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Project title (Swedish)*
Resilient kontroll design för överlägsen prestanda och tillämpning på underaktuerade robotteknik och mobil hydraulik.

Project title (English)*
Resilient control design for superior performance and application to underactuated robotics and mobile hydraulics.

Abstract (English)*
The next generation of control systems solutions requires a high level of reliability and resilience under the presence of 
external perturbations, uncertainties and failures. In this context, one of the main goals of this project is the development of
resilient control algorithms where the control effort should be able to react, compensate and maintain the desired 
performance in complex scenarios. This includes emerging areas in control and robotics as well as industrial applications 
where the environment and operation conditions are not always propitious, and perturbations and failures are part of the 
everyday life. Additionally, an acceptable performance under noise and uncertainty in measurements as well as in 
communications channels should be guaranteed.
One of the objectives of the proposed project is to develop resilient control/observation algorithms for emerging complex 
tasks in robotics. The study will be supported by the Lyapunov analysis and it will exploit the Partial Stability approach, 
vector and discontinuous Lyapunov functions. The project will continue for two years covering three main activities: 
Design of new resilient control algorithms for multi-input multi-output nonlinear systems, design of robust methods for 
observation and differentiation under noise and uncertainty in measurements as well as in communications channels and 
new advanced motion control design applications including underactuated robotics and mobile hydraulics.
Because of the importance of industrial robotics, where the creation of resilient solutions is of great value, we think this 
problem needs to be further investigated.  Moreover, this proposal give a step forward to obtain a better understanding of 
the related phenomena.  On the other hand the extension of the method of Lyapunov functions, including the partial 
stability approach, discontinuous and vector Lyapunov functions, to the class of multi-input multi-output systems is very 
important from a practical point of view, since it can offer valuable information to the control designer, opening new 
possibilities in different fields of control systems and underactuated robotics.

Popular scientific description (Swedish)*
Nästa generation av styrsystem lösningar kräver en hög grad av tillförlitlighet och motståndskraft under närvaro av externa
störningar, osäkerhet och misslyckanden. I detta sammanhang är en av de viktigaste målen för detta projekt att utveckla 
fjädrande styralgoritmer där styr ansträngningar bör kunna reagera, kompensera och upprätthålla den önskade prestanda i 
komplexa scenarier. Detta inkluderar framväxande områden inom kontroll och robotik samt industriella tillämpningar där 
miljö- och driftsförhållanden inte alltid gynnsamma och störningar och misslyckanden är en del av vardagen. Dessutom bör
en acceptabel prestanda under väsen och osäkerhet i mätningar samt i kommunikationskanaler garanteras och detta förslag 
ger ett steg framåt för att få en bättre förståelse av de relaterade fenomen. Den fjädrande styrning / observation designen är
relaterade med tre viktigaste egenskaperna: ändligt-tidskonvergens, exponentiellt värde och slutlig boundedness. Dessa 
problem kan hanteras av lyapunovfunktioner metoder. Däremot är design av strikta Lyapunovfunktioner inte en enkel 
uppgift där ofta lämplig utformning innefattar icke-släta, icke-Lipschitz eller ens diskontinuerliga Lyapunovfunktioner. 
Förlängningen av metoden för lyapunovfunktioner, inklusive den partiella synsätt stabilitet, diskontinuerliga och vektor 
Lyapunovfunktioner, den klass av multi-input multi-output system är också viktigt ur praktisk synvinkel, eftersom den kan 
ge värdefull information till kontroll formgivare, öppnar nya möjligheter inom olika områden av styrsystem och 
underaktuerade robotik.
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2
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Resilient control design for superior performance and application to
underactuated robotics and mobile hydraulics.

Carlos Vázquez.

March 30, 2015

Abstract

The next generation of control systems solutions requires a high level of reliability and resilience
under the presence of external perturbations, uncertainties and failures. In this context, one of the
main goals of this project is the development of resilient control algorithms where the control effort
should be able to react, compensate and maintain the desired performance in complex scenarios.
This includes emerging areas in control and robotics as well as industrial applications where the
environment and operation conditions are not always propitious, and perturbations and failures are
part of the everyday life.

Expected outcomes of the project are:

• Resilient control algorithms for multi-input multi-output nonlinear systems.

• Robust methods for observation and differentiation under noise and uncertainty in measure-
ments as well as in communications channels.

• New advanced motion control design applications for underactuated systems, industrial forestry
cranes and tractor front loaders.

