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Project title (Swedish)*
Kamera- och 3D-geometriskattningar från bilddata med ytterligare sensor-data

Project title (English)*
Camera and 3D Geometry from  images using additional sensor data

Abstract (English)*
In this project we will investigate geometric estimation problems in computer vision. i.e estimating camera and 3D geometry 
from image mesurements.
The first step in a typical pipeline for reconstruction is to extract features from the images, with corresponding feature 
descriptors. 
The second step is an initial matching of features from different images. From these matchings the geometry is estimated, 
often using some robust estimation algorithm such as RANSAC. 
The final step is usually a non-linear refinement of the solution, so called bundle adjustment. 
In all the steps we have to consider both gross errors in our measurements (outliers) and errors following some error 
distribution (e.g. normally distributed with some standard deviation).
We will in this project try to incorporate additional sensor data, that is often available in conjunction with image data, e.g. 
GPS or accelerometer measurements. 
The goal is to incorporate this extra information in all steps of the reconstruction pipeline, in order to  (i) make the final 
solution more robust to gross errors, (ii) make the final solution more accurate and (iii) to make the estimation process 
faster.
 

Popular scientific description (Swedish)*
Säg att du befinner dig i en okänd stad, och vill veta var du befinner dig. I detta projekt undersöker vi hur man kan lösa 
detta problem med hjälp av kameror. Detta är ett delproblem inom vad som kallas för datorseende. Givet en eller flera bilder 
vill vi kunna bestämma var bilden är tagen (kamerans position) och  i vilken vinkel (kamerans rotation). För att denna 
position skall vara meningsfull måste den kunna relateras till någon form av karta av omgivningen. Ett sätt att representera 
en sådan karta är med hjälp av ett antal kända 3D-punkter,  en så kallad 3D rekonstruktion av verkligheten. I dagens läge 
finns det automatiska metoder  för att både räkna ut ett antal kamerors position samt en stor mängd av de punkter som 
avbildas i bilderna. Dock fungerar dessa metoder ej i alla fall, och de kan ta väldigt lång tid på sig att räkna ut lösningen. I 
detta projekt tänker vi oss att man använder extra sensorinformation som ofta finns tillgänglig när man tar bilder, såsom 
riktningsdata från accelerometrar eller positionsmätningar från GPS. Genom att använda sådan information i kombination 
med bilder kan vi skapa metoder som är mer robusta, mer noggranna samt snabbare. För att lösa dessa problem använder vi 
moderna matematiska metoder baserade på modellering, optimering och algebraisk geometri.

Number of project years*
4

Calculated project time*
2016-01-01 - 2019-12-31

Descriptive data

Project info

Project period

Classifications
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SCB-codes* 1. Naturvetenskap > 102. Data- och informationsvetenskap 
(Datateknik) > 10207. Datorseende och robotik (autonoma system)

1. Naturvetenskap > 101. Matematik > 10102. Geometri

2. Teknik > 202. Elektroteknik och elektronik > 20201. Robotteknik och 
automation

Keyword 1*
Computer vision

Keyword 2*
structure-from-motion-estimation

Keyword 3*
sensor fusion

Keyword 4
robust estimation

Keyword 5

Select a minimum of one and a maximum of three SCB-codes in order of priority.

Select the SCB-code in three levels and then click the lower plus-button to save your selection.

Enter a minimum of three, and up to five, short keywords that describe your project.
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Reporting of ethical considerations*
There are no apparent ethical questions that relate directly to the project. There is no handling of personal data, and no  
animal or human trials. The dataset that will be used in the project has been processed so that faces and license plates are 
blurred. 

The project includes handling of personal data
No

The project includes animal experiments
No

Account of experiments on humans
No

Research plan

Ethical considerations

Specify any ethical issues that the project (or equivalent) raises, and describe how they will be addressed in your research. 
Also indicate the specific considerations that might be relevant to your application.

Research plan
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Magnus Oskarsson, 721024-4070 1

Research Programme

Purpose and aims
We choose to go to the moon in this decade and do the other things, not because
they are easy, but because they are hard.

John F. Kennedy 1962.

We should address hard questions in research, but in order to solve hard problems we should
use all available information in order to simplify our problem, and make our solution methods
more robust, accurate and fast. In this project we will look at geometric estimation problems in
computer vision, i.e. estimation of camera and 3D-geometry from image mesurements.
Where am I? This is a fundamental question we – as humans – address implicitly or explicitly
most of our waking hours. We use our eyes for navigational purposes on a local scale, avoiding
obstacles, finding objects etc., and on a more global scale in terms of finding our way when
moving around. The localization problem, i.e. estimating the position and the orientation of
a viewer or a camera given image data has attracted increasing attention over the past years.
In order to solve the localization problem we need to have methods that given image data,
estimates the position and orientation of the camera. We also need to relate the camera motion
to some map of the environment, typically based on a 3D reconstruction.
The typical pipeline for reconstruction begins with the extraction of features from the images,
with corresponding feature descriptors. The second step is an initial matching of features from
different images. From these matchings the geometry is estimated, often using some robust
estimation algorithm such as RANSAC. The final step is usually a non-linear refinement of
the solution, so called bundle adjustment. In all the steps we have to consider both gross er-
rors in our measurements (outliers) and errors following some error distribution (e.g. normally
distributed with some standard deviation). The ability to handle massive amounts of outliers
in the data is absolutely paramount. These outliers cause major problems for the non-linear
optimization methods, and can often result in local minima. Another problem is the speed of
convergence of the different parts of the reconstruction pipeline when the amount of input data
and estimated model parameters grows very large. To remedy this, new approaches using con-
vex optimization have been introduced in the computer vision community over the last years,
see e.g. [12, 15, 17, 38].
Today cameras are ubiquitous and image data is readily available. In addition to the pure image
data there is in many cases more information available both about the camera position and the
structure of the scene.
Some examples are:

• Positional information of cameras, from GPS measurements.

• Positional information of cameras, from Wifi signal strength measurements.

