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Project title (Swedish)*
Gles signalbehandling över nätverk och grafer

Project title (English)*
Sparse processing over networks and graphs

Abstract (English)*
In line with the long term vision of engineering technologies for big data analysis, a grand challenge is how existing signal 
processing and machine learning concepts and  methodologies can be extended to facilitate analysis of large-dimensional 
signals/data on networks/graphs. Such networked signals/data are in abundance today, for example in application 
scenarios of social and economic networks, epidemiology, biological networks, transportation networks, Internet blog 
data, recommendation systems, etc. To use network connectivity information in big data analysis, recent efforts in signal 
processing and machine learning have led to the emergence of the notion of signal processing on graphs and learning over
networks. Further, in the last decade, sparse processing has been proven to have high potentials for many applications. 
The area of sparse processing is still growing at a high pace. The overwhelming success of sparse processing 
methodologies – such as compressed sensing, sparse representations, dictionary learning – is due to the fact that sparsity 
is a key concept in nature and its presence is ubiquitous.

The Sparse processing Over Networks and Graphs (SparseNet) project is to address the grand challenge of extending 
sparse processing technologies to the new concepts of signal processing on graphs and learning over networks. The 
purpose of SparseNet is to investigate the fundamental question: how graph/network aspects affect performance of a 
large-scale networked system that comprises of nodes performing large-dimensional sparse processing tasks. A primary 
example of such system is a wireless sensor network where sensors use compressed sensing technologies. The 
engineering aims of developing new novel theoretical frameworks and algorithmic means for sparse processing over 
graphs/networks will be achieved by using inter-disciplinary nature of scientific methods from distributed optimization, 
statistical signal processing, machine learning, statistical physics, and coding. The SparseNet project has a high relevance 
for the societal challenges of health, security, commerce, transport and climate monitoring, and the scientific significance 
lies in the scope of developing new fundamental theoretical problems with foundational aspects.

Popular scientific description (Swedish)*
'Data Deluge' ('Störtfloden av data') och 'Big Data' är två nya termer som idag ofta förekommer i nyheterna. Med vad 
betyder termerna? Svaret är att människor och maskiner idag genererar stora mängder data i vår uppkopplade värld. 
Avläsningar av strömförbrukning, data från parkeringsautomater, trafikdata, meteorologisk data, sociala nätverk, 
rekommendationssystem, patientjournaler, genetisk data, bloggar, tweets på twitter, email och många andra exempel finns 
på hur stora mängder data genereras, precis som en störtflod av data. Detta kallas Big Data. Störtfloden av data skapar 
många nya möjligheter till att analysera data och utvinna viktig information som inte var möjliga för några år sedan när 
datamängderna var betydligt mindre. Vidare har nästan all data vissa grundläggande egenskaper, den är sammankopplad 
via ett nätverk eller har en grafstruktur, som kommunikationen i sociala nätverk eller produktrekommendationer på internet.

Frågan uppstår: hur kan vi hantera så stora datamängder? Till exempel överstiger alla avläsningar av strömförbrukningen 
utrymmet på hårddiskarna i ett datacenter. Hur kan vi analysera strömförbrukningen för att analysera hur kundernas 
beteende påverkar elförbrukningen? Det är naturligt att använda den gleshet som existerar i många naturliga datamängder 
som genereras av människor och maskiner. Gleshet finns överallt – på natthimlen finns stjärnor, men de tar bara upp en 
bråkdel av natthimlen. Det betyder att större delen av natthimlen inte innehåller någon information. Nästan all data är 
typiskt gles och det exiterar metoder som kan utnyttja glesheten för att utvinna information, men det exiterar nästan inga 
metoder som utnyttjar gleshet för stora datamängder i nätverk och grafer. Projektet SparseNet har som syfte att utveckla 
nya metoder för att hantera stora datamängder i nätverk och grafer, det kommer därför vara ett betydelsefullt steg i 
analysen av stora datamängder. Notera att de viktigaste aspekterna för att bättre kunna utvinna information från stora 
datamängder är gleshet, nätverk och grafer.

Descriptive data

Project info

Project period
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Number of project years*
4

Calculated project time*
2016-01-01 - 2019-12-31

Career age:

Deductible time

SCB-codes* 2. Teknik > 202. Elektroteknik och elektronik > 20205. 
Signalbehandling

Keyword 1*
Sparse signal processing

Keyword 2*
Compressed sensing

Keyword 3*
Machine learning

Keyword 4
Graphs

Keyword 5
Networks

Deductible time

CauseCause MonthsMonths
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Career age is a description of the time from your first doctoral degree until the last day of the call. Your career age
change if you have deductible time. Your career age is shown in months. For some calls there are restrictions in the
career age.

Classifications

Select a minimum of one and a maximum of three SCB-codes in order of priority.

Select the SCB-code in three levels and then click the lower plus-button to save your selection.

Enter a minimum of three, and up to five, short keywords that describe your project.
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Reporting of ethical considerations*
We hope that no question will arise on the ground of ethics for this project proposal. No research will be performed on 
humans or animals. We will also not deal with any personal information.

The project includes handling of personal data
No

The project includes animal experiments
No

Account of experiments on humans
No

Research plan

Ethical considerations

Specify any ethical issues that the project (or equivalent) raises, and describe how they will be addressed in your research. 
Also indicate the specific considerations that might be relevant to your application.

Research plan
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SparseNet, Research Plan 1

References:References are provided in two different places. References with usual appearance are pro-
vided in the end of this Research Plan, and the references with an initial “SC” are provided in the Publi-
cation List of the project applicant ‘Saikat Chatterjee’).

A.1 Ethical Considerations

We hope that no question will arise on the ground of ethics forthis project proposal. No research will be
performed on humans or animals. We will also not deal with anypersonal information.

A.2 Purpose and Aims

A modernlong term vision is to engineer signal processing and machine learning algorithms for large-
dimensional signals/data (big data). The vision has generated significant interests and opportunities in
recent times, thanks to the data deluge experienced by an increasing number of scientific disciplines.
Advances in smart device and networked applications have resulted in an increased dimensionality and
diversity of generated data, posing new challenges in the analysis of large-dimensional data, particularly,
in presence of theirnetworked or connected nature.

Naturally agrand challengeis: how existing signal processing and machine learning concepts and
methodologies may be extended to facilitate our understanding of such data,

while making use of thenetwork connectivity information .

To use network connectivity information, recent efforts insignal processing and machine learning have
led to the emergence of the notion ofsignal processing on graphs[A7, A1] and learning over networks
[A2] where signals/data exist on nodes of a graph/network. For a practical example, in weather prediction,
weather data of Swedish cities can be modeled via a network graph; the graph nodes are the cities and
the graph links may be parameterized by a function of physical distances between cities and difference
of longitudes and latitudes of cities. In another example, for a large scale wireless sensor system, the
communication network between sensors represent the network graph. Many examples can be drawn for
signals/data on graphs/networks in application scenariosof social and economic networks, epidemiology,
biological networks, transportation networks, Internet blog data, recommendation systems, etc.

On the other hand, use of sparsity in signal processing and machine learning – referred to assparse
processing– is found to have high success for many applications in wide field of information and com-
munication technologies (ICT). Research activities in sparse processing is growing, thanks to immense
opportunities in various applications. Sparse processingtools – such as compressed sensing, sparse rep-
resentations, low-rank matrix sensing, dictionary learning – are relativelymature technologies providing
high potential to measure, process and analyzelarge-dimensionalsignals/data. Along-with traditional
ℓ2-norm based optimizations (for example, least squares based estimations), the use of sparsity promoting
ℓ1-norm based optimization has become a standard practice. Sparse processing is even proved to be useful
for large-scale biological data analysis where we also recently contributed [SC18]. The special mention
of biological data analysis is not a digression here becausethere exists the wide spreadbelief that the
first half of the 21st century will belong to biology and has a true essence of high level complexity in
big data analysis. Typically thesignal processing on graph, learning over networkandsparse processing
are treated asseparate areasso far and there is no tangible research effort in horizon to investigate them
either in a unified framework or by cross-exchanging ideas and concepts. This lack of research effort
translates to asignificant void in pursuit of the grand challenge.

