Queueing and Delivery Analysis
of SR ARQ on Markov Channels
with Non-instantaneous Feedback

Leonardo Badig Michele Rossi, Michele Zorzif,

x Dept. of Engineering, University of Ferrara, via Saragat4l00 Ferrara, Italy
1 Dept. of Information Engineering, University of Padovea Gradenigo 6/B, 35131 Padova, Italy
Email: {I badi a, nr ossi, zorzi }@ng. unife.it
Telephone#39 0532 974xxx, xxx={945, 944, 840}

Abstract

In this paper we investigate the packet delay statistics fofllg reliable Selective
Repeat ARQ scheme by considering a Discrete Time Markov @Hanith non-
instantaneous feedback and assigned round-trip delayur focus is on studying the
impact of the arrival process on the delay experienced bykgtaAn exact model is
introduced to represent the system constituted by thertrittes buffer, the round-trip
slots, and the channel state. By means of this model, we aeafind discuss the de-
lay statistics and we analyze the impact of the system paeamén particular of the
packet arrival rate, on the delay statistics.

Index terms

Automatic repeat request, Selective Repeat ARQ, data cancation, Markov pro-
cesses, error analysis, delay estimation, modeling.
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Abstract—In this paper we investigate the packet delay statis- is known in the literature [4] agleal SRARQ. In this case
tics of a fully reliable Selective Repeat ARQ scheme by consid- the information about the correct reception of a packet is im
ering a Discrete Tlme Markov _Channel with non-in§tantane0us mediate|y available after its transmission, hence th&ﬂyss
feedback and assigned round-trip delayn. Our focus is on study- simpler and the analysis can neglect the possibility of fgavi

ing the impact of the arrival process on the delay experienced by : P ; :
a packet. An exact model is introduced to represent the system pending packets at the receiver's buffer. However, in tray w

constituted by the transmitter buffer, the round-trip slots, and the ~ the re-sequencing delay, which is a large part of the defiver
channel state. By means of this model, we evaluate and discuss thedelay, can not be evaluated. Finally, another common aphroa
delay statistics and we analyze the impact of the system parame-[1] is to assume that the sender has always a packet to transmi
ters, in particular of the packet arrival rate, on the delay statistics. ~ This so-calledHeavy Traffic assumptias a realistic model for

Index Terms— Automatic repeat request, Selective Repeat continuous-like traffic sources, but might fail to represeore
ARQ, data communication, Markov processes, error analysis, de- general cases. In particular, this assumption preventptbee-
lay estimation, modeling. ing delay statistics from evaluation, as the buffer occayas

arbitrarily high, whereas it is useful for the delivery delas
I. INTRODUCTION shown in the next.

UTOMATIC Retransmission reQuest (ARQ) is a widely Our contribution is to relax thgse simplifications, by deriv
A used error control technique for data communication, bii!d @ general exact approach. Differently from other canti
sides Forward Error Correction. The three basic ARQ tecHons appeared so far, here we derive statistics of evergrord
niques are Stop-and-Wait, Go-Back-N and Selective Rep&2d In close form. In particular, in [3] we already develop an
(SR). In SR ARQ, the sender retransmits only the negatively aexapt analysis baged on the Heavy Traffic assumption and fo-
knowledged packets and then resumes the transmissiorssroC&'Sing on the delivery delay only, whereas here we study all
from the last packet sent so far. In such a scenario, the defd§ delay terms (thus, in particular, the queueing delayyl, a
experienced by different packets are related, since thkepaccONSidering a general arrival process. This generaliadso
release must be in-order, i.e., the actual delivery of a @aci@chieved as in [5] by considering a Bernoulli model, which ca
occurs after the correct reception of every packet with ow8€ tuned by varying the arrival rate .
identifier. Other differences with related work are as follows: in [}g th