• Depth information of world points relative camera, from cameras with depth sensors.

• Orientation information of cameras, from accelerometer measurements.

• Local velocity and motion of cameras, from gyro measurements.
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a b c d

Figure 1: Comparison between SfM estimations for a city section. (a) Without using GPS cues
and (b) using GPS cues. Both reconstructions are registered to a GIS model of the city section.
Without using GPS information, the solution gets stuck in a local minimum. (c) The second
city section without using GPS cues and (d) using GPS cues. The solution without GPS looks
decent, but suffers from drift.

In many instances this additonal information is unreliable, with large amounts of noise and
incomplete. However, we believe that this information should be used in conjunction with the
image data in order to simplify the estimation problem, make it more robust and make it faster.
In order to fuse data from different modalities in a consistent way, it is important to work with
meaningful objective functions in the optimization as well as incorporate it in the camera motion
and 3D structure models in an appropriate way.
Our overall goal is to use the additional sensor information throughout the reconstruction pipeline.
We will in the preliminary work section give specific examples how this can be done. In Fig. 1
results from [36] (also described in the preliminary results section) are shown. In (b) using GPS
gives better intitial estimates, avoiding local minima in the final optimization, and in (d) using
GPS avoids problems with drift in the final optimization.
One of the co-applicants, Jan Erik Solem, is the founder of the crowdsourced photo mapping
company Mapillary. Through Mapillary we have access to over 10 million geo-referenced im-
ages with GPS data, accelerometer and magnetometer readings.

Survey of the Field
Today there exists a number of systems that can handle very large image sets and do reconstruc-
tion from these, see e.g. [2, 7, 27]. A big problem for many of these systems is the occurrence
of outliers in the data. Many approaches for robust estimation, based on the RANSAC frame-
work, have been proposed over the years, see e.g. [5]. Another approach for handling outliers
in a robust way is the L∞-framework, see [16, 17, 30] including recent extensions [26, 37].
Many of these approaches work well for large scale problems, but break down with large rates
of outliers. Solving computer vision problems using IMU or accelerometer data in addition
to visual data has been proposed in a number of previous papers. Some use it together with
RANSAC, [11, 19], while others use it to bootstrap the filtering process in SLAM type ap-
proaches, see [24, 28, 31, 25, 18, 33]. Many systems incorporate the positional information in
the final bundle adjustment, see e.g. [20, 29, 14, 32, 21, 22]. If the initial estimates are not good
enough this could lead to problems with local minima.
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Project Description
We will in this section describe the type of problems that we want to solve. We will be quite
general in our formulation, and we refer to the preliminary results section for a more technically
detailed description of the types of approaches that we will pursue.

Incorporating additional sensor data in initial estimates

One of the most difficult problems in computer vision is the correspondence problem. This is
the task of matching points in different images that are projections of the same world point,
or matching points in an image to their correposponding 3D model points. Humans solve this
task effortlessly, robustly and very fast. Much work has been done in order to develop good
feature detectors and descriptors that help solve the matching problem [23]. However in most
cases we will end up with many false matches which will be seen as outliers in the data. In
many cases the outlier rate can be up to 90% i.e. we have a large majority of outliers in our
data. One successful way of handling these very high amounts of outliers is the RANSAC [10]
paradigm (and variations thereof). It simply fits a model to a small amount of randomly chosen
data points and checks how many of the rest of the data points that fit this model. This is then
repeated a number of times, and in the end we choose the best model, i.e. the model that fits as
many points as possible. The main drawback of RANSAC is that the probability of picking n
inliers when fitting a model using n datapoints drops dramatically as n increases, if we have a
large amount of outliers in the data. This means that in order to handle large amounts of outliers
we ideally want models that can be estimated using a small number of data points. This is where
the additional sensor data comes in. If we have additional information on the geometry we can
use this to decrease the parameter space of our models.
Another recent way of handling outliers in the data is the method described in [9]. Here it was
shown how the number of outliers can be minimized in polynomial time. The theoretical result
is a consequence of the theory of KKT points. The trick is to introduce a dummy goal function
and then construct an algorithm for computing the complete set of KKT points to the resulting
optimization problem. For the details we refer to that paper. In order for this approach to be
tractable the dimension m of the parameter space should be small. Additional sensor data can
be used to constrain the geometry and reduce m.
In both these settings a basic building block of the algorithm is the fitting of a model to a mini-
mal set of data, a so called minimal problem. In computer vision these minimal problems tend
to (as direct consequence of the projection equations) lead to systems of multivariate polyno-
mial equations. So one of the main tasks is to develop fast new methods for solving specific
instances of geometric computer vision problems where we have incorporated additional sensor
information.

Problem 1 Construct methods for initial estimates in computer vision problems, that are very
robust to outliers and incorporate additional sensor measurements.

Incorporating additional sensor data in optimization (bundle adjustment)

After we have found an initial estimate of our model we usually want to refine this to get the
statistically correct solution given our data. Given some assumptions on the errors of the data
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this can in many cases be formulated as minimizing the L2 norm of the reprojection error with
respect to the model parameters, so called bundle adjustment.
If we have additional sensor data and under the (often valid) assumption that the different types
of errors are independent, it is statistically optimal to weigh the errors by their variance, see the
classic paper [3].
This leads in general to problems that are not convex and minimization using gradient descent
methods will lead to risks of getting stuck in local minima. In order to find a global minimum we
need to have either a very good initial solution or use more sophisticated optimization methods,
by relaxing the problem in some way.

Problem 2 Construct methods for optimization in computer vision problems, that are statisti-
cally valid and that incorporate additional sensor measurements.