1 Introduction

The design of control laws under the presence of heavy uncertainty conditions is one of the main

problems of modern control theory, including noise and uncertainty in measurements as well as in

communications channels. In this context, the strict stability analysis is usually related to three specific

properties: finite-time convergence, exponential rate and ultimate boundedness. These problems can

be handled by Lyapunov functions methods. However, the design of strict Lyapunov functions is not

a simple task where frequently the appropriate design includes non-smooth, non-Lipschitz or even

discontinuous Lyapunov functions.

To analyze asymptotic stability of the origin, it is sufficient to find a continuous positive definite

function V (·) such that for any trajectory of the system the function V is monotonically decreasing.

The case were the function V (·) is continuously differentiable has been widely studied in literature,

see [21]. Recently, in [38] and [37], some results concerning the case when V (·) is discontinuous have

been pointed out. But in general, the non-smooth case remain still open.

On the other hand, the partial stability approach and vector Lyapunov function method offers a very

flexible mechanism since each function can satisfy less rigid requirements, see [4], [24], [33], [55] and

[56]. Due to the fact that a given large system may be decomposed into interconnected subsystems to

determine the stability of the system from the stability properties of the subsystems and the nature

of the interconnections, in some situations several Lyapunov functions result naturally and employing

more Lyapunov functions yields better results. In other cases, it is convenient to pose a partial stability

problem, see [55] and [56].
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2 Purpose and aims.

The objective of the proposed project is to develop resilient control/observation algorithms for emerg-

ing complex tasks in robotics. New tasks in robotics require higher precision over complex scenarios

where the active compensation of matched and unmatched perturbations is required. In addition, not

all the states are available for measurement, the design of robust differentiators and observers should

be considered. The study will be supported by the Lyapunov analysis and it will exploit the Partial

Stability approach, vector and discontinuous Lyapunov functions. In summary, the project consider

the following points:

a) Design of resilient control methods under complex scenarios including perturbations, parametric

variations and failures.

b) Design of differentiator/observers under noise and uncertainty in measurements as well as in

communications channels.

c) Methodology of design based on strict Lyapunov functions, including the Partial Stability ap-

proach, Vector and Discontinuous Lyapunov functions.

d) Application to underactued robotics and mobile hydraulics.

3 Survey of the field.

Resilient control design can be posed in the context of uniform stabilization of dynamical systems in

the presence of uncertain bounded inputs, see [43]. By uniformity in this context we understand invari-

ance (exact or approximate) of the closed-loop system with respect to disturbing inputs (disturbance

rejection or cancellation are another names of that problem). Many different solutions for ε-invariant

stabilization have been proposed: time delay control [57], active disturbance rejection [19], universal

integral controls [23, 17], various sliding-mode control algorithms [27, 14] converging in a finite time,

model-free control [16] (just to mention a few, there are also many other adaptive/fuzzy/neural control

solutions). However, most of the cases these solutions are restricted to the single-input single-output

case. Recently, some approaches to the multi-input multi output case have been presented in [30] and

[31], but the general case remains still open.

On the other hand, in order to compensate matched perturbations, sliding mode techniques have been

shown to be robust and easy to implement, see [45], [25]. However, when unmatched perturbations

are present, the appropriate sliding mode enforcement is an open challenge. In order to deal with un-

matched perturbations, different robust schemes in combination with sliding mode have been applied.

For example, based on high order sliding mode observers, an identification strategy was proposed in

[13]. In [12] a hierarchical control method is presented. Recently, in [9] a backstepping technique with

sliding mode observation is implemented.

High-gain observers, see [22], and high order sliding mode differentiators have shown a very good

performance even in the presence of noise, see [28]. Basically, the key breakthrough has appeared in

the work by Levant, see [26], where a robust first order exact differentiator using a second order sliding

mode technique, known as super-twisting algorithm (ST), is introduced. Based on ST an observer for

mechanical systems was introduced in [10]. In order to estimated the convergence time, in the work
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of [34] and [39] a non-smooth Lyapunov approach was introduced. One of the main difficulties is the

selection of the gains: If a global constant bound is chosen for the whole practical operation region,

the constant would be excessively large that would result in increasing errors. Some ideas of how to

include a time varying gains in the design have been given in [29]; however, no suggestions on choosing

such gains for control systems, or the enhancement/tuning of the parameters under the presence of

noise have being given.

4 Significance.

Because of the importance of industrial robotics, where the creation of resilient solutions is of great

value, we think this problem needs to be further investigated. The main theoretical contribution of

this proposal is concerned to the creation of new resilient control algorithms for multi-input multi

output nonlinear systems and providing an acceptable performance under noise and uncertainty in

measurements as well as in communications channels. We believe that this proposal give a step for-

ward to obtain a better understanding of the related phenomena.