The Sparse processing Over Networks and Graphs (SparseNet)project is to address thegrand
challenge of extending sparse processing technologies to the new concepts

of signal processing on graphs and learning over networks.
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SparseNet, Research Plan 2

Thepurposeof SparseNet is to investigate thefundamental question: how graph/network aspects affect
performance of a large-scale networked system that comprises of nodes performing large-dimensional
sparse processing tasks? Further what happens to the systemif the graph/network is sparse by nature or
due to engineering requirement?A primary example of such system is a wireless sensor networkwhere
sensors use compressed sensing and low-rank matrix sensingtechnologies. A sparse graph/network is
useful to model either communication resource constrainedscenarios for wireless sensor network, or
non-uniform interaction between nodes that arise naturally in biological networks and social networks.
Non-uniform interaction naturally arises in many applications, for example, in social network where a
user often communicates with a small number of users from theset of all connected users.For bringing
synergy between network/graph aspects and state-of-the-art sparse processing systems,the technical goal
of SparseNetis to construct new signal models and engineer novel algorithms with good theoretical
insights. The purpose of SparseNet project has ahigh relevance for the societal challengesof health,
security, commerce, transport and climate monitoring.

In SparseNet,important natural questions are: (1) how the graph/network structure (topology) and
communication aspects affect sparse processing performance? (2) what is the trade-off between resources
for sparse processing and resources for graph/network to achieve optimal resource allocation? For exam-
ple, in a camera sensor network for surveillance, how to trade-off between resolution of cameras, number
of cameras and number of network links to connect the cameras? (3) how robust is the sparse processing
performance in presence of deteriorating network quality,such as network link failures? To answer the
questions, theengineering aimsof SparseNet project are to:

1. develop theoretical frameworks for using sparse processing over graphs/networks;
2. develop novel algorithms and their performance analysisover network topologies;
3. characterize robust sparse processing performance withimperfect network links;
4. validate design solutions through simulations, real data and a testbed camera network platform.

Using methods from statistical physics, distributed optimization, statistical signal processing, machine
learning, and coding, the SparseNet project expects impactful progress in designing new practical schemes
and theoretical analysis.This will make a significant step towards the long term vision.

A.3 Survey of the field

In this section we provide necessary background on sparse processing, signal processing on graphs and
learning over networks, followed by mentioning important missing aspects and our related endeavour.

Sparse Processing
In standard sparse processing – such as compressed sensing,sparse representations, low-rank matrix sens-
ing, dictionary learning – we typically consider underdetermined setups and use the existence of sparsity
in natural and man-made signals/data as a regularization factor. Forcompressed sensing(CS), a sparse
signalx ∈ C

N×1 is sensed in a linear manner using the measurement matrixA ∈ C
M×N modeling a CS

sensor, and the measurement vector is

y = Ax+w ∈ C
M×1, (1)

wherew be measurement noise andM ≪ N . The aspectM ≪ N provides the scope of measur-
ing large-dimensional sourcex by low-dimensional measurementy, and hence holds high potential for
big data applications. Note that (1) is under-determined (or under-sampled) that can be represented by
ρ = M

N
∈ (0, 1]. A low ρ is preferable because it corresponds to a reduction in measurements. The signal

x is assumed to be sparse directly in the canonical Euclidean basis or in a sparsity promoting transform
(known as dictionary). The setup (1) not only considers CS, but encompasses variety of sparse processing
methods. For example, inlow-rank matrix sensing (LRMS),x is a vectorized form of a low-rank matrix
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SparseNet, Research Plan 3

(a low-rank matrix is sparse in singular values). Insparse representations, y represents a signal and
we find its sparse representationx in a known dictionary denoted byA. For dictionary learning , the
dictionaryA can be learned from data, or comprised of fixed deterministictransforms promoting sparse
representation. Sparse representations and dictionary learning are well connected with the engineering
field of data compression (or source coding). Examples of transforms that can form a deterministic dictio-
nary by concatenation are discrete wavelet transform (DWT), discrete cosine transform (DCT), discrete
Fourier transform (DFT), etc. Naturally the setup (1) is quite general in the gamut of sparse processing.Fi-
nally we mention that sparsity is used for sparse filtering, sparse power spectrum estimation, sparse linear
prediction, sparse regression, sparse Bayesian learning,sparse kernel machines, and many other signal
processing and machine learning schemes. Theoverwhelming successis due to the fact thatsparsity is
a key concept in nature, and its presence isubiquitous.

Concentrating on CS setup (1), a large body of work addressedthe issue of reconstructingx from y,
and theoretical analysis of the reconstruction performance. Typical reconstruction algorithms are based
on convex optimization (ℓ1-norm minimization), iterative greedy search (algebraic signal processing),
and Bayesian machine learning (finding a posterior given sparsity promoting prior). Popular theoretical
analysis tools are mainlyworst caseapproaches, such as usingmutual coherence[A3] and restricted
isometry property(RIP) of sensing matrices [A4]. Veryrecently, tools from the field ofstatistical physics
are applied to characterizeaverage performance measure. The tool is calledreplica method which is
widely used to study themean field spin glassesin the condensed matter physics[A5]. An example of
using replica method in CS is [A6]. So far there is no work on analyzing average performance of LRMS.

Signal Processing on Graphs
A number of concepts from standard discrete-time signal processing (DSP) have been recently extended
to the new paradigm called signal processing on graphs [A7, A1], and it is shown to have a considerable
potential for big data analysis [A8]. LetG = (V, E) is agraph whereV = {1, 2, . . . ,K} is the set ofK
nodes andE ⊂ V×V is the set of edges between pair-wise nodes. Supposex ∈ R

N be a real signal on the
graphG. Now we show how thegraph Fourier transform (GFT) is defined as an example of extending
signal processing ideas for signals on graph. AssumingM denotes the adjacency matrix of the graphG,
the GFTFg of x is defined as [A1, A8]:

Fg{x} = V−1x, (2)

whereV denotes the eigenvector matrix such thatM = VJV−1. The GFT indices are eigen values of
adjacency matrixM. To address generality of GFT, we mention that ifM is a special circulant matrix
then GFT coincides with the standard discrete Fourier transform (DFT). Attempts [A9, A10] were also
made toextend wavelet transforms, multi-resolution filters , andparametric dictionary learning on
graphs, mainly by using the concept ofgraph Laplacian from thespectral graph theory. Further, a
linear prediction scheme on graph was also defined in [A1] wheren’th shift is modeled byMnx as
a signal diffusion mechanism; as shift increases, the effect of signal diffusion on the underlying graph
increases. However, there isno tangible effort to extend sparse processing to signals ongraphs– such
as compressed sensing on graphs, sparse representation on graphs, low-rank matrix sensing on graphs,
except very few attempts [A11]. To give an example, for dictionary learning on graphs, neither a non-
parametric dictionary learning nor a generalization of DCTas a graph cosine transformis done yet.

Learning Over Networks
Learning over networks is a growing field today [A2] where themain task is distributed estimation using
distributed adaptation and optimization by exchanging information over networks. LetG = (V, E)
be a network graph forK nodes, and there exists aK × K policy matrix (also calledmixing matrix )
S = [slk] whereslk is a policy weight between node pair(l, k). Typically the elementsslk of S respect
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SparseNet, Research Plan 4

the graph topology, for example

slk = 0, if (l, k) /∈ E . (3)

For thel’th node, a signal of interest is estimated by a function of weighted average of estimates of all
nodes where the weights are{slk}Kk=1. Using policy matrix, there are several ways to cooperate byinfor-
mation exchange, for example, usingincremental strategy, consensus strategyanddiffusion strategy.
To minimize the exchange of information over nodes such that estimationprocess converges, the pol-
icy matrix S should have certain analytical properties, such as stochastic, doubly stochastic, etc. In this
paradigm, we may performanalysis of average performancesuch as mean square error.

Important Missing Aspects So Far
We have already mentioned that there is no tangible researcheffort in horizon to investigate sparse pro-
cessing, signal processing on graphs and learning over networks in a holistic manner. The SparseNet
project is aimed to mobilize such research effort, possiblythe first one in world. As sparse processing is
growing field with many proven results and practical schemes, SparseNet project will concentrate on few
major sparse processing methods, but not limited to

1. compressed sensing (CS),
2. low-rank matrix sensing (LRMS),
3. dictionary learning,
4. sparse kernel machines,

for extending to graphs/networks. SparseNet willconsider large-scale systems over graph/network where
large-dimensional sparse processing tasks are executed innodes. From the above survey of field, we enlist
below theimportant aspects that are missingso far.