Develop methodology for solving systems of polynomial equations

As stated before, solving minimal problems is an important tool in developing robust and fast
algorithms for computer vision. In many cases we can design an algorithm for a specific type of
polynomial system, but it would be very beneficial if we had a framework for solving a general
system of polynomial equations. This is a very difficult problem. A number of methods based
on algebraic geometry exist, see [4, 6]. We would like to continue the work in this direction. For
polynomials with coefficients in a finite field there are efficient computer systems for generating
Gröbner bases, see [8]. There are strong algebraic connections between the solution structure
of a given polynomial system with coefficients in a finite field and a corresponding system with
coefficients in R. We would like to exploit these connections to construct efficient algorithms
for finding the Gröbner bases of general systems of polynomial equations.

Problem 3 Construct general methods for solving systems of polynomial equations based on
algebraic geometry that are fast and numerically stable.

Significance
The use of image data has increased dramatically over the last years, and we believe that it
will continue to do so. Traditionally, images or photographs taken by people have been used
as just that, images of a certain moment or event. However the use of image data for other
purposes is increasing as the available data increases. The potential applications are numerous,
ranging from consumer applications such as localizing yourself in a new city to health aspects
such as artificial memory support for disabled persons, [13]. When moving from more technical
applications to more consumer oriented applications the need for very robust systems that do
not fail increases. We believe that using additional sensor information can dramatically improve
these aspects of computer vision systems.

Preliminary Results
We will in this section give preliminary results on two examples, which are taken from [35,
34, 36]. We will give some of the technical results from these papers that relate to the current
proposal. It should be noted however that both these examples are part of larger systems and
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that a number of system aspects have to be considered when designing the underlying algo-
rithms. Due to space limitations, there is no possibility to describe these aspects here. The first
example shows how knowledge of the gravitational vector can be used to simplify a system
for localization from images. In the experiments the gravitational vector was given by (quite
noisy) accelerometer readings available in many handheld phones and devices. We used this
information for removing outliers in the data in an optimal way. This is an example of Prob-
lem 1. The second example is part of a system for large scale city 3D reconstruction. In this
example we used positional cues given by GPS readings to make the optimization more robust
to drift and local minima. This is an example of Problem 2. These examples will hopefully give
the reader some insights both of the potential and difficulties in incorporating additional sensor
information in geometric computer vision problems.

Example 1. Using orientation measurements to bootstrap outlier removal and initial esti-
mates for localization

Our localization pipeline starts by matching SIFT features between the image and the model.
We then run a fast outlier removal algorithm to quickly eliminate a large amount of wrong
matches. Finally we run our minimal solvers exhaustively to find the best solution. In a number
of experiments we show that this approach works for both very large models and for outlier
rates up to more than 99%.
As described in [35] using the knowledge of the gravitational vector gives us a way to formulate
the pose estimation problem as a special instance of a registration problem, where we want to
find a planar rotation (around the gravitational vector) and a three dimensional translation. The
residual constraint for a point Ui can be formulated as

U ′i
T
EiU

′
i = 0, U ′i = RUi + t, (1)

where Ei is given by the error cone emanating from image point i. See Fig. 2 for a depiction.
We can minimize the number of outliers in polynomial time. In order to do this, we need to
define a goal function on the parameter space and then construct a set of solvers that finds all
the KKT points to the constructed optimization problem. The main theorem from [9] shows
that one of the solution points generated in this way will be optimal with respect to the number
of outliers. First we decide on a goal function f on the parameter space. Normally a linear goal
function will yield the simplest equations. For k = 1, . . . , 4 we need to solve the following
problem:

Given a subset S of k residuals compute all points satisfying ei = ε for ei ∈ S such
that the gradients of f , the residuals in S and the embedding constraints are linearly
dependent.

We will need a specialized solver for each k. One of the solution points generated in this way
will be optimal with respect to the number of outliers.
For our application, each of these problems can be formulated as the solution to a system of
polynomial equations. We will briefly describe how we construct the 4-Point Solver. The
parameter space can be embedded in R5 by setting

R =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 =

 a −b 0
b a 0
0 0 1

 (2)
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R,t

Figure 2: The registration problem for points lying on cones: Find a 3D translation and a planar
rotation so that the 3D points lie on or within the error cones.

and adding the embedding constraint a2 + b2 = 1. The first four equations from (1) are in
general full second degree polynomials in the five variables (a, b, tx, ty, tz). Together with the
embedding constraint this yields a system of five quadratic equations, which can be solved with
the techniques from [4, 6]. This typically yields 28 solutions, but rarely more than 8 real-valued
ones. We have implemented a fast solver where the most time consuming step is doing a QR
factorization of a 280 × 252 matrix. On a desktop computer the running time for this type of
solver is in the order of a few milliseconds.

Example 2. Using positional cues such as GPS to make robust 3D reconstructions

The reprojection error for an image point can be written as

rij(θ) =

∥∥(aTijθ, bTijθ)∥∥
cTijθ

, (3)

where aij , bij and cij are measured entities, and θ are the parameters we want to estimate
(camera and 3D structure). The maximum likelihood solution is given by minimizing the L2-
norm of the reprojection errors, given by

minimize
θ

∑
i,j

r2ij(θ). (4)

This is not a convex problem, and only local methods exist, which cannot guarantee that the
optimal solution is found. One way of handling this is to instead minimize the L∞-norm of the
errors, see [12],

minimize
θ

max
i,j

rij(θ). (5)

Using the L∞-norm instead of the L2-norm, makes it possible to find the global minimum. To
see why, we start by rewriting the problem as

minimize
θ,ε

ε s.t. (6)

rij(θ) ≤ ε ∀ i, j. (7)
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Here ε is minimized and since ε ≥ rij(θ) for all i and j, ε has to take the same value as the
largest residual maxi,j rij(θ). Therefore the two formulations are equivalent.
Since the depth is positive, we can use (3) to rewrite the constraints in problem (6), giving us

minimize
θ,ε

ε s.t.∥∥(aTijθ, bTijθ)∥∥ ≤ ε cTijθ ∀ i, j.
(8)