Several terms [1] constitute the global delay experienged uthors consider a time varyin'g channe'l and a finite rouspd-ir
a packet, called in the followingg. For our analysisyc is elay, but the derived model is approximate in some compo-

subdivided in two subsequent parts. The former, calleeue- nents and only average val_ueg are (_avaluated. In [2], the dis-

ing delayand denoted with, is the time spent in the sourcel"1PUtion %f byff?]r occupafn_(_:clles is derived for a geljec:aivagr

buffer before the first transmission. It might be relatedte t PrOCess, butin the case of iid errors. Moreover, a windosetla
approach is considered, which prevents the packet frormrgbein

distribution of transmitter buffer occupancy [2]. The éatis ited i diatelv after val h .
the delivery delayrp, which is between the first transmissiorf@nSmitted immediately after its arrival, as the transenmust
ait until the end of the window. Also [5] considers a Berroul

and the release of a packet from the re-sequencing buffés. THY S
is the sum of the time for correct reception and the acknagvlec?Val Process, but again with iid error process. In [6 émd-
ment time for previous pending packets, calteesequencing ©©€nd delay in case of Adaptive SR ARQ and general arrival
delay, which depends from the correct reception of other pacRIOCESS is studied, but the analysis is approximated. Ifirzal

ets. Aboutrp, note that between every transmission and tH’fry recent contribution on the matter, which also invextg
corresponding packet reception there is a time gap equhéto t'€ dueueing delay, can be found in [7]. . .
constant propagation delay. To simplify the notation, this The paper is organlged as follows: n Sectlon Il we outline
constant term will be omitted. This means that in the follogvi the model of the Queueing and Transmission process of the SR

the delivery statistics will be considered at transmigteside: ARQ. In Septic_m lll we show how it is possible to solve the
the delivery delay at receiver's side is simply -+ . [3]. problem of finding the buffer occupancy by means of an appro-

In the analysis of SR ARQ statistics, some approximatiorﬁ’ latte Marl_<0v chain. '.” Section IV we _exte_:nd this to compute
are often introduced to make the problem more tractable. tAe queueing and dehvery delay distributions and give some
simplifying assumption used in the literature [2] is to cidies comparison of them. Section V concludes the paper.
an independenti@) error process on the channel. This makes
the analysis easier, even though the impact of the channel §r M ODEL FORSR ARQ QUEUEING AND TRANSMISSION
ror burstiness is neglected, which is undesirable as ihgtyo PROCESSES
affects the results of ARQ delay [3]. Another simplification The system under analysis consists of a pair transmit-
is to consider a round trip delay equal to zero. This situmtider/receiver. The former sends data packets to the latugin



a slotted noisy channel, where the time for a packet trans- packetsin 9 ‘Hf
mission corresponds to one slot. The receiver answers with queueing buffer
ACK/NACK packets according to the correct/erroneous recep
tion of the data packets, respectively. After a full rounig tr
time, feedback packets arrive at the transmitter’s sideloAg
as ACKs are received, the sender transmits packets in gcrea
ing numerical order. When a NACK is received instead, a re- teedback
transmission is scheduled (which therefore occurs aftaidla f N
round trip time from the previous transmission attempt).e Th
data packets are releas@dorder to higher layers, i.e., release i
is possible once every packet with lower identifier has been a b i St
knowledged. In SR ARQ the receiver keeps in a buffer the "
packet correctly received but not yet released, so thaethées e
retransmits not acknowledged packets only.

The following work assumptions are introduced:

N

1 transmission

i) Thgig. 1. Snapshot of the state of the SR ARQ transmission system

Link Layer protocol is fully reliable, i.e., every packet is I1l. M ARKOV MODEL OF QUEUEING BUFFER AND
transmitted (or retransmitted) until correct receptioi).Both FEEDBACK CHANNEL
receiver and transmitter buffers have unlimited size. i)

ACK/NACK packets are error-free. For what concerns these as The delivery process evolves as in Fig. 1. At each instant,

sumptions, note that i) and ii) are standard hypotheses ke m& packet_ls _transmltted on the channel, and it can b_e either a
the problem analytically tractable. Also, for what concetine retransmission or a new packet taken from the queueingrbuffe

transmitter buffer size, note that an upper-limit can beoint S_lnce retransmissions occur after a full round-trip timrena
duced in what follows in a straightforward manner. The a ized retransmission window can be used to track th? SW“S 0
sumption iii) instead can be easily removed if necessanpby f astm transmitted packets. This can be done by considering an

lowing the approach presented in [8], where an extended arfgfs'zed. Ve.Cto'b’ with elements; € {0,1}, 1 < < m. The.
ysis accounts for erroneous feedback. This will bring heig o mth bit indicates the slot currently under transmission raeti

to tedious complication in the calculus, without substlhti gt\?‘/rr:gf the b'.tg’{:’oi aﬁl éé ;n_all (rae(faer taol E(g(.anzar;st;ns'ﬁ'gtn
changing the analytical framework, thus it is avoided. Imei —m+). IS, a valueé equal 1 indi