1. Distributed adaptive estimation of CS and LRMS on graphs/networks.
2. Dictionary learning on graphs/networks.
3. Investigating networks aspects, such as policy matrix, communication quality and protocol. For

example, what happens if the network topology (graph) changes or there is link failure or if the
network links are bandwidth constrained and need to use quantized data?

4. Average performance analysis.

Relevant Endeavor Including Our Works
1. Major works on distributed CS [A12] are realized for limited number of nodes, anddoes not scale

well for large setups as they do not consider network aspects. For large number of nodes (more
than 100 nodes), we have successfully designed distributedCS solutions where network has arbi-
trary connection topology with the aspect that policy weights slk are equal ifl ∈ Nk whereNk

denotes the set of neighboring nodes of thekth node. See [SC22, SC24, SC52, SC80]. The work
of [SC80] is the first sound endeavor of its kind where a greedyalgorithm for distributed CS is
constructed and analyzed with provable performance guarantee using network parameters, RIP of
sensors, and democratic voting based consensus principles. We believe that this new analysis re-
sults in a step jump towards designing computationally simple distributed greedy algorithms, even
though with thedrawback that the analysis belongs to theworse caseapproach. We have no work
so far on distributed LRMS even though we worked on single sensor LRMS [SC12, SC64].

2. For distributed CS, we recently investigated imperfect links via coding [SC17, SC69, SC25].
3. To analyze algorithms for characterizingaverage reconstruction performance, we have used

replica method for single sensor CS setup in [SC9, SC60, SC70, SC79].
4. We have recently started investigating signal processing over graphs and learning over networks.

The relevant manuscripts are [SC78, SC81, SC82, SC83]. In [SC78] we started with the graph
Fourier transform (GFT) of (2) and extended to define a newHilbert transform on graph for the
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non−cooerative 
sensors

examples of connected networks fully−connected
network

Figure 1: Examples of connected networks. The left panel is the disconnected one.

first time . Further, we consideredconstruction of a graph in [SC81] such that a linear predic-
tion on that graph performs usually better than a standard linear prediction, and also considered
signal denoisingand inpainting in [SC82]. Finally, in [SC83], we have considered learning over
network for a consensus where thepolicy matrix is sparse to represent a communication resource
constrained network.

A.4 Project Description

Thecore of this SparseNet project comprises of conceptualization and design of new sparse processing
algorithms indistributed manners and performance analysis of those distributed algorithms considering
topology of graphs/networks. Figure 1 shows several examples of networks. We would like to answer
useful questions about such networked scenarios.Relevant questionsare as follows.

• What aspects of network policy matrix influence performance?
• Which topology has best performance and how fast the best performance can be achieved by data

exchange over network (that is called convergence rate)?
• Which topology does approach to the performance of a centralized or fully connected solution?
• Is cooperation always useful? What happens if too noisy dataare exchanged or some network links

are highly bandwidth constrained or in failure?
• What kind of graphs with ease of construction is natural for sparse processing, but still allows good

algorithmic development and theoretical tractability?
To maximize the chance of success in SparseNet project, we plan to follow ahedging strategy in

which we tackle related, yet not fully linked challenges, thus minimizing the risk to the project from the
failure of a single component. In the following part, we describe four work packages and the research
problems to be pursued. We also show how the project relates to our previous (published) and ongoing
(submitted and unpublished) works. Finally we provide anestimate of deliverablesin terms of publica-
tions. Along-with describing the targets of work packages and our technical approaches, we also briefly
mention fewconcrete research problems.

WP1 Sparse Processing Over Networks
The targets of WP1 are designing distributed algorithms that are optimized for network aspects, and anal-
ysis of the distributed algorithms. For achieving the targets, we will use network policy matrixS for
cooperation. Using policy matrix, there are several ways tocooperate, such as incremental strategy, con-
sensus strategy and diffusion strategy. For a degenerate policy matrix, we recently used democratic voting
principles (majority voting) as a consensus strategy in distributed CS [SC24, SC52, SC80]. However ma-
jority voting provides a hard consensus and hence the theoretical analysis has a limited tractability. In
SparseNet project, we will concentrate onsoft consensusvia convex combination of policy weighted in-
formation over networks. Let us concentrate on one example case for a distributed CS scenario. In relation
to (1), supposek’th node observes

y(k) = A(k) x(k) +w(k), (4)
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SparseNet, Research Plan 6

and we consider the correlation modelx(k) = x + x
(k)
p , wherex is a sparse signal common to every

node (or sensor) andx(k)
p be the private sparse signal part (x

(k)
p even can be an innovation signal). This

simple correlation model is valid for a camera sensor network where several cameras are in surveillance
to observe objects from different directions and angles. Note that, if private parts are null vectors, then
the setup is meant for estimating a common signalx. For a distributed CS setup using adaptive learning
methods, first we define a policy update variable and a complimentary policy update variable as follows.

policy update variable : ψ(k) =
∑

l∈Nk
slkx̂

(k).

complimentary policy update variable : φ(k) =
∑

l∈Nk
slkx̂

(k) − skkx̂
(k) = ψ(k) − skkx̂

(k).

Note that the complimentary policy update variableφ(k) holds weighted information from neighboring
connected sensors, but not the contribution from own. We nowintroduce a cost (or utility) function
C(x(k), {x(l)}l∈Nk

) : CN × C
N × . . .× C

N → R as follows:

C(k) , C(x(k), {x(l)}l∈Nk
) = λ1E{‖y

(k) −A(k)x(k)‖22}+ λ2‖x
(k)‖1 + λ3‖x

(k) − φ(k)‖1, (5)

whereλ1, λ2, λ3 are user-defined positive weights satisfyingλ1 + λ2 + λ3 = 1. Note that the first part
E{‖y(k) − A(k)x(k)‖22} is the common mean square error utility cost used in many standard distributed
multi-agent algorithms. The second part‖x(k)‖1 promotes sparsity in solution. Finally the third part
‖x(k) − φ(k)‖1 brings the effect of correlation. Now we concentrate on tools from adaptive gradient
descent search algorithms (such as the famous LMS algorithm) via consensus and diffusion strategies
[A13, A14]. Let i denotes time instant to exchange information over network.Then our strategy is

∀k, policy update : ψ
(k)
i−1 =

∑

l∈Nk

slkx̂
(k)
i−1;

complimentary policy update : φ
(k)
i−1 = ψ

(k)
i−1 − skkx̂

(k)
i−1

gradient update : x̂
(k)
i = ψ

(k)
i−1 − µk ∇

x(k)Ck
i−1,

(6)

whereµk is a step size,Ck
i−1 is an instantaneous cost (due to practical issues that statistical moments are

not available) asCk
i−1 = λ1‖y

(k) −A(k)x
(k)
i−1‖

2
2 + λ2‖x

(k)
i−1‖1 + λ3‖x

(k)
i−1 − φ

(k)
i−1‖1, and

∇
x(k)Ck

i−1 ,

[

∂Ck
i−1

∂x
(k)
1

,
∂Ck

i−1

∂x
(k)
2

, . . . ,
∂Ck

i−1

∂x
(k)
N

]⊤

. (7)

Note that the cost function hasℓ1 norm penalty which is not differentiable and brings non-trivial sub-
gradient issues which we believe can be addressed in our future endeavor. The task is to characterize
∀k, E{‖x(k) − x̂(k)‖22} as a function of signal correlations and the policy weightsslk, in turn the policy
matrix S = [slk]. Then also to answer how fast the convergence happens, that means number of time
instants to stabilize to the final estimates. Further, givena specified reconstruction quality, whatS leads
to lowest number of links? That means, we pursue for a sparseS to save communication resource; many
zeros inS means no link connection. Naturally the approach will help us to investigate the question
which topology does approach to the performance of a centralized or fully connected solution. We believe
that our soft consensus based approach via gradient search will reveal important clues on most of the
questionsthat we raised at the beginning of this section A.4.

We mention that gradient descent based adaptive learning isone way to achieve solutions over net-
works. Alternatively , we can use policy update variables in other ways – devising new approaches and
reducing dependency on gradient search. For example we can use weightedℓ1 norm minimization where
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the weighting matrix can be defined via policy update variable asW (k)
i−1 = [diag[ψ

(k)
i−1]]

−1 and then solve
for the following optimization problem

x̂
(k)
i = argmin

x(k)

‖W
(k)
i−1x

(k)‖1 subject to ‖y(k) −A(k)x(k)‖2 ≤ ǫ(k), (8)

whereǫ(k) ≥ w(k) is user defined parameter to represent the allowable noise strength. Similarly gradient
based and weighted nuclear norm minimization based solutions also can be envisaged for distributed
LRMS where appropriate correlation model need to be used.