When ε and all aij , bij and cij are known these are second-order cones, and this problem can be
minimized using bisection over ε.
In real world scenarios, incorrect point matches, i.e. outliers in the data, will prevent us from
minimizing ε enough to get good reconstructions. We will here present a minimization scheme
that can be used to remove outliers in a way similar to [30]. We start by fixing ε, making it a
threshold for inliers. Using auxiliary variables, sij we allow the reprojection errors to become
larger than the prescribed threshold ε. We then minimize the sum of all sij under the constraint
that all sij ≥ 0. The optimization problem becomes

minimize
θ,sij

∑
i,j sij s.t.

sij ≥ 0∥∥(aTijθ, bTijθ)∥∥ ≤ ε cTijθ + sij ∀ i, j.
(9)

In general the global scale can never be recovered in structure from motion. In order to avoid
the trivial solution C = 0 and U = 0, for all cameras and points, we fix the scale by enforcing all
depths to be larger than, or equal to, 1. Note that as our formulation has a bias towards smaller
reconstructions, there is no risk that the scale will increase towards infinity.
Having solved (9), all outliers can be purged from our problem by removing all image points
uij for which sij > 0. Thus, solving one convex optimization problem, we get a solution with
maximum reprojection error smaller than ε.
Probably the most readily available measurements, besides the image itself, is GPS-data. Thus
we decided to use such information in our framework. Again the scale ambiguity produces a
small problem. We require all depths to be larger than 1 and introduce an unknown scale factor
on the GPS measurements. With Ĉj denoting a position measurement for camera j, the GPS
error is ∥∥∥ςĈj − Cj∥∥∥

ς
, (10)

where ς is the unknown scaling factor.
By taking camera measurements into consideration in the initial outlier removal step, the set of
feasible solutions shrinks, hence, reducing the risk that an outlier fits into the solution. Although
GPS measurements can be rather noisy it is uncommon with outlier measurements, so we can
use hard constraints on the form

∥∥∥ςĈi − Ci∥∥∥ ≤ ςω, where ω is some predefined error threshold.
As we have seen, using a bisection algorithm, we can find the optimal solution to the L∞
problem, but what we really want to minimize is more similar to the L2-norm of the reprojection
errors.We can formulate an approximation to the L2-norm as a second-order cone program
(SOCP). We start by looking at the squared reprojection error for one point u (dropping the
indices to improve readability),

r2(θ) =

(
aT θ
)2

+
(
bT θ
)2

(cT θ)2
. (11)
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This function is non-convex and hard to optimize. Hence, we replace the denominator, with
λ̂cT θ, where λ̂ is the approximative depth that we obtained from the robust reconstruction
scheme proposed previously. The resulting function,

r2(θ) =

(
aT θ
)2

+
(
bT θ
)2

λ̂ cT θ
, (12)

can be shown to be convex.

From (10) we see that a squared GPS residual has the form ‖ςĈj−Cj‖2
ς2

. Since this is the same
form as the squared reprojection errors we can use the same idea to get a convex formulation.
First we replace the denominator with ς̂ ς , where ς̂ is the approximate scale factor obtained from
the initial robust reconstruction step. This gives

minimize
θ,qi,ς

∑
i

qi s.t. (13)∥∥∥∥( 2(ςĈi − Ci)
qi − ς̂ ς

)∥∥∥∥ ≤ qi + ς̂ ς . (14)

Note that without the depth-constraints presented earlier, this formulation does not make sense
since an optimal solution is to set all variables to zero.
The results of the proposed approach on a real data-set can be seen in Fig. 1.

Equipment
As dataset for research we have access to Mapillary[1] images. This dataset is currently consti-
tuted of over 10 million geo-referenced images with GPS data, accelerometer and magnetometer
readings collected from smartphones. In total these cover 300 000 km.
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[24] Oleg Naroditsky, Zhiwei Zhu, Aveek Das, Supun Samarasekera, Taragay Oskiper, and Rakesh
Kumar. Videotrek: A vision system for a tag-along robot. In Conf. Computer Vision and Pattern
Recognition, 2009.
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[25] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In Proc. Conf. Computer Vision and
Pattern Recognition, Washington DC, 2004.

[26] C. Olsson, A. Eriksson, and R. Hartley. Outlier removal using duality. In Conf. Computer Vision
and Pattern Recognition, 2010.

[27] Carl Olsson and Olof Enqvist. Stable structure from motion for unordered image collections. In
SCIA 2011, 2011.

[28] Taragay Oskiper, Zhiwei Zhu, Supun Samarasekera, and Rakesh Kumar. Visual odometry system
using multiple stereo cameras and inertial measurement unit. In Conf. Computer Vision and Pattern
Recognition, 2007.

[29] Timo Pylvanainen, Lixin Fan, and Vincent Lepetit. Revisiting the pnp problem with a gps. In
International Symposium on Visual Computing 2009, 2009.

[30] K. Sim and R. Hartley. Removing outliers using the L∞-norm. In Conf. Computer Vision and
Pattern Recognition, 2006.

[31] Bastian Steder, Giorgio Grisetti, Slawomir Grzonka, Cyrill Stachniss, Axel Rottmann, and Wolfram
Burgard. Learning maps in 3d using attitude and noisy vision sensors. In Intelligent Robots and
Systems, 2007.

[32] C. Strecha, T. Pylvanainen, and P. Fua. Dynamic and scalable large scale image reconstruction. In
Proc. Conf. Computer Vision and Pattern Recognition, Colorado springs, USA, 2010.

[33] D. Strelow and S. Singh. Motion estimation from image and inertial measurements. Int. Journal of
Robotics Research, 23(12):1157–1195, 2004.

[34] Linus Svärm. Efficient Optimization Techniques for Localization and Registration of Images. PhD
thesis, Centre for Mathematical Sciences LTH, Lund University, Sweden, 2015.

[35] Linus Svärm, Olof Enqvist, Magnus Oskarsson, and Fredrik Kahl. Accurate localization and pose
estimation for large 3d models. In Conf. Computer Vision and Pattern Recognition, 2014.

[36] Linus Svärm and Magnus Oskarsson. Structure from motion estimation with positional cues. In
Scandinavian Conf. on Image Analysis, 2013.