We consider a Bernoulli model for the arrival process. i at that time no retransmission was scheduled, whereasans
P ' -Shat a transmission failed. We also need to track the number

giIri)taCl;etHa(;\r/:/vee\‘/IeT?zeogﬁltjlirnlg defﬁx;/:/?)trl\(lv ;;hvce?nStsgéﬁarloza'of packets in queue at the transmitter buffer and the channel
Y A ' Y9 ' ~States, which might be eithef or 1, i.e., good or bad. Due

:R/‘;tl thrlscaeiilérsﬁt:gniifsg Egsriigll?c\?vir?%/h?g;?nzoa:np?j:dcgf dt%rthe Markovian nature of the channel, it is sufficient togkee
b q ' y track only of the value of at timet.

with more cumbersome computations. In this view, our centri Hence, the full state of the delivery process can be destribe

i?]uzlr?;;r?ir\]/;le f:csellélseﬁendgd é%rtgii(;e'r?:lo chﬂogﬂgszrﬂgé through the triple(q(t), b(¢), s(t)). However, a simplification
P » €9, Y 9 is possible. In fact, the binary variables ands are not inde-

In [?]-. The chqlce of the Bernoulli arrival process is howev.ependent, as a retransmission in current slot is schedulgdfon
sufficient to gain deep knowledge. For example, such anadrriy, o nhelis bad. thus it is impossible that 0 andb,, = 1
process is able to describe different load conditions, by-va he vice versa doés hot hold. Simes can be even ifwsl = 1.
ing . In particular, the Heavy Traffic assumption COITESPONCR, 4 this happens if no packet is transmitted. For this reason
to A equal tol, even tho_ugh the steady state condition Whenwe replace,, ands with a ternary variable, since only three
overcomed —¢, wherex is the steady—sta_te Cha””?' EITOrProbeiy ations are possible, which are: the channel state id,goo
f"lb'“ty' also approaches the_Heavy Trafﬁc case, since trferpu which implies that there is anyway no need for retransmissio
is never empty. In the following, we give particular empksdsi

; d e (we denote this wite = 0), the channel state is baahd a
the'Ir'fewsttl:%r:nhr:gIbiitvrveeperre]stzazzl?/?//itita;sgi(;i?er:g El'hi?n\g:\';llzrk acket is transmitted, which indicates a retransmissibadial-

. i . . Hg (¢ = 1), the channel is bad but no packet is transmitted,
Chain (DTMC). The transitions of this DTMC are in COIey, 5 retransmission is scheduled anyway (in this cage,
spondence with the transmission slots. For the sake of sig; equal to—1). It is necessary to distinguish— — 1 from

plicity, in the following we assume to have a 2-State Markoy _ 0, since both represent no retransmission but for different
Channel, where stat@ is error-free, andl is always erro-

; i . I channel conditions. Formally,= 2sb,,, —s.

neous. This DTMC is fully characterized by the transition-ma Now, X () = (g, b, b _yb j ) isSa Markov chain.!
trix P = {pi;}, i,j € {0, 1}. For this model, the steady-statq, a0 “opserve that the knowledge af(¢ — 1) is sufficient
channel error probability is = po1 /(p1o + por) and the av- y, yerermine the value of (1) by considering every possibil-

fira?ﬁ error bur?t Ien?tt:] B ~ 1/2pls°t' :n ﬁﬂpiti of gisimp:ig- ity of channel transition and packet arrival (on the aggtega
Ity, the assumption ot having a 2-state Markov Lhannel IS ngt, -, cases). In the following, we discuss the evolution of this

restrictive fpr What. follows. In fact, a more complicated- aPmarkov chain by explicitly deriving its transition matrix.
proach (which again leads only to more cumbersome formulae First of all, note that due to the cyclic behavior of the ARQ

without significant differences in the procedure) can bévedr . o :
X . window, it i realize that the valueswof. . ., b,
for a more generaWN-state Markov Channel, as outlined in [8]. dow, itis easy to realize that the valuestef. .., byt at