The engineering approaches discussed so far mainly for distributed CS problem are viable to extend
for distributed low-rank matrix sensing and distributed dictionary learning problems. For example, in
case of distributed LRMS,x(k) is the vectorized form of a large low-rank matrix at thek’th node. Using
appropriate models of correlations between low-rank matrices, the learning based estimation algorithms
over networks follow similar concepts as discussed before.However,a considerable challengewill arise
for designing sparse kernel machines over networks. The Sparse kernel machines – such as Bayesian rel-
evance vector machine and sparse Bayesian learning algorithms – are maximum-a-posteriori (MAP) esti-
mators. That means, the task is to estimatep(x|y) given likelihood functionp(y|x) and sparsity promoting
priorsp(x). The algorithms aretype II estimation (machine learning) schemes where typicallyevidence
approximation andexpectation-maximization(EM) frameworks are used. We have worked for design-
ing type II estimation algorithms in [SC75, SC76]. It is wellknown that EM is astrong framework
in estimation and learning due to concept of hidden variables and information theoretic proof on mono-
tonic convergence, with many applications in statistical signal processing and machine learning. However
there is almostno research work to designdistributed evidence approximation anddistributed EM
algorithms. A distributed EM example is [A15] where only specific distributed scenarios are addressed.
Hence design ofdistributed type II estimation schemes is a totallyopen research areathat will not
only have a bearing on distributed sparse processing over networks in the scope of current project, but to
the general machine learning area in afoundational sense.

WP2 Sparse Processing On Graphs
Theℓ2-norm based schemes are traditional and have profound implications in signal processing and ma-
chine learning. Theℓ2-norm is instrumental in defining analytically tractable cost functions, such as
mean square error (MSE), weighted mean square error (WMSE),etc. Using these cost functions and ad-
ditional assumptions (either deterministic or probabilistic), someclassicalsignal processing and machine
learning schemes are least-squares, subspace estimation,Wiener filter, Kalman filter, linear prediction,
auto-regression (AR), sparse kernel machines, eigen decomposition, Karhunen-Loeve transform (KLT)
and many other transforms including DFT, DCT etc. To show an example, in the minimum mean square
error sense, the best practical decorrelating transform ofan AR-1 source is DCT at a large dimension,
that means the optimal decorrelating transform (KLT) of AR-1 statistics converges to DCT in asymptotic
sense. While KLT is a data dependent transform, the DCT is a fixed deterministic transform and hence
used for image compression heavily. Further DFT, DCT and many other linear transforms are orthonor-
mal and hence help to preserve isometry between original signal and transformed domains. This isometry
preserving property – that meansℓ2 distance between two points in original signal domain remains same
in the transformed domain – is very useful is almost all signal processing and machine learning schemes.
While someℓ2-norm based schemes, such as DFT and linear prediction, are attempted to extend on graphs,
a plethora of existing schemes remains to have an extension and hence there exists immenseopportunity
to work in the new topic of signal processing on graphs. In WP2, we will consider animpact-making
andchallenging research problem –development of statistical signal processing and Bayesianma-
chine learning frameworks on graphs.So far signal processing on graphs is restricted to deterministic
domain, and a statistical framework on graphs does not exist.

12 / 37



SparseNet, Research Plan 8

Further, in signal processing and machine learning, the useof ℓ1-norm in relevant cost functions to
promote sparsity is already in practice. There existinteresting connectionsbetweenℓ1 andℓ2 norms. To
illustrate, for aNdimensional real vectorx = [x1, x2, . . . , xN ]⊤, theℓ1 norm is‖x‖1 ,

∑N
n=1 |xn| =

∑N
n=1

x2
n

|xn|
= x⊤W(x)x, whereW(x) is a diagonal weighting matrix whose diagonal entries are1

|xn|
.

It can be seen thatℓ1 norm‖x‖1 can be represented by a weighted squareℓ2-norm distancex⊤W(x)x.
Using thisimportant connection betweenℓ1 andℓ2 norms, several methods already have been developed
for CS/LRMS reconstruction, for example iteratively reweighted least-squares (IRLS) algorithms [A16].
WP2 will use thisimportant connection to realize sparse processing on graphs. Using the formal
ℓ2-norm based schemes, both existing and future ones, and thenfollowing appropriate weighting modifi-
cations to suit for sparsity promotingℓ1 norm, we will endeavor to extend many sparse processing schemes
for generalization on graphs.Our first attempt using IRLS is [SC82] where we address signal denois-
ing (estimation for noise reduction) and inpainting (missing data prediction). WP2 will considerseveral
interesting problems, such as standard sparse processing methods on graphs, sparse linear prediction on
graphs, sparse power spectrum estimation on graphs, sparsetracking on graphs, etc.

WP3 Fundamental Theoretical Analysis (A Concrete Research Problem Example)
In the scope of WP3, we mention below a challenging theoretical research problem:fundamental analy-
sis for K-node setup. By now we acknowledge that the analysis of a distributed CS setup is non-trivial,
and naturally so for a distributed LRMS. In this direction, an important theoretical contribution (or major
step) will be analyzing aK-node centralized setup that provides a benchmark performance (best perfor-
mance to achieve) for aK-node distributed setup. This time we concentrate on a distributed LRMS instead
of CS for more generality. LetX(k) is a low-rank matrix and its vectorized form isx(k) , vec(X(k)). In
relation to (1), the observation model isy(k) = A(k) vec(X(k))+w(k) = A(k) x(k) +w(k). Let us define
a cross-correlation matrixC({vec(X(k))}) = C({x(k)}) = C ,

∑

∀k,l,k 6=l(x
(k))(x(l))⊤. If X(k) are

highly inter-correlated, that meansx(k) are highly inter-correlated and the cross-correlation matrix C will
be highly skewed or effectively low-rank. Using convex-relaxation of rank by nuclear norm of a matrix
(analogous of usingℓ1 norm to relaxℓ0 norm in case of a sparse vector), we can formulate the following
centralized optimization method

min
X(k)

{

∑

∀k

‖X(k)‖⋆ + λ‖C‖⋆

}

subject to ‖y(k) −A(k) vec(X(k))‖2 ≤ ǫ(k), (9)

where‖.‖⋆ denotes nuclear norm,λ represents the appropriate weight and the noise power‖w(k)‖2 ≤ ǫ(k).
The challenging tasks are design of practical algorithms and their theoretical analysis with respect to
various parameters of the system, for example, rank ofX(k), rank ofC, properties ofA(k) and noise
powersǫ(k). This fundamental problem was never posed in the existing literature and we wish to use
its theoretical analysis using replica methods and worst case analysis approaches.Here we mention
that this fundamental problem can be turned around to asensing resource allocationproblem. In that
case, for a given number of total measurements, the questionwill be what is the set of optimal number
of measurements in each sensor (or node), that means what arethe dimensions ofy(k). We raised this
sensing resource allocation problem in section A.2.

WP4 Validation of Algorithms for Real Data
WP4 will consider validation experiments of algorithms developed in WP1, 2 and 3 on real signals/data,
such as speech, audio and image signals in standard scopes ofmultimedia processing. For example,
we are now constructing graphs for linear prediction of speech signal [SC81], and signal denoising and
inpainting of speech and image signals [SC82]. Naturally wewill test new sparse processing methods on
graphs for speech, audio and image processing tasks. Further we will consider weather data of Europe
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and across the world for many years and use the data for weather prediction problems. Then we will
collect social networks’ data and Internet blog data to analyze. Finally, we will consider to build a testbed
camera network for the purpose of surveillance and benchmark our sparse processing algorithms over
graphs/networks for the testbed.

Project Timeline: January 1, 2016 - December 31, 2019
Project Deliverables: Eight journal papers can be expected. Seven journal papers from WP1, Wp2 and
WP3, and one journal paper from WP4.