[37] J. Yu, A. Eriksson, T.-J. Chin, and D. Suter. An adversarial optimization approach to efficient
outlier removal. In Int. Conf. Computer Vision, 2011.

[38] C. Zach and M. Pollefeys. Practical methods for convex multi-view reconstruction. In Proc. 11th
European Conf. on Computer Vision, Heraklion, Greece, 2010.
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My application is interdisciplinary

An interdisciplinary research project is defined in this call for proposals as a project that can not be completed 
without knowledge, methods, terminology, data and researchers from more than one of the Swedish Research Councils 
subject areas; Medicine and health, Natural and engineering sciences, Humanities and social sciences and Educational 
sciences. If your research project is interdisciplinary according to this definition, you indicate and explain this here.

Click here for more information

Scientific report/Account for scientific activities of previous project

Interdisciplinarity
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Applicant Magnus Oskarsson 25

Dedicated time for this project

Applicant
Magnus
Oskarsson

25 207,000 213,000 220,000 226,000 866,000

Participating researcher Jan Erik Solem 10 83,000 85,000 88,000 90,000 346,000

Other personnel without doctoral
degree

Doktorand 80 367,000 378,000 389,000 401,000 1,535,000

Total 657,000 676,000 697,000 717,000 2,747,000

Salaries including social fees

Budget and research resources

Project staff

Describe the staff that will be working in the project and the salary that is applied for in the project budget. Enter the full 
amount, not in thousands SEK.

Participating researchers that accept an invitation to participate in the application will be displayed automatically under 
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Kontor 38,000 38,000 39,000 41,000 156,000

Total 38,000 38,000 39,000 41,000 156,000

Premises

Resor Konferensresor 30,000 30,000 30,000 30,000 120,000

Utrustning Datorer,kameror 20,000 20,000 20,000 20,000 80,000

Total 50,000 50,000 50,000 50,000 200,000

Running Costs

Depreciation costs

Salaries including social fees 657,000 676,000 697,000 717,000 2,747,000 2,747,000

Running costs 50,000 50,000 50,000 50,000 200,000 200,000

Depreciation costs 0 0

Premises 38,000 38,000 39,000 41,000 156,000 156,000

Subtotal 745,000 764,000 786,000 808,000 3,103,000 0 3,103,000

Indirect costs 299,000 308,000 318,000 327,000 1,252,000 1,252,000

Total project cost 1,044,000 1,072,000 1,104,000 1,135,000 4,355,000 0 4,355,000

Total budget

Describe the other project costs for which you apply from the Swedish Research Council. Enter the full amount, not in 
thousands SEK.

Type of premisesType of premises 20162016 20172017 20182018 20192019 TotalTotal

1

Running CostRunning Cost DescriptionDescription 20162016 20172017 20182018 20192019 TotalTotal

1

2

Depreciation costDepreciation cost DescriptionDescription 20162016 20172017 20182018 20192019

Total project cost

Below you can see a summary of the costs in your budget, which are the costs that you apply for from the Swedish 
Research Council. Indirect costs are entered separately into the table.

Under Other costs you can enter which costs, aside from the ones you apply for from the Swedish Research Council, that 
the project includes. Add the full amounts, not in thousands of SEK.

The subtotal plus indirect costs are the total per year that you apply for.
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Explanation of the proposed budget*
Salaries
M. Oskarsson will work 25% in the project and J.E. Solem will work 10% in the project. This includes both research and 
supervision of a PhD student. 
The main part of the project is a new PhD student. He/she will work 20% with department work, most likely teaching and 
80% with PhD studies. The department currently adds an OH-cost corresponding to approximately 45% and 5.7% for 
offices. The cost for "lönekostnadspålägg" (incl. pension etc.) currently corresponds to 51.33% (i.e. LKP = 1:5133). 
The inflation in Sweden was approximately 3% in 2011. In the budget I am assuming that the salary increases with 3% per 
year.

Equipment and Travel

The equipment budget is relatively thin. We plan to use some computers with large amounts of memory and several cores. 
Results will be disseminated in top-tier conferences and in journal publications. In the budget we have planned for such 
travel for the PhD student and the senior researchers.
 

Other funding for this project

Briefly justify each proposed cost in the stated budget.

Other funding

Describe your other project funding for the project period (applied for or granted) aside from that which you apply for from 
the Swedish Research Council. Write the whole sum, not thousands of SEK.

FunderFunder Applicant/project leaderApplicant/project leader Type of grantType of grant Reg no or equiv.Reg no or equiv. 20162016 20172017 20182018 20192019
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B: CV Magnus Oskarsson

Docent Magnus Oskarsson
Home address:
Tegelv. 21
227 30 Lund
Tel: 046 - 396789.

1 Higher education qualification

ECMI Postgraduate programme Mathematics for industry, the European Consortium for Mathematics
in Industry, February 1 2002.
Licentiate in Engineering Centre for Mathematical Sciences, Engineering faculty, Lund University,
May 3 2000, ”One-dimensional Retina Vision with Applications in Structure and Motion Estimation”.
Supervisor Kalle Åström.
Master of Science Engineering Physics, 1997. Masters thesis: ”Creation and Propagation of Spiral
Waves in Myocardial tissue”.

2 Doctoral degree

PhD Centre for Mathematical Sciences, Engineering faculty, Lund University, 2003, ”Solutions and their
ambiguities for structure and motion problems”. Supervisor Kalle Åström.

3 Postdoctoral positions

Lund Univeristy, 40 % position at the department of cell and organism biology, 2006-2010.

4 Qualification required for appointments as a docent

LTH Docent, Lund University, 140124 to present.

5 Current position

LTH Associate professor at the Centre for Mathematical Sciences, Lund University, 090801 to present.