On the other hand the extension of the method of Lyapunov functions, including the partial stability

approach, discontinuous and vector Lyapunov functions, to the class of multi-input multi-output

systems is very important from a practical point of view, since it can offer valuable information to

the control designer, opening new possibilities in different fields of control systems and underactuated

robotics.

5 Project description.

The statement of ε-invariant control design problem can be given following a recent development [16].

Consider a SISO uncertain nonlinear system, which model is given in the implicit form (it is not

resolved with respect to the highest derivative):

f [y(t), ẏ(t), . . . , y(n)(t), u(t), d(t)] = 0, t ≥ 0,

where y(t) ∈ R is the measured output, u(t) ∈ R is the control input, d(t) ∈ Rm is the vector of

uncertain parameters/signals, n ≥ 1 is the system dimension, which may be unknown, f : Rn+m+1 → R
is an unknown nonlinear function ensuring existence of the system solutions at least locally. Fixing

k ≥ 1, a local model can be extracted:

y(k)(t) = u(t) + F (t),

where F (t) ∈ R is a new unknown input including y, y(1), . . . , y(n), u and d. This model may have sense

only locally, but under assumption that the dynamics of y(k+1), . . . , y(n) are stable (i.e. the system

is minimum phase with relative degree k [23, 16]) the original stabilization problem for uncertain

nonlinear system can be reduced to uniform (ε-invariant) stabilization of a chain of k integrators

subjected by unknown matched input F . Frequently, some assumptions that F is bounded and it has

a bounded derivative (at least locally) are additionally imposed.

There are many solutions to this problem, which are based on the idea that if it is possible to estimate
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y(k)(t) then F (t) = y(k)(t)− u(t) can be evaluated and compensated by the control. The difference is

mainly in the tools used for estimation of y(k)(t) (high-gain linear observers in [23, 17], sliding-mode

differentiators in [27, 14] or algebraic ones in [16]). Time delay is frequently introduced to break the

algebraic loop [57], which appears when using the estimate y(k)(t)− u(t) in the control u(t) itself.

Another difference between [14, 16, 17, 23, 27] consists in the type of feedback used for the system

stabilization. Theoretically sliding-mode controls provide a finite-time exact cancellation of matched

disturbances [27, 14], which is better than ε-invariance provided by linear feedbacks from [16, 17,

23, 57]. But in practice the sliding-mode controls suffer from chattering that returns them back

to ε-invariance setting. A related difference is robustness with respect to different nonlinearities of

y, y(1), . . . , y(n) hidden in F (for example, linear feedback treats only Lipschitz or linear perturbations).

In order to improve robustness and to avoid chattering, an intermediate solution should be proposed

between linear and sliding modes.

Homogeneous high-gain controls [6] and observers [36] are nice candidates for such an improvement.

Due to homogeneity, local asymptotic stability of this systems implies global one, and robustness

with respect to disturbances is inherited next [5]. Adjusting nonlinear gains in control and estimation

algorithms from [6, 36] it is possible to get a needed degree of robustness with respect to F .

High order sliding modes have been proved to be effective in chattering attenuation while at the same

time preserving the sliding mode properties, see [41]. Basically, the methodology consists of two steps:

• The design of a suitable output or sliding surface, y, in the state space such that the system

exhibits the desired behavior.

• The appropriate sliding mode enforcement such that the output/sliding-surface is reached in

finite time.

High Order Sliding Modes is actually a movement on a discontinuity set of a dynamic system under-

stood in Filippov’s sense, [15]. The simplest problem of such kind is to make the output y of a Single

Input Single Output, SISO, system converge to zero in finite-time. Hence, the rth order sliding mode

is determined by the equalities:

y = ẏ = ÿ = ... = yr−1 = 0, (1)

where r represents the relative degree. The total time derivatives ẏ, ÿ, ..., y(r−1) are continuous func-

tions of the state and the set (1) is a nonempty integral set, i.e. consists of Filippov trajectories. Finite

time convergence of the subspace (y, ẏ, ÿ, ..., yr−1) can be achieved with the appropriate selection of a

control algorithm. A summary of some ε-invariant control algorithms for the cases r = 1, 2 and n is

presented in the table 1.
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Algorithm Order

Conventional SM u = −κ1sign(y) 1

Twisting u = −κ1sign(y)− κ2sign(ẏ) 2

ASOSM u = −κ1y − κ2
∫ t
0 sign(y)dτ 2

Super-Twisting u = −κ1|y|
1
2 sign(y)− κ2

∫ t
0 sign(y)dτ 2

Continuous-SOSM u = −κ1|y|α1sign(y)− κ2|ẏ|α2sign(ẏ)− κ3
∫ t
0 sign(y)dτ 2

Homogeneous u = −κ1|y|α1sign(y)− ...− κr−1|y(r−1)|αr−1sign(y(r−1))− F̂ n

Table 1: Control algorithms.