A.5 Additional Information

A.5.1 Impact

The SparseNet project proposal comprises of severalnovel state-of-the-art research problems, including
new fundamental theoretical problems withfoundational aspects. The project bears a fascinatingin-
terdisciplinary flavor due to the use of methods from several fields, mainly from statistical physics and
the engineering field of signals and systems. Besides high quality research contributions, an important
outcome of the project will be thegraduation of two Ph.D. scholars. The project will also have direct and
indirect impacts on related andcollaborative research issues, pursued by the members of Communication
Theory, Signal Processing, Automatic Control and Biological Physics groups at KTH, Stockholm.

A.5.2 Preliminary Results

We have a focused and intensive activity in sparse processing, and published several articles in journals
and conferences. Recently we started working in signal processing on graphs and learning over networks.

A.5.3 Project Organizations and Collaborations

The project will be lead by Dr. Saikat Chatterjee, Communication Theory (CT) Group, KTH. In addition,
the project will directly involve two Ph.D. scholars, and indirectly involve seniors members from CT
group, Signal Processing, Automatic Control and Biological Physics groups of KTH. In relation to the
proposal,the applicant’s main national and international collaborators are shown in Table 1.

Table 1: Collaboration by the applicant Saikat Chatterjee (citations are from the publication list)
US and Asia

Oregon State University, Oregon, US [SC18]
Indian Institute of Science, Bangalore, India [SC16, SC23, SC1, SC2, SC6]
Tsinghua University, Beijing, China [SC18]
Beijing University of Posts and Telecommunications, China [SC19]
Tokyo Institute of Technology, Japan [SC9, SC60, SC49]

Europe, Australia and Oceania
NTNU Norwegian University of Science and Technology, Norway [SC62, SC10, SC15, SC42, SC62]
Aalto University, Helsinki, Finland [SC18, SC79]
University of Helsinki, Helsinki, Finland [SC18]
University of Luxembourg, Luxembourg [SC54]
KTH Royal Institute of Technology, Stockholm, Sweden [SC11, SC12, SC13] and ...
Victoria University of Wellington, New Zealand [SC19]
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A.5.4 Towards the VR Initiative for Collaboration with Indi a

We mention about the Swedish Research Council (VR) notification on collaboration with India (“Avsik-
tsörklaring med Indien”). VR and DST India have jointly floated regular project submission call. Right
now we have an ongoing collaboration with Prof. K.V.S. Hari from Indian Institute of Science, Banga-
lore, India to develop a novel fusion framework for CS [SC16,SC23]. Therefore, we hope to strengthen
this existing collaboration. Also we will look for new collaboration with prestigious Indian Institute of
Technologies (IITs) in future scope of VR/SSF/VINNOVA notifications.

A.5.5 Other Grants

This SparseNet proposal is not included in any other application or project.
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My application is interdisciplinary

An interdisciplinary research project is defined in this call for proposals as a project that can not be completed 
without knowledge, methods, terminology, data and researchers from more than one of the Swedish Research Councils 
subject areas; Medicine and health, Natural and engineering sciences, Humanities and social sciences and Educational 
sciences. If your research project is interdisciplinary according to this definition, you indicate and explain this here.

Click here for more information

Scientific report/Account for scientific activities of previous project

Interdisciplinarity

Scientific report
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Applicant Saikat Chatterjee 33

Dedicated time for this project*

Applicant Saikat Chatterjee 33 293,000 301,000 310,000 320,000 1,224,000

Participating researcher Existing PhD student 50 245,000 260,000 295,000 328,000 1,128,000

Participating researcher New PhD student 50 245,000 260,000 295,000 328,000 1,128,000

Total 783,000 821,000 900,000 976,000 3,480,000

Salaries including social fees

Office space 80,000 90,000 100,000 100,000 370,000

Total 80,000 90,000 100,000 100,000 370,000
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Running Costs

Depreciation costs

Budget and research resources

Project staff

Describe the staff that will be working in the project and the salary that is applied for in the project budget. Enter the full 
amount, not in thousands SEK.

Participating researchers that accept an invitation to participate in the application will be displayed automatically under 
Dedicated time for this project. Note that it will take a few minutes before the information is updated, and that it might be 
necessary for the project leader to close and reopen the form.

Role in the projectRole in the project NameName Percent of full timePercent of full time

1

Role in the projectRole in the project NameName Percent of salaryPercent of salary 20162016 20172017 20182018 20192019 TotalTotal

1

2

3

Other costs

Describe the other project costs for which you apply from the Swedish Research Council. Enter the full amount, not in 
thousands SEK.

Type of premisesType of premises 20162016 20172017 20182018 20192019 TotalTotal

1

Running CostRunning Cost DescriptionDescription 20162016 20172017 20182018 20192019

Depreciation costDepreciation cost DescriptionDescription 20162016 20172017 20182018 20192019

Total project cost
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Salaries including social fees 783,000 821,000 900,000 976,000 3,480,000 1,353,000 4,833,000

Running costs 0 0

Depreciation costs 0 0

Premises 80,000 90,000 100,000 100,000 370,000 370,000

Subtotal 863,000 911,000 1,000,000 1,076,000 3,850,000 1,353,000 5,203,000

Indirect costs 315,858 327,960 366,000 387,360 1,397,178 495,410 1,892,588

Total project cost 1,178,858 1,238,960 1,366,000 1,463,360 5,247,178 1,848,410 7,095,588

Total budget

Explanation of the proposed budget*
As described by the project budget and time frame, we plan to engage two PhD students and the applicant Saikat
Chatterjee. The project fund will be used to partly support Dr. Saikat Chatterjee, and two Ph.D. scholars. Dr. Saikat
Chatterjee will be funded at 33% and the two Ph.D. scholars will be funded at 50%. Both PhD students will however be
active at 80% in the project. We plan that a current Ph.D. scholar will continue his research direction of designing systems
and algorithms. We will recruit a new Ph.D. scholar for pursuing theoretical studies. The salaries of Dr. Saikat Chatterjee
and two Ph.D. scholars are computed based on the estimate of 45 kSEK/month and 27 kSEK/month with 3% annual upward
revision. The remaining 30% part of the time of PhD students will be funded by teaching fund and KTH funds; the
corresponding cost is shown as 'other costs'.

To get the figures for indirect costs, the following data were used (as supplied by the head of economics for KTH School
of Electrical Engineering, for the year 2015 and also projected to be used for the years 2016-19).

KTH central administration OH: 23.6%
KTH School of Electrical Engg OH: 6.3%
Dept of Communication Theory, KTH EES OH: 6.7%

The OH values are used to the direct cost of the salaries.

Below you can see a summary of the costs in your budget, which are the costs that you apply for from the Swedish 
Research Council. Indirect costs are entered separately into the table.

Under Other costs you can enter which costs, aside from the ones you apply for from the Swedish Research Council, that 
the project includes. Add the full amounts, not in thousands of SEK.

The subtotal plus indirect costs are the total per year that you apply for.

Specified costsSpecified costs 20162016 20172017 20182018 20192019 Total, appliedTotal, applied Other costsOther costs Total costTotal cost

Explanation of the proposed budget

Briefly justify each proposed cost in the stated budget.

Other funding
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Other funding for this project

Describe your other project funding for the project period (applied for or granted) aside from that which you apply for from 
the Swedish Research Council. Write the whole sum, not thousands of SEK.

FunderFunder Applicant/project leaderApplicant/project leader Type of grantType of grant Reg no or equiv.Reg no or equiv. 20162016 20172017 20182018 20192019
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Saikat Chatterjee

Academic degrees

1. Ph.D. in Electrical Communication Engineering
Institution: Indian Institute of Science, Bangalore, India
Degree awarded on March 25, 2009
Specialization: Signal Processing
Thesis title: “Rate-distortion performance and complexity optimized strutured vector quantization”
Doctoral supervisor: Prof. T.V. Sreenivas, Dept of ECE, Indian Institute of Science.

2. M.E. in Electronics and Telecommunication Engineering
Institution: Jadavpur University, India
Degree awarded in 2002
Specialization: Control Engineering
Thesis topic: Real time fuzzy logic based intelligent control system design
Award: Secured 1st rank in the class (recipient of university medal)

3. B.E. in Electrical Engineering
Institution: Jadavpur University, India
Degree awarded in 1999
Specialization: Power Systems

Present position

Permanent researcher (from 2012-11-01), Communication Theory Lab, KTH

Previous employments

2009-12 Post-doc researcher, Communication Theory Lab, KTH
2008-09 Post-doc researcher, Sound and Image Processing Lab, KTH

2008 Research associate, Indian Institute of Science, India
2003-08 Doctoral student, Indian Institute of Science, India
2002-03 Lecturer in Asansol Engineering College, India

Information about appointment as a docent

Currently my formal docent application is under review by KTH central authority. I have to appear for the
docent interview on 29th April 2015.