6 Previous positions and periods of appointment

LTH Researcher at the Centre for Mathematical Sciences, Lund University, 080101 to 090801. The
position includes 40% research and 60% teaching.
LTH Assistant professor at the Centre for Mathematical Sciences, Lund University, 030101 to 071230.
The position includes 75% research and 25% teaching.
LTH Temporary lecturer at the Centre for Mathematical Sciences, 2003. LTH PhD student position
970901-021230. The position includes 80% research studies and 20% teaching.
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Kockums summer intern June-August 1998, Simulating electric systems for use under water. Kockums
builds submarines. Sundlink Contractors summer intern July-August 1997, Doing ground investigations
in Öresund. Sundlink Contractors built the bridge between Malmö, Sweden and Copenhagen, Denmark.

7 Interruption in research

Paternity leave Astrid: Paternity leave 100701-101231, Kerstin: Paternity leave 110101-110630 and
Valter: Paternity leave 140901-141231

8 Supervision

Have been the main supervisor of one PhD-student: Linus Svärm.

9 Other information of relevance to the application

Supervision
Has supervised 36 masters thesis students.
Currently co-supervising two PhD-students: Has co-supervised four PhD-student: Henrik Stewénius,
Klas Josephson, Erik Ask and Yubin Kuang.
Research Projects
I have participated in applying for, planning and executing research within the projects:
SSF VINST (Wearable Visual Information Systems), 2009-2014.
Vinnova Autometa (Automatisk generering, access och sökning på bildmetadata i mobila enheter), 2007-
2009.
EU FP6 SMERobot, 2005-2008.
Toyota Dimlight vision. Externally financed project, 2005-2008.
VR Geometry of multi-camera platforms, 2005-2008.
SSF VISCOS 2 (Vision in cognitive systems, continuation), 2007-2008.
SSF VISCOS (Vision in cognitive systems), 2003-2006.
EU IST-2001-34405 LAVA (Learning for Adaptable Visual Assistants), 2002-2005.
VR Artificial visual systems, 2001-2002.
NDC Externally financed project for development of computer vision for autonomous guided vehicles.
A product called Autosurveyor II was released in spring 1999.
Patents
2 patents.
Awards Winner of Venture cup south 2009/2010
Third place Venture cup Sweden 2009/2010
Nocturnal Vision AB (which I co-founded in 2011) received one of the Vinn Nu awards 2010.
Nocturnal Vision AB (which I co-founded in 2011) was on the Swedish Institute’s list of the top 20
innovations in 2011.

21 / 36



Jan Erik Solem, 760128-9411 1/2

Curriculum Vitae for Jan Erik Solem

March 25, 2015

Personal data:

Name: Jan Erik Solem
Date-of-birth: 28 January 1976
Nationality: Norwegian
Marital status: Married
Address: Ottars väg 4, 237 31 Bjärred

Academic degrees

2006 Ph.D. (Teknologie Doktor) in Applied Mathematics at LTH, Lund University, Sweden.
Title: Variational Problems and Level Set Methods in Computer Vision – Theory and
Applications. Advisor: Professor Anders Heyden.

2004 Tekn.Lic. (Teknologie Licentiat) in Applied Mathematics at LTH, Lund University, Swe-
den. Title: Variational Surface Fitting for Computer Vision Problems. Advisor: Professor
Anders Heyden.

2001 M.Sc. (Civ. ing.) in Engineering Physics from Lund Institute of Technology, Sweden.
Title: Compression of Fingerprint Template Images.

1995 High school degree (Gymnasieexamen) from Spyken, Lund.

Current positions

Sep 2013– CEO and Founder, Mapillary AB

Jan 2009– Associate Professor (on part time leave), Centre for Mathematical Sciences, Lund
University, Sweden.

Former positions

Jan 2013–Jul 2013 Computer Vision Researcher, Apple AB, Sweden.

Oct 2010–Dec 2012 Engineering Manager, Apple Inc, Cupertino, CA, USA.

Jul 2006–Sep 2010 CTO and Founder, Polar Rose AB, MalmÃű, Sweden.

Nov 2004–Jul 2006 CEO and Founder, Polar Rose AB, MalmÃű, Sweden.

Jul 2002–Sep 2006 Ph.D.-student at the Applied Mathematics Group, School of Technology
and Society, Malmö University, Sweden.

Jan 2002–Jun 2002 Research Engineer, Dept. of Mathematics, Lund Institute of Technology,
Sweden.

Aug 2001–Dec 2001 Degree Thesis, Precise Biometrics AB, Lund, Sweden.
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Supervision record:
Assistant PhD advisor for Fangyuan Jiang, Erik Ask, Yubin Kuang (Lund University), Christian
Andersson (Malmö University).
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C: Magnus Oskarsson, 721024-4070 1

C: List of publications 2008-2015 Magnus Oskarsson
Publication list extracted from Mathematical Imaging Group
http://www.maths.lth.se/vision/publications/.
Citation counts from Google Scholar.
http://scholar.google.com/citations?hl=sv&user=zErxvQoAAAAJ

1 Peer-reviewed original articles
1. E. Warrant, M. Oskarsson and H. Malm, The Remarkable Visual Abilities of Noctur-

nal Insects: Neural Principles and Bioinspired Night-Vision Algorithms. Proceedings of
IEEE, 102(10): 1411-1426, 2014, Number of citations: 1.

2. A. Garm, M. Oskarsson and D.E. Nilsson, Box jellyfish use terrestrial visual cues for
navigation, Current Biology, 21:9, 798-803, 2011, Number of citations: 36.

3. C. Olsson, F. Kahl and M. Oskarsson. Branch and Bound Methods for Euclidean Reg-
istration Problems. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(5): 783-794, 2009, Number of citations: 42.

2 Peer-reviewed conference contributions
4. (*) F. Jiang, M. Oskarsson and K. Åström, On the Minimal Problems of Low-Rank Matrix

Factorization, In Proc. Computer Vision and Pattern Recognition, Boston, USA, 2015.

5. M. Oskarsson, Democratic tone mapping using optimal K-means clustering, In Proc.
Scandinavian Conference on Image analysis, Copenhagen, Denmark, 2015.