ThUS, it !S pOSSIb|e to extend our anaIyS|s to more genemgza LAll components are here evaluated at titn@o avoid long expressions, the
in a straightforward manner. time indication will be omitted when evident.



timet+1 evolve deterministically, depending dmandc, as fol- packets in the buffer wag-1 but a retransmission (left-most bit
lows: b;(t+1) = b (t) for1 < j < m—2, andb,,,.; = u[c—1], equal toa = 1) prevents the buffer from being decreased, or it
whereu[] is the unit-step (i.ex[n] = 1if n > 0, and0 other- wasg and the new arrival is compensated by the transmission of
wise). Insteadg(t+1) andc(t+1) depend on the values gft), a packet from the buffer. In the latter (no packet arrival)jcaa
¢(t) and alsab; (t), and can have different values according teepeat the above reasoning but we must account for a buffer oc
the packet arrival and channel variation process. In pdeic cupancy in previous slot with one more packet. Eq. (2) foow
c(t+1) always evolves following the channel transition but foimmediately from the observation that it is impossible teéha
the case in whicly(t) +b;(t) = 0, where for bad channel it is ¢ = —1 when the buffer occupancy is higher th@nin fact,
—1instead of+1. ¢ = —1 describes a bad channel condition where no packet
Henceforth, the transition matrif' (P, \) of the Markov is transmitted since the buffer is empty, no retransmisgon
chain X (¢), which is a function of the matri® and the arrival scheduled and no packets arrived in previous slot. Eq. §8);c
rate)\, has3-2™! rows for each possible value gft) and every pletes the cases of good channel by using the same approach of
row has only 4 non-zero elements. In particular, the traomst Eq. (1). However, here the inner sum comprises only one case
starting from the stat& (¢) = (q, b1, b2, b3, ..., b1, ¢) are to in the first term, i.e., when a packet is arrived, as a buffeuec
the states{ (t+1) = (g+b1, b2, b3, ..., b1, ulc—1],d), with  pancy equal t® can be achieved only if the buffer was already
probabilities\p, .4, whered € {0, 1}, and to the stateX (¢+1)= empty and no retransmission is scheduled. In the second term
(¢th1—u[gtb1—1],ba, b3, . . ., by, u[c—1], d-(2u[¢th1—1]—1)), instead three possibilities are included, since we now lave
with probabilities(1—\)p,4, where againl € {0, 1}. account also for the case where the buffer was empty and no
The following set of balance equations can be writen ~ transmission was scheduled, which is the term of the sum cor-
responding tax=—1, whereasy = 0, 1 gives the terms already

(401,02, - b, B, 0) = included in the sum. as in Eq. (1). Finally, Egs. (4)—(5) i
A A any left possibility of channel transition to the erronestete.

- Z Z (AP\IICW(Q—OK’ b1, ba, .o bng, @) + Remember again that the case where the buffer is empty and
2=26-1 a=0 no retransmission is scheduled evolves with —1, otherwise
1= Mpiaem(q—a-+1,a,b by ¢ = 1. Thus, the latter case is considered in Eq. (4), where

FA=Mpemlg—atl aby, .oy 2’x)) Eq. (5) account for the special case where —1.

forg>0,c€{0,1} (1) If we impose the sum of alk’s to be 1, the above set of

) equations can be analytically solved for any valu® of A\ <

(@b bm2, B, =1) =0 forg >0 1 — € by observing that the matri¥' (P, \) is partitioned in the

7(0,b1,...,bm_2,03,0) = form:
B So Lo O
= Z ()\P|z\07T(070» by, ba,- - abm727x) + M; S Lp O
w=26-1 0 M; S; L 0

1 0 M; S L O
+Z(17)‘)p|x|07r((170‘)u[a]3au[a]vblr--7bm727$)> (3) : ) ) ’

a=-—1
(0, b1, b b 8,1) = where the block of siz& - 2™~ in position(g, ¢’) includes the
ﬁ’ D P20 Im=2 transitions from buffer occupanegyto buffer occupancy’.
This expression is very similar to the ones characterizing
Ap217(0,0,b1,ba, . .., by_o, IS | n
> ( Pa1m (0,0, b1, b, 2 ) + Quasi Birth and Death (QBD) processes [9], even though it is

r=2(—1

. not a true QBD process since the sub-malkiis not equal

to the sub-matricef.;. In fact, the topmost row relates to
+Z(1 = A)pepm(l —a, a, by, b, b’"—z’x)) 4 Egs. (3)—(5), whereas the rows describing the transiticors f
a=0 everyq > 0 can be inferred from Egs. (1)—(2). This difference
does not prevent a recursive solution of the chain by folhgwi