Supervision of doctoral students

I have co-supervised or currently co-supervising following students. The documented proof of super-
vision is furnished via citation of research publications shown in the publication list. Typically in my
co-supervision role, I am responsible as the main scientificadvisor.

May 2013 Dr. Dave Zachariah, KTH
Thesis title: “Estimation for sensor fusion and sparse signal processing”
My role: Co-supervisor (as main scientific advisor)
Documented proof: Research publications are [SC12, SC13, SC53, SC14, SC64].
Main supervisor: Prof. Magnus Jansson
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April 2014 Dr. Amirpasha Shirazinia, KTH
Thesis title: “Source and channel coding for compressed sensing and control”
My role: Co-supervisor (as main scientific advisor)
Documented proof: Research publications are [SC59, SC17, SC69, SC25].
Main supervisor: Prof. Mikael Skoglund

May 2014 Dr. Dennis Sundman, KTH
Thesis title: “Greedy algorithms for distributed compressed sensing”
My role: Co-supervisor (as main scientific advisor)
Documented proof: Research publications are [SC52, SC63, SC67, SC22, SC24, SC80].
Main supervisor: Prof. Mikael Skoglund

2012 – Mr. Martin Sundin, KTH
Project topic: Machine learning for sparse processing
My role: Co-supervisor (as main scientific advisor)
Documented proof: Research publications are [SC66, SC75, SC76].
Main supervisor: Prof. Magnus Jansson

2014 – Mr. Arun Venkitaraman, KTH
Project topic: Graph signal processing
My role: Co-supervisor (as main scientific advisor)
Documented proof: Research publications are [SC81].
Main supervisor: Prof. Peter Händel

Achievements and Fellowships

2010 – Leading research activity in KTH on the thriving field - “comp ressive sensing and sparse
signal processing”. On this research field, co-supervisor of several PhD students in the role of
main scientific advisor.

2014 Invited for giving tutorial on “Sparse systems” in Swe-CTW 2014
2014 Invited paper in SPCOM 2014 on “machine learning for sparse processing”.
2014 Invited paper in Journal of Sensor and Actuator Networks on “distributed compressed sensing”
2013 Invited paper in IEEE CAMSAP 2013 on “statistical signal processing”
2013 Invited paper in IEEE GlobalSIP 2013 on “distributed compressed sensing”
2013 Invited paper in Eusipco 2013 for a special session titled “Trends in Sparse Signal Processing:

Theory and Algorithm Design”
2010 Co-author of the best student paper award at ICASSP 2010 on the topic “Automatic speech

recognition”
2003-08 Institute fellowship by Indian Institute of Science (for pursuing Ph.D.)

2002 Secured 1st rank in Masters of Engineering (recipient of university medal)
2000-02 University Grant Commission India scholarship forpursuing Masters degree on the basis of pan

Indian GATE (Graduate Aptitude Test in Engineering) score
2000 Scored among top4% in pan Indian GATE examination
1995 Ranked 394th in state level JEE - Joint Entrance Examination - for pursuing Bachelor of Engineering

(among 60,000 candidates)
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Summary statistics of publications from 2007

Published journal papers 25
Published conference papers 53
Total published papers 78
Manuscripts submitted or under preparation - related to SparseNet project 5

Citation statistics

Source: Google Scholar (click here), March 30, 2015.

All Since 2010
Citations 482 449
h-index 12 11
i10-index 13 12

Top-five most relevant papers for the application: [SC9, SC22, SC25, SC52, SC78].

List shown in year and subject wise

1. Peer-reviewed original articles (journals)

2007

Speech processing (speech coding)

[SC1] S. Chatterjeeand T.V. Sreenivas, “Conditional PDF-based split vector quantizatization of wideband LSF
parameters”,IEEE Signal Processing Letters, vol. 14, No. 9, pp. 641- 644, September 2007.

[SC2] S. Chatterjeeand T.V. Sreenivas, “Analysis of conditional PDF based split VQ”, IEEE Signal Processing
Letters, vol. 14, No. 11, pp. 781-784, November 2007.

2008

Speech processing (speech coding)

[SC3] S. Chatterjee and T.V. Sreenivas, “Switched conditional PDF-based splitVQ using Gaussian mixture
model”, IEEE Signal Processing Letters, vol. 15, pp. 91-94, 2008.

[SC4] S. Chatterjeeand T.V. Sreenivas, “Predicting VQ performance bound for LSF coding”,IEEE Signal Pro-
cessing Letters, vol. 15, pp. 166-169, 2008.

[SC5] S. Chatterjeeand T.V. Sreenivas, “Optimum transform domain split VQ”,IEEE Signal Processing Letters,
vol. 15, pp. 285-288, 2008.

[SC6] S. Chatterjeeand T.V. Sreenivas, “Optimum switched split vector quantization of LSF parameters”,Signal
Processing, vol. 88, Issue 6, pp. 1528-1538, June 2008.

2009

Speech processing (speech coding)

[SC7] S. Chatterjee and T.V. Sreenivas, “Reduced complexity two stage vector quantization”,Digital Signal
Processing, vol. 19, pp. 476-490, May 2009.
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2011

Speech processing (automatic speech recognition)

[SC8] S. Chatterjee and W.B. Kleijn, “Auditory model based design and optimization of feature vectors for
automatic speech recognition”,IEEE Trans. Audio, Speech, Language Processing, vol. 19, Issue 6, pp.
1813-1825, August 2011.

2012

Statistical physics and information theory based analysis

[SC9] Y. Kabashima, M. Vehkaperä andS. Chatterjee, “Typical l1-recovery limit of sparse vectors represented by
concatenation of random orthogonal matrices”,Journal of Statistical Mechanics: Theory and Experiments,
P12003, 2012.

Machine learning and statistical signal processing

[SC10] J.T. Flåm,S. Chatterjee, K. Kansanen and T. Ekman, “On MMSE estimation - A linear model under
Gaussian mixture statistics”,IEEE Trans. Signal Processing, vol. 60, Issue 7, pp. 3840-3845, 2012.

Sparse systems (compressed sensing and low-rank-matrix reconstruction)

[SC11] S. Chatterjee, D. Sundman, M. Vehkaperä and M. Skoglund, “Projection-based and look ahead strategies
for atom selection”,IEEE Trans. Signal Processing, Vol. 60, Issue 2, pp. 634-647, 2012.

[SC12] D. Zachariah, M. Sundin, M. Jansson andS. Chatterjee, “Alternating least-squares for low-rank matrix
reconstruction”,IEEE Signal Processing Letters, vol. 19, Issue 4, pp. 231-234, 2012.

[SC13] D. Zachariah,S. Chatterjeeand M. Jansson, “Dynamic iterative pursuit”,IEEE Trans. Signal Processing,
vol. 60, Issue 9, pp. 4967-4972, 2012.

2013

Machine learning and statistical signal processing

[SC14] D. Zachariah, P. Wirfält, M. Jansson andS. Chatterjee, “Line spectrum estimation with probabilistic pri-
ors”, Signal Processing, vol. 93, Issue 11, pp. 2969-2974, 2013.

[SC15] J.T. Flåm, D. Zachariah, Mikko Vehkaperä andS. Chatterjee, “The linear model under mixed Gaussian
inputs: Designing the transfer matrix”,IEEE Trans. Signal Processing, vol. 61, Issue 21, pp. 5247-5259,
2013.

Sparse systems (compressed sensing and low-rank-matrix reconstruction)

[SC16] S.K. Ambat,S. Chatterjee, and K.V.S Hari, “Fusion of algorithms for compressed sensing”, IEEE Trans.
Signal Processing, vol. 61, Issue 14, pp. 3699-3704, 2013.

[SC17] A. Shirazinia,S. Chatterjeeand M. Skoglund, “Analysis-by-synthesis quantization forcompressed sensing
measurements”,IEEE Trans. Signal Processing, vol. 61, Issue 2, pp. 5789-5800, 2013.