6. M. Oskarsson, Regularizing image intensity transformations using the Wasserstein met-
ric, In Proc. Scandinavian Conference on Image analysis, Copenhagen, Denmark, 2015.

7. (*) L. Svärm, O. Enqvist, F. Kahl, and M. Oskarsson, Improving robustness for inter-
subject medical image registration using a feature-based approach, In Proc. International
Symposium on Biomedical Imaging, New York, USA, 2015, Number of citations: 1.

8. R. Weegar, L. Hammarlund, A. Tegen, M. Oskarsson, K. Åström, and P. Nugues, Vi-
sual Entity Linking: A Preliminary Study, In Proc. AAAI 2014 Workshop on Cognitive
Computing for Augmented Human Intelligence, 2014.

9. (*) L. Svärm, O. Enqvist, M. Oskarsson and F. Kahl, Accurate Localization and Pose
Estimation for Large 3D Models, In Proc. Computer Vision and Pattern Recognition,
Columbus, USA, 2014.

10. Y. Kuang, M. Oskarsson and K. Åström, Revisiting Trifocal Tensor Estimation using
Lines, ICPR 2014. 22th International Conference on Pattern Recognition, Stockholm,
Sweden, 2014.
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11. A. Tegen, R. Weegar, L. Hammarlund, M. Oskarsson, F. Jiang, D. Medved, P. Nugues and
K. Åström, Image Segmentation and Labeling Using Free-form Semantic Annotation,
ICPR 2014. 22th International Conference on Pattern Recognition, Stockholm, Sweden,
2014, Number of citations: 1.

12. (*) M. Oskarsson, K. Åström and A. Torstensson, Prime Rigid Graphs and Multidimen-
sional Scaling with Missing Data, ICPR 2014. 22th International Conference on Pattern
Recognition, Stockholm, Sweden, 2014.

13. D. Medved, F. Jiang, P. Exner, M. Oskarsson, P. Nugues and K. Åström, Combining
Text Semantics and Image Geometry to Improve Scene Interpretation, Proceedings of
ICPRAM 2014 The 3rd International Conference on Pattern Recognition Applications
and Methods, Angiers, France, 2014, Number of citations: 2.

14. (*) L. Svärm and M. Oskarsson, Structure from Motion Estimation with Positional Cues,
In Proc. Scandinavian Conference on Image Analysis, Espoo, Finland, 2013.

15. Y. Kuang, K. Åström, L. Kopp, M. Oskarsson, Magnus and M. Byröd, Optimizing visual
vocabularies using soft assignment entropies, ACCV 2010, Number of citations: 2.

16. C. Olsson and M. Oskarsson. A Convex Approach to Low Rank Matrix Approximation
with Missing Data. In Proc. Scandinavian Conference on Image Analysis, Oslo Norway,
2009, Number of citations: 7.

3 Monographs

4 Research review articles

5 Books and book chapters
17. M. Oskarsson, H. Malm and E. Warrant, Nightvision, Biologically-inspired Computer

Vision – Fundamentals and Applications, Wiley, 2015.

18. A. Heyden, F. Kahl, C. Olsson, M. Oskarsson, and X-C. Tai (Editors), Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition: 9th International Conference,
EMMCVPR Lund, Sweden, 2013.

19. E. Warrant, M. Oskarsson and H. Malm, A Night Vision Algorithm Inspired by the Visual
System of a Nocturnal Bee, Biomimetics in Photonics, Taylor & Francis, 2012

20. H. Malm, M. Oskarsson and E. Warrant, Biologically inspired enhancement of dim light
video, Frontiers in Sensing, Springer 2012, Number of citations: 1.
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6 Patents
21. H. Malm, E. Warrant, J. Ambeck-Madsen, H. Yanagihara and M. Oskarsson. A method,

an apparatus and a computer-readable medium for processing a night vision image dataset
US Patent 8,139,889, EP Patent 2,057,601, WO Patent 2,008,019,846 2012.
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List of Publications

Thesi

[1] Solem, J. E., Variational Problems and Level Set Methods in Computer Vision – Theory and
Applications, Ph.D. Thesis, Dept of Mathematics, Lund University/LTH, 2006. Best Nordic PhD-
thesis in the field of Image Analysis and Pattern Recognition in the period 2005-2006.

[2] Solem, J. E., Variational Surface Fitting for Computer Vision Problems, Licentiate Thesis, Dept of
Mathematics, Lund University/LTH, 2004.

Book Chapters

[3] Fuhrer, C., Solem, J.E., Verdier, O., Computing with Python, Pearson, 2013. (ISBN-13: 978-
0273786436)

[4] Solem, J.E., Programming Computer Vision with Python, O’Reilly Media, 2012. (ISBN 978-1-
4493-1654-9)

[5] Overgaard, N.C., Solem, J.E., Separating Rigid Motion for Continuous Shape Evolution, in Progress
in Computer Vision and Image Analysis, Horst Bunke et al. (Eds), World Scientific, Series in Ma-
chine Perception and Artificial Intelligence vol. 73, 2010.

[6] Solem, J. E., Overgaard, N.C., Region-Based Variational Problems and Normal Alignment – Ge-
ometric Interpretation of Descent PDEs, in Xue-Cheng Tai, Knut-Andreas Lie, Tony F. Chan and
Stanley Osher (Eds.): Image Processing Based on Partial Differential Equations, Springer-Verlag
2007 (ISBN 978-3-540-33266-9).

Journal Papers

[7] Overgaard, N.C., Solem, J. E., Separating Rigid Motion for Continuous Shape Evolution, Elec-
tronic Letters in Computer Vision and Image Analysis (ELCVIA); Special issue on Partial Differ-
ential Equation methods in Graphics and Vision, Accepted for publication, 2007.

[8] Solem, J. E, Aanæs, H., Heyden, A., Variational Surface Interpolation from Sparse Point and
Normal Data, IEEE Trans. Pattern Analysis and Machine Intelligence, volume 29, no 1, January
2007.

[9] Solem, J. E, Heyden, A., Reconstructing Open Surfaces from Image Data, International Journal
of Computer Vision, volume 69, issue 3, September 2006.

Refereed Conferences

[10] Kuang, Y., Solem, J.E., Kahl, F., Astrom, K., Minimal Solvers for Relative Pose with a Single Un-
known Radial Distortion, in Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

[11] Jiang, F., Kuang, Y., Solem, J.E., Astrom, K., A Minimal Solution to Relative Pose with Unknown
Focal Length and Radial Distortion, in Proc. Asian Conference on Computer Vision (ACCV),
2014.

[12] Marcel, S., van Zwol, R., Baeza-Yates, R.A., Heckmann, O., Solem, J.E, Oomen, J., van Gagel-
donk, H., Gehrig, J-P, Vives, X., Sumengen, B., Media on the web, in post-production and broad-
casting: the practitioner day of the ACM 2009 International Conference on Image and Video
Retrieval, in CIVR, 2009.

[13] Netzell, K. and Solem, J.E., Efficient Image Inner Products Applied to Active Appearance Models,
in Proc. International Conference on Pattern Recognition, 2008.
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[14] Solem, J. E., Heyden, A., Variational Segmentation using Dynamical Models for Rigid Motion,
Proc. 15th Scandinavian Conference on Image Analysis, 2007.

[15] Overgaard, N.C., Solem, J. E., The Variational Origin of Motion by Gaussian Curvature, Proc.
First International Conference on Scale Space Methods and Variational Methods in Computer
Vision, 2007.

Earlier publications at http://www.maths.lth.se/matematiklth/personal/solem/publications.html.

Published Patents and Applications

[16] 3D object recognition: US8064685 (granted)

[17] Method of computing global-to-local metrics for recognition : US8488873 (granted)

[18] Auto-recognition for noteworthy objects: US8755610 (granted)

[19] Voice-based image tagging and searching: WO2014004536 A3, US20130346068 (application)

[20] Method and System of Detecting Events in Image Collections: WO2011051091A1, US20110099199
(application)

[21] Method of Localizing Landmark Points in Images: WO2011042371A1, US20110080402 (appli-
cation)

[22] Face feature vector construction: WO2013095727A1, US20130155063 (application)

[23] Image group processing and visualization: US20140218353 (application)

[24] Method and system for generating and labeling events in photo collections: WO2011051091,
EP2494471 (application)

[25] Combining Multiple Image Detectors: US20140050404 (application)

[26] Identifying and Parameterizing Roof Types in Map Data: US20130321392 (application)

[27] Automatic image orientation and straightening through image analysis: WO2014042764, US20140071308
(application)

[28] Automatic Detection of Noteworthy Locations: US20130300830 (application)

[29] Presence Sensing: US20120287035 (application)

[30] Object Landmark Detection in Images: US20140355821 (application)

Open Source Software

[31] PCV: Open source Python module for computer vision, https://github.com/jesolem/PCV. (main
contributor)

[32] OpenSfM: Open Source Structure from Motion pipeline, https://github.com/mapillary/OpenSfM.
(contributor)

[33] geo-tools: Collection of Python modules for working with geo data, https://github.com/jesolem/geo-
tools. (main contributor)
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Gender: Ma l e

Doctorial degree: 2003-01-16
Academic title: Doce nt
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Dissertation title (swe)

Dissertation title (en)
Solutions  and their ambiguities  for structure and motion problems

Organisation
Lunds univers i tet, Sweden
Sweden - Higher education Insti tutes

Unit
Matematikcentrum 107150

Supervisor
Kal le Åström

Subject doctors degree
10199. Annan matematik

ISSN/ISBN-number
91-628-5461-5

Date doctoral exam
2003-01-16

Name:Ja n Eri k Sol e m
Birthdate: 19760128
Gender: Ma l e

Doctorial degree: 2006-09-29
Academic title: Doktor
Employer: No curre nt e mpl oye r

Research education

CV
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Dissertation title (swe)

Dissertation title (en)
Variational  Problems and Level  Set Methods in Computer Vis ion - Theory and Appl ications

Organisation
Lunds univers i tet, Sweden
Sweden - Higher education Insti tutes

Unit
Matematikcentrum 107150

Supervisor
Anders  Heyden

Subject doctors degree
10199. Annan matematik

ISSN/ISBN-number Date doctoral exam
2006-09-29

Name:Ma gnus  Os ka rs s on
Birthdate: 19721024
Gender: Ma l e

Doctorial degree: 2003-01-16
Academic title: Doce nt
Employer: Lunds  uni ve rs i te t

Research education

Publications
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Name:Ja n Eri k Sol e m
Birthdate: 19760128
Gender: Ma l e

Doctorial degree: 2006-09-29
Academic title: Doktor
Employer: No curre nt e mpl oye r

Oskarsson, Magnus has not added any publications to the application.

Publications
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Solem, Jan Erik has not added any publications to the application.

Register

Terms and conditions

The application must be signed by the applicant as well as the authorised representative of the administrating

organisation. The representative is normally the department head of the institution where the research is to be

conducted, but may in some instances be e.g. the vice-chancellor. This is specified in the call for proposals.

The signature from the applicantconfirms that:

the information in the application is correct and according to the instructions form the Swedish Research

Council

any additional professional activities or commercial ties have been reported to the administrating

organisation, and that no conflicts have arisen that would conflict with good research practice

that the necessary permits and approvals are in place at the start of the project e.g. regarding ethical

review. 

The signature from the administrating organisation confirms that:

the research, employment and equipment indicated will be accommodated in the institution during the

time, and to the extent, described in the application

the institution approves the cost-estimate in the application

the research is conducted according to Swedish legislation.

The above-mentioned points must have been discussed between the parties before the representative of the

administrating organisation approves and signs the application.

Project out lines are not signed by the administrating organisation. The administrating organisation only sign the

application if the project outline is accepted for step two.

Applications with an organisation as applicant is automatically signed when the application is registered.
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