7(0,b1,b2,...,bym—2,8,—1) = an approach akin to the one presented in [9] to solve general-

B ized birth-and-death processes where the arrival and tlepar
= > (1= Nppm(0,0,by,ba, ... b2, 7)) (5) rates depend on the system state. The modifications negessar
r=2p-1 to solve our problem concern the fact that the system state is

not fully described by the channel evolution only, since im o

whole Markov chain also the buffer state impacts on the feed-

E_q. (1.) holds since the system can haye a tran5|t|oq Ina Stk vector (in particular o). However, this changes only the
with given buffer occupancy > 0 either if a packet arrived in o hart of the recursion, i.e., when thél, -, -)'s are expressed
previous slot or not. We can then include two main cases,Whig, ;orms of ther (0, -,-)'s. From this point’ c;n the derivation of

gives the two terms multiplied by and (1 — \), respectively. them(q+1,-,-)'s in terms of ther(q, -, -)'s is always the same.

In the former (packet arrival during previpus slot) 'ghe m By following again [9], we can prove that this approach agmit
buffer occupancy wag — o and the first bit of the bitmap is g5 tion whem < 1 — . In fact, the recursive approach is

a, wherea can bel or 1. This means that either the number o onvergent if the generalized departure rate, which iseith

2| the following, the scripb,,, — 1, which occurs often, has been replaced by?! 1 accprdi_ng tol — by, is on average higher than the arrival
3, only to simplify the notation. rate, which is always equal ta

This set of equations cover all possible states. In pagicul



IV. QUEUEING AND DELIVERY DELAY EVALUATION Queueing Delay (m=7 B=5 £=0.1)

The Markov chain described in the previous Section allows . oo
us to determine the delay statistics in an exact way. Theieval 10-1”:@ mmmmm % Toeeo0eo00s
ation of both queueing and delivery delay full statisticstfoe o B S
general case of packet arrival rateare original contributions 107 |5 . E“E‘Em%m T
presented here. Defireas(by, ba, ..., bm), i.€., @ truncated 3 %@%% %AAA Eﬂ%mﬂ% Ww
b, withoutb,,,. Thus,b = (a | u[c—1]). Letn(g, a,c) be the g 10° T, Fone
stationary probability of a generic stal&(t) = (¢, a,c). The c Sy, My ”fnmma%m
probability of having queueing buffer occupancy equa fs: 10 r=04 ¢ o, %A%% g
P[Q] = ZaeA 216271 7(q,a,c), whereAd = {Oa l}m_l- 10° b /\S%g . R Gy = o

To evaluate the packet delay, consider the arrival of a g9 ey, P
given packet in the queueing buffer. The conditional prdbab 0° 0 a0 0 w0 5 e a0 m

ity A(q,b1,b2,...,bmo, 5, c) that the system state {g, a, ¢)

. . . . . Queueing Delay T
given that in the previous slot a packet is arrived can beueva‘:ig )

Complementary cumulative distribution of the queuedetay for

ated as follows: e=01,B=5m="T.
A(q, b1, by, ... by c) = 6
(q’ 15525 » o 27ﬁ7 ) ( ) Delivery Delay (m =7)
LU L e
. o, =0.7,¢=0.1, = —_—

_ Z Z Pla|eT(q — @, b1, by, ) ife>0 ot s Asezesone=s - ||

r=20—1 a=0 S A=0.7,e=0.1,id

0 otherwise 107 5

Eq.(6) is easily derived by Eqgs.(1)-(5) by considering aiy
transitions with a packet arrival.