2014

Bioinformatics

[SC18] S. Chatterjee, D. Koslicki, S. Dong, N. Innocenti, L. Cheng, Y. Lan, M. Vehkaperä, M. Skoglund, L.K.
Rasmussen, E. Aurell and J. Corander, “SEK: Sparsity exploitingk-mer-based estimation of bacterial com-
munity composition”,Bioinformatics, 2014.
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Speech processing (speech coding)

[SC19] Z. Ma,S. Chatterjee, W.B. Kleijn and J. Guo, “Dirichlet mixture modeling to estimate an empirical lower
bound for LSF quantization”,Signal Processing, vol. 104, pp. 291-295, 2014.

Machine learning and statistical signal processing

[SC20] D. Zachariah, N. Shariati, M. Bengtsson, M. Jansson and S. Chatterjee“Estimation for the linear model
with uncertain covariance matrices”,IEEE Trans. Signal Processing, vol. 62, Issue 6, pp. 1525-1535, 2014.

Sparse systems (compressed sensing and low-rank-matrix reconstruction)

[SC21] S.K. Ambat,S. Chatterjee, and K.V.S Hari, “Progressive fusion of reconstruction algorithms for low la-
tency applications in compressed sensing”,Signal Processing, vol. 97, Issue 4, pp. 146-151, 2014.

[SC22] D. Sundman,S. Chatterjee, and M. Skoglund, “Methods for distributed compressed sensing”, Journal of
Sensor and Actuator Networks, Issue 3(1), pp. 1-25, 2014(Invited paper).

[SC23] S.K. Ambat,S. Chatterjee, and K.V.S Hari, “A committee machine approach for compressed sensing
reconstruction”,IEEE Trans. Signal Processing, vol. 62, Issue 7, pp. 1705-1717, 2014.

[SC24] D. Sundman,S. Chatterjeeand M. Skoglund, “Distributed greedy pursuit algorithms”,Signal Processing,
vol. 105, Issue 0, pp. 298-315, 2014.

[SC25] A. Shirazinia,S. Chatterjeeand M. Skoglund, “Joint source-channel vector quantization for compressed
sensing”,IEEE Trans. Signal Processing, vol. 62, Issue 14, pp. 3667-3681, 2014.

2. Peer-reviewed conference contributions

2007

Speech processing (speech coding)

[SC26] S. Chatterjeeand T.V. Sreenivas, “Computationally efficient optimum weighting function for vector quan-
tization of LSF parameters”, in ISSPA 2007, Sharjah, UAE.

[SC27] S. Chatterjeeand T.V. Sreenivas, “Joint inter-frame and intra-frame predictive coding of LSF parameters”,
in ISSPA 2007, Sharjah, UAE.

[SC28] S. Chatterjeeand T.V. Sreenivas, “Sequential split vector quantizationof LSF parameters using conditional
PDF”, in IEEE conf. Acoustics, Speech and Signal Proc. (ICASSP) 2007, USA.

[SC29] S. Chatterjeeand T.V. Sreenivas, “Normalized two stage SVQ for minimum complexity wide-band LSF
quantization”, in Conference of the International Speech Communication Association (INTERSPEECH)
2007, Antwerp, Belgium.

[SC30] S. Chatterjeeand T.V. Sreenivas, “Gaussian mixture model based switchedsplit vector quantization of
LSF parameters”, in IEEE Symposium on Signal Processing andInformation Technology (ISSPIT) 2007,
Egypt.

2008

Speech processing (speech enhancement)

[SC31] A. Kundu,S. Chatterjeeand T.V. Sreenivas, “Subspace based speech enhancement using Gaussian mixture
model”, in Conference of the International Speech Communication Association (INTERSPEECH) 2008,
Brisbane, Australia.

[SC32] A. Kundu,S. Chatterjeeand T.V. Sreenivas, “Speech enhancement using intra-framedependency in DCT
domain”, in European Signal Processing Conference (EUSIPCO) 2008, Lausanne, Switzerland.

[SC33] A. Kundu,S. Chatterjee, A.S. Murthy and T.V. Sreenivas, “GMM based Bayesian approach to speech
enhancement in signal/transform domain", in IEEE conf. Acoustics, Speech and Signal Proc. (ICASSP)
2008, Las Vegas, USA.
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Speech processing (speech coding)

[SC34] S. Chatterjee and T.V. Sreenivas, “Low complexity wide-band LSF quantization using GMM of un-
correlated Gaussian Mixtures”, in European Signal Processing Conference (EUSIPCO) 2008, Lausanne,
Switzerland.

2009

Speech processing (automatic speech recognition)

[SC35] S. Chatterjee, C. Koniaris and W.B. Kleijn, “Auditory model based optimization of MFCCs improves
automatic speech recognition performance”, in Conferenceof the International Speech Communication
Association (INTERSPEECH) 2009, Brighton, U.K.

Speech processing (speech coding)

[SC36] S. Chatterjeeand T.V. Sreenivas, “Analysis-by-systhesis based switched transform domain split VQ using
Gaussian mixture model”, in IEEE conf. Acoustics, Speech and Signal Proc. (ICASSP) 2009, Taiwan.

2010

Speech processing (automatic speech recognition)

[SC37] C. Koniaris,S. Chatterjee and W.B. Kleijn, “Selecting static and dynamic features using an adavnced
audioty model for speech recognition”, in IEEE conf. Acoustics, Speech and Signal Proc. (ICASSP) 2010,
Dallas, USA.(Best student paper award at ICASSP 2010).

[SC38] S. Chatterjeeand W.B. Kleijn, “Audioty model based modified MFCC features”, in IEEE conf. Acoustics,
Speech and Signal Proc. (ICASSP) 2010, Dallas, USA.

Speech processing (speech coding)

[SC39] S. Chatterjeeand M. Skoglund, “Structured Gaussian Mixture model based product VQ”, in European
Signal Processing Conference (EUSIPCO) 2010, Denmark.

Sparse systems (compressed sensing and low-rank-matrix reconstruction)

[SC40] D. Sundman,S. Chatterjeeand M. Skoglund, “On the use of compressive sampling for wide-band spectrum
sensing”, in IEEE Symposium on Signal Processing and Information Technology (ISSPIT) 2010, Luxor,
Egypt.

[SC41] S. Chatterjee, D. Sundman and M. Skoglund, “Statistical post-processingimproves basis pursuit denois-
ing performance”, in IEEE Symposium on Signal Processing and Information Technology (ISSPIT) 2010,
Luxor, Egypt.

2011

Machine learning and statistical signal processing

[SC42] J.T. Flåm, J. Jalden andS. Chatterjee, “Gaussian mixture modeling for source localization”, in IEEE conf.
Acoustics, Speech and Signal Proc. (ICASSP) 2011, Prague.

Statistical physics and information theory based analysis

[SC43] M. Vehkaperä,S. Chatterjeeand M. Skoglund, “Analysis of MMSE estimation for compressive sensing of
block sparse signals”, in Information Theory Workshop (ITW) 2011, Brazil.
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Sparse systems (compressed sensing and low-rank-matrix reconstruction)

[SC44] S. Chatterjee, D. Sundman and M. Skoglund, “Robust matching pursuit for recovery of Gaussian sparse
signal”, in DSP/SPE Workshop 2011, Sedona, USA.

[SC45] S. Chatterjee, D. Sundman and M. Skoglund, “Look ahead orthogonal matching pursuit”, in IEEE conf.
Acoustics, Speech and Signal Proc. (ICASSP) 2011, Prague.

[SC46] D. Sundman,S. Chatterjeeand M. Skoglund, “Greedy pursuits of compressed sensing of jointly sparse
signals”, in European Signal Processing Conference (EUSIPCO) 2011, Barcelona.

[SC47] S. Chatterjee, D. Sundman, M. Vehkaperä and M. Skoglund, “Hybrid greedy pursuit”, in European Signal
Processing Conference (EUSIPCO) 2011, Barcelona.

[SC48] D. Sundman,S. Chatterjeeand M. Skoglund, “Look ahead parallel pursuit”, in IEEE Swedish Communi-
cation Technologies Workshop (Swe-CTW), 2011, Stockholm,Sweden.

2012

Statistical physics and information theory based analysis

[SC49] M. Vehkaperä, Y. Kabashima,S. Chatterjee, E. Aurell, M. Skoglund and L.K. Rasmussen, “Analysis of
sparse representations using Bi-orthogonal dictionaries”, in Information Theory Workshop (ITW) 2012,
Switzerland.

Sparse systems (compressed sensing and low-rank-matrix reconstruction)

[SC50] S.K. Ambat,S. Chatterjeeand K.V.S Hari, “Adaptive selection of search space in look ahead orthogonal
matching pursuit”, in National Communication Conference (NCC) 2012, India.

[SC51] S. Chatterjee, K.V.S Hari, P. Händel and M. Skoglund, “Projection-based atom selection in orthogonal
matching pursuit for compressive sensing”, in National Communication Conference (NCC) 2012, India.

[SC52] D. Sundman,S. Chatterjee and M. Skoglund, “A greedy pursuit algorithm for distributed compressed
sensing”, in IEEE conf. Acoustics, Speech and Signal Proc. (ICASSP) 2012, Kyoto, Japan.

[SC53] D. Zachariah,S. Chatterjeeand M. Jansson, “Dynamic subspace pursuit”, in IEEE conf. Acoustics, Speech
and Signal Proc. (ICASSP) 2012, Kyoto, Japan.

[SC54] M.R. Bhavani Shankar,S. Chatterjeeand B. Ottersten, “Detection of sparse random signals usingcom-
pressive measurements”, in IEEE conf. Acoustics, Speech and Signal Proc. (ICASSP) 2012, Kyoto, Japan.

[SC55] S.K. Ambat,S. Chatterjee, and K.V.S Hari, “Fusion of greedy pursuits for compressed sensing signal
reconstruction”, in European Signal Processing Conference (EUSIPCO) 2012, Romania.

[SC56] S.K. Ambat,S. Chatterjee, and K.V.S Hari, “Subspace pursuit embedded in orthogonal matching pursuit”,
in TENCON 2012, Phillipines.

[SC57] S.K. Ambat,S. Chatterjee, and K.V.S Hari, “On selection of search space dimension in compressive sam-
pling matching pursuit”, in TENCON 2012, Phillipines.

[SC58] D. Sundman,S. Chatterjeeand M. Skoglund, “FROGS: A serial reversible greedy search algorithm”, in
IEEE Swedish Communication Technologies Workshop (Swe-CTW), 2012, Stockholm, Sweden.

[SC59] A. Shirazinia,S. Chatterjee and M. Skoglund, “Performance bounds for vector quantized compressive
sensing”, in International Symp. on Info. Theory and its Applications (ISITA) 2012, Hawaii, USA.

2013

Statistical physics and information theory based analysis

[SC60] M. Vehkaperä, Y. Kabashima andS. Chatterjee, “Statistical mechanics approach to sparse noise denois-
ing”, in EUSIPCO 2013, Morocco(Invited paper).

Machine learning and statistical signal processing

[SC61] D. Zachariah, M. Jansson andS. Chatterjee, “Enhanced Capon beamformer using regularized covariance
matching”, in IEEE Workshop on Computational Advances in Multi-Sensor Adaptive Proc. (CAMSAP)
2013, Saint Martin(Invited paper).
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[SC62] J.T. Flåm, E. Bjornson andS. Chatterjee, “Pilot design for MIMO channel estimation: an alternativeap-
proach to the Kronecker structure assumption”, in IEEE conf. Acoustics, Speech and Signal Proc. (ICASSP)
2013, Canada.

Sparse systems (compressed sensing and low-rank-matrix reconstruction)

[SC63] D. Sundman, D. Zachariah,S. Chatterjeeand M. Skoglund, “Distributed predictive subspace pursuit”, in
IEEE conf. Acoustics, Speech and Signal Proc. (ICASSP) 2013, Canada.

[SC64] D. Zachariah,S. Chatterjee and M. Jansson, “Iteratively reweighted least squares for reconstruction of
low-rank matrices with linear structure”, in IEEE conf. Acoustics, Speech and Signal Proc. (ICASSP)
2013, Canada.

[SC65] S.K. Ambat,S. Chatterjee, and K.V.S Hari, “Fusion of algorithms for compressed sensing”, in IEEE conf.
Acoustics, Speech and Signal Proc. (ICASSP) 2013, Canada.

[SC66] M. Sundin, M. Jansson andS. Chatterjee, “Conditional LMMSE for sparse signal estimation”, in EU-
SIPCO 2013, Morocco.

[SC67] D. Sundman,S. Chatterjee and M. Skoglund, “Parallel pursuit for distributed compressed sensing”, in
IEEE GlobalSIP 2013(Invited paper).

[SC68] A. Shirazinia,S. Chatterjeeand M. Skoglund, “Analysis-by-synthesis-based quantization of compressed
sensing measurements”, in IEEE conf. Acoustics, Speech andSignal Proc. (ICASSP) 2013, Canada.

[SC69] A. Shirazinia,S. Chatterjeeand M. Skoglund, “Channel-optimized vector quantizer for compressed sens-
ing measurements”, in IEEE conf. Acoustics, Speech and Signal Proc. (ICASSP) 2013, Canada.

2014

Statistical physics and information theory based analysis

[SC70] M. Vehkaperä, Y. Kabashima andS. Chatterjee, “Analysis of regularized LS reconstruction and random
matrix ensembles in compressed sensing”, in IEEE International Symposium on Information Theory (ISIT),
2014, Hawaii, USA.

Speech processing (automatic speech recognition)

[SC71] C. Koniaris andS. Chatterjee, “A sparsity based preprocessing for noise robust speech recognition”, in
IEEE Spoken Langulage Technology workshop (SLT) 2014, USA.

Sparse systems (compressed sensing and low-rank-matrix reconstruction)

[SC72] P.B. Swamy, S.K. Ambat,S. Chatterjeeand K.V.S Hari, “Reduced look ahead orthogonal matching pur-
suit”, in National Communication Conference (NCC) 2014, India.

[SC73] K. Li, C. Rojas,S. Chatterjeeand H. Hjalmarsson, “Piecewise Toeplitz matrices-based sensing for rank
minimization”, in European Signal Processing Conference (EUSIPCO), 2014, Portugal.

[SC74] A. Shirazinia,S. Chatterjeeand M. Skoglund, “Distributed quantization for compressedsensing”, in IEEE
conf. Acoustics, Speech and Signal Proc. (ICASSP) 2014, Italy.

Machine learning and statistical signal processing

[SC75] M. Sundin,S. Chatterjee and M. Jansson, “Combined modeling of sparse and dense noiseimproves
Bayesian RVM”, in European Signal Processing Conference (EUSIPCO), 2014, Portugal.

[SC76] M. Sundin,S. Chatterjeeand M. Jansson, “Relevance singular vector machine for low-rank matrix sens-
ing”, in International Conference on Signal Processing andCommunication (SPCOM) 2014, Bangalore,
India (Invited paper).
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2015

Machine learning and statistical signal processing

[SC77] M. Sundin,S. Chatterjeeand M. Jansson, “Greedy minimization ofℓ1-norm with high empirical success”,
accepted for IEEE conf. Acoustics, Speech and Signal Proc. (ICASSP) 2015, Australia.

Signal processing on graphs

[SC78] A. Venkitaraman,S. Chatterjeeand P. Händel, “On Hilbert transform of signals on graphs”, accepted for
Sampling Theory and Applications (SampTA), 2015, USA.

3. Manuscripts submitted or under preparation - related to SparseNet project

[SC79] M. Vehkaperä, Y. Kabashima andS. Chatterjee, “Analysis of regularized LS reconstruction and ran-
dom matrix ensembles in compressed sensing”,submitted to IEEE Trans. Information Theory, web-
site:http://arxiv.org/abs/1312.0256.

[SC80] D. Sundman,S. Chatterjee and M. Skoglund, “Design and analysis of a greedy pursuit fordistributed
compressed sensing”,submitted to IEEE Trans. Signal Processing, website:http://arxiv.org/abs/1403.6974.

[SC81] A. Venkitaraman,S. Chatterjeeand P. Händel, “Graph linear prediction results in smaller error than stan-
dard linear prediction”,submitted to EUSIPCO 2015.

[SC82] A. Venkitaraman, M. Sundin,S. Chatterjeeand P. Händel, “IRLS denosing and inpainting of signals on
graphs”,Under preparation.

[SC83] M. Sundin, A. Venkitaraman,S. Chatterjeeand M. Jansson, “Design of sparse mixing matrix for connected
network”,Under preparation.

4. Open access computer programs

Motivated by the philosophy of reproducible research, I provide codes online with open access. The codes
can be freely downloaded and then verified against the experimental plots shown in my publications. Please
see: http://www.kth.se/ees/omskolan/organisation/avdelningar/commth/research/software.
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