One of the most important features of the sliding mode approach is a finite-time reaching phase.

However the corresponding Lyapunov functions may be non-smooth in this case. For twisting and

super-twisting algorithms, the design of strong Lyapunov functions was introduced in [39] and [34].

The general case, including the homogeneous control law, remains still open as well as the Multi-Input

Multi Output case.

6 Preliminary results.

Preliminary results cover three main fields: under-actuated systems, mobile hydraulics and resilient

control design. Under actuated systems are more sensitive to parametric variations, uncertainties and

external disturbances. One example is a parametrically excited crane, where the wave induced motions

may contain significant energy resulting in payload oscillations of large amplitude. For shipboard

cranes, this can bring the load into dangerous conditions for the ship, the cargo and the crew. Since

much time and money can be wasted waiting for acceptable sea conditions, the development of new

schemes, capable of transferring cargo in marginal conditions and solving the problems of regulation

and tracking were presented in [8], [52], [53], [50], [51], [35] and [54]. The developed control algorithms

are supported by strict Lyapunov methods, taking advantage of the main properties of periodic,

under-actuated and nonlinear systems.

The modeling and control design for hydraulic manipulators have been a recent and important topic

of my research. Hydraulic systems are the main component of several industrial activities such as

forestry, agriculture and mining, where high torques, speeds and a large ratio between the delivered

force and the size of the actuator are required. Focusing on mobile hydraulics where the system

dynamics are characterized by strong nonlinearities, uncertainty in the parameters as well as the

presence of un-actuated links, my research goal is the creation of innovative solutions for estimation

and control. As an independent researcher and team leader, I lead two current projects: automation

of industrial forestry cranes and automation of tractor front loaders in collaboration with the control

systems development team at Ålö AB. Preliminary results were presented in [49], [46], [48], [1], [2]

and [47].
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7 Time Plan

The project will continue for two years covering three main activities: Design of new resilient control

algorithms for multi-input multi-output nonlinear systems, design of robust methods for observation

and differentiation under noise and uncertainty in measurements as well as in communications chan-

nels and new advanced motion control design applications for underactuated robotics and mobile

hydraulics. A preliminary time plan is as follows:

1. In the first par of the project new resilient control algorithms for multi-input multi output

nonlinear systems will be proposed and the methodology will be supported by strict Lyapunov

analysis. This part will continue for around 10 months.

2. In the second part, more efficients methods for observation/differentiation under noise and un-

certainty in measurements as well as in communications channels will be proposed. We are

going to include the analysis of noise measurement providing the optimal design. This part will

continue for around 10 months.

3. In the third and last part of the project the methods proposed in the first and second part will

be implemented and tested on actual industrial applications. This part will continue for around

4 months.

8 Possible further generalizations of the problem

One extension is to design the corresponding desired outputs with the singular LQ methodology, where

a possible way to choose an output or sliding set is the usage of a Linear-Quadratic performance index.

An optimal output or sliding surface is designed as a solution of a singular optimal LQ problem with

symmetric positive definite weighting matrix Q and free cost control ([44],[11],[32],[40],[3]) and it is

well known from the theory of singular optimal control ([20],[42],[18]) that for the case when the

weighting matrix is semi-positive definite, the dimension of the optimal stabilization set is less than

(n− 1). Then, the order (relative degree) of the sliding surface and the order of the controller can be

chosen based on the properties of a weighing matrix [7], [8]. Then it is reasonable to test all different

cases of the order of singularity of the corresponding performance index in order to select the best

suited case that brings the best performance results for a specified system.

9 Budget

Assigned to this project will be the applicant Carlos Vázquez, who will work full time on the project

as a Junior Researcher for two years.

10 National and International Collaboration.

An important column in this project is collaboration, looking for synergies as well as new challenges

where international and industrial teams converge in common objectives, we started an international

collaboration between Ume̊a University and Inria Lille-Nord Europe, enhancing their potential and

defining new research projects on robotics and advanced motion control. Particularly, new resilient
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methods of estimation and control were developed and preliminary results have been submitted to the

54th IEEE Conference on Decision and Control to be held in Osaka Japan during December 2015.

On the other hand, a joint work with the control systems development team at Ålö AB has been

the perfect opportunity to contribute with our expertise in advanced motion control and model based

development for the creation of original automation solutions for tractor front loaders and preliminary

result have been submitted to the 20th IEEE International Conference on Emerging Technologies and

Factory Automation to be held in Luxembourg during September 2015. At the present time, my

network include researchers from Russia, France, Mexico and Sweden.
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