If the column vectow,,, is defined as a vector af elements . .
all equal tol, the newly arrived packet has-u[g—1] + bv,, 10 B ]
packets ahead in the transmission order, which are still not 10°
correctly receivedl Now, it is possible to consider the Markov T
chain defined by the transition matriR(P,0), in which the 0 10 20 30 40 50 60
arrival process is “turned off.” In fact, as shown in [3], diug Delivery Delay 1
arrivals do not affect _the queueing delay, nor_ the_' de"Verg.s. Complementary cumulative distribution (ccdf) of théwdey delay for
delay, of the packet of interest. The Markov chain with= 0 1, "= 7 and various values of the other parameters.
evolves again by following the procedure outlined in Settio . , . L
Ill. Intuitively speaking, any packet eventually exits theeue An alternative view of the problem can be given by considgrin

and arrives at correct delivery with probability Formally, & column vectoeq of all ones in the entries with = 0 and
Q = {(0,a,c): ac A —1<c<1}is an absorbing set for all zeros in the entries with > 0, i.e., the vector of indicator
the Markov chain and so i§ = {(0,0,0), (0,0,—1)}, where functions of the se@. In this case

0 is a (m— 1)-sized null vector. The proof of this statement Colt] = A-[T(P,0)]" -eq, t>0, (8)

gl(leog\gstrllrgggfdlately, foritA = 0, thentli)rgoq andtllglobvm where A denotes the vector collecting all(q,a,c)'s. The

We present two equivalent ways to solve this Markov chaiflistributionCo|t] is the probability that the queueing delay is
The first method exploits the fact that, intuitively speajkiany 0wer than or e.qual te. Thus, the probability Prabr, = ¢} is
packet eventually exits the queue and arrives at correivetigl determined as: .
with probability 1. Formally, @ = {(0,a,¢): a€ A, -1 < S Col0] ift=0

. . ; : Prob{rq =t} : )
¢ <1} is an absorbing set for the Markov chain and s@ is Colt] = Co[t —1] ift>0
{(0,0,0),(0,0,—1)}, where0 is an(m—1)-sized zero vector.

cedf [1p]

. . : = In both cases apparentlygoes to infinity, which requires ei-
The proof of this statement follows immediately, forXf = ther an infinite sum in Eq. (7) or an infinite matrix in Eq. (8).

0, thentlim q andtli)m bv,, are both zero. When the MarkOVHowever, the observation thlf, ..., o(t) = 0if ¢ > ¢, .e., a

chain enté?s the s@?ﬁe packet of interest is released from th@uffer with ¢ packets can not be emptied in less thaimeslots,
queueing buffer, where the s@tcorresponds to the conditionsmeans that the evaluations above only involve a finite number
where the packet and also all previously transmitted packef terms, i.e., the terms whege> ¢ are all zero.
are acknowledged. Thus, ff,a.c) o(t) and fi,a ) g(t) are The statistics of the overall delay; can be evaluated by
the probabilities that the first passage times [10] from tages following the same approach. Only, to obtdiirg = ¢] it is
(¢,a,c) to the absorbing set® and g, respectively, equal necessary to replacg, a ) o(t) With f(, a. g(t), Or equiva-
slots, the statistics of the queueing detayis evaluated as: lently e with a vectoreg which has ones only in positions
oo — (0, (_)I_,h()) gn?(o, O,dfll), and ztiros glsgwr&ere. "
e delivery delayrp is then derived asg — 7g. Thus,

Pirg =t} = Z Z Z Mg a.0)fgacet) . (@) Prob[tp = t] can be obtained as deconvolution]écirc =t

andProb[rg = t]. In Figs. 2 and 3 the complementary cumu-

30bserve thabv,, is the number of elements bfequal tol. If ¢ = 0, the 1ative distributions of the queueing and delivery delagpesc-
packet is transmitted immediately. tively, are plotted. In Fig. 2 we consider different valués\o

g=0acAc=-1



Queueing Delay distribution (m=7 A=0.7) Average Delays (m=7 B=5 £=0.1)

1 — 100 ‘ ‘ ‘
_£=0.01,iid A Queueing Delay 7o -+
i e= Olo-lel -__g g | Delivery Delay Tpy -—-—-
10 5—80_1 'BI-HS o Overall Delay 15
® =0.1,B= " ’
L4 10} O simulations - 10 F simulations © A

10 A" RO N /@/@
. A ©-@®. ®
T, 10° Bt 20.0.¢ o I B P
= NN RACECHO! E 1 &
€ .4 Abop, = ®
g 10 N s O}

boa, ®
l 0 NN ®
10 L
x 4 0.1 ®
y
A ™
107 0.01
0 5 10 15 20 25 30 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time t Arrival rate A

Fig. 4. Statistics of the queueing delay for = 7 and A= 0.7 for different Fig. 5. Average values of the queueing buffