex 

relaxations in the optimal control of electrified vehicles [35]. In these papers we have shown 

that two well-studied control problems that were known to be exceptionally difficult to solve, 

can be formulated as convex programs that not only solve the problems much faster (reduced 

computation time by a factor 100, or more), but are also very elegant in its simplicity. 

The most notable preliminary results with industrial partners are those with AB Volvo, 2012-

2014. The tools developed during Nikolce’s PhD studies have been used to investigate the 

potential of alternative powertrain technologies to be introduced to the market in the following 

3-10 years. This collaboration has been featured in the Chalmers News as a success story: The 

researchers who can predict the future of transportation [29]. Thanks to these results, a new 

project on the development of a hybrid electric vehicle platform within AB Volvo has been 

initiated. Nikolce’s involvement in this, following project has been in the development of 

optimal energy management controllers in the form of reference governor systems that run in a 

hierarchical decentralized fashion and in real-time, on-board the vehicle. One of the goals has 

been to optimize the charge/discharge trajectories of energy buffers by using predictive road 

information. Already at the start of the project we had several breakthroughs. A patent 

application has been submitted, and an article has been written and submitted to Control 

Engineering Practice. By considering the vehicle as a buffer for kinetic and potential energy, 

the innovation permits convex optimization to be used for a real-time decision on the optimal 

speed trajectory in a succeeding horizon, allowing a semi-autonomous driving. The result of 

this project, together with our recent findings [37], have influenced the initiation of the FFI 

project on Multivariable engine control methods for improved energy efficiency, which is about 

to start. 

A major goal of this project is to disseminate results and notify research community that our 

proposed methodology is an efficient tool that is valuable for researchers and engineers in the 
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area of optimal design and control of dynamic systems. First steps have been taken by 

publishing open source Matlab code [13] that demonstrates the effectiveness and the 

computational advantage of the convex programming methodology. Collaboration with other 

researchers has also been initiated. As for example, two papers have been recently published 

together with researchers from ETH, Switzerland [33][36]. A journal article has been submitted 

with researchers from University of California, Berkeley, and Cranfield University, UK. Two 

conference papers have been submitted, and Nikolce is currently working on additional three 

journal articles with researcher from Eindhoven University, The Netherlands. Within the 

department of Signals and System at Chalmers University, Nikolce has established 

collaboration with the groups of Mechatronics, Automatic Control and Signal Processing. 

Nikolce has also actively participated in several projects, such as the Green Car2,3, FUEREX4, 

OPTIMORE5, Plug-in bus, IVDC6.  

7. Independent line of research 

The applicant works in a research group with solid experience in both fundamental and applied 

research in the field of optimal control, intelligent transportation and system’s design. The ideas 

outlined in this project originate from the applicant’s research activities and are not related with 

the research performed by his former advisor. 

The applicant’s research has been strongly intertwined with industrial collaborations. However, 

to preserve the quality of contributions it is crucial to obtain individual funding, in order to 

alleviate the strong dependence on industrial aspirations. 

8. Form of employment 

The applicant is applying for 50% of full time costs for an Assistant Professor, for a period of 

three years within 2016-2018. As of January 2015, the applicant is an Assistant Professor at the 

department of Signals and Systems, Chalmers University.  

9. International and national collaboration 

The applicant current collaborates with researchers from Eindhoven University, The 

Netherlands. Research is being conducted on three topics: 1) Optimal control of complex engine 

systems with after-treatment and waste heat recovery; 2) Optimal dimensioning and control of 

a novel engine concept with electric supercharger; and 3) Optimization strategies for system-

level design in hybrid electric vehicles. 

The applicant will visit The Ohio State University, for the period of two months, July-August, 

2015. Collaboration is planned on the utilization of convex optimization in electromobility and 

autonomous driving. 

The applicant has also envisaged a visit to the University of Michigan and Berkeley University, 

although a detailed plan has not yet been established.  

                                                 
2 Green Car 1, http://www.vinnova.se/sv/ffi/Om-FFI/Tidigare-forskning---PFF/Grona-bilen-1/  
3 Green Car 2, http://www.vinnova.se/sv/ffi/Om-FFI/Tidigare-forskning---PFF/Grona-bilen-2/  
4 FUEREX, http://www.fuerex.eu/  
5 OPTIMORE, http://www.optimore-project.eu/  
6 IVDC (Integrated Vehicle Design and Control), https://www.viktoria.se/projects/ivdc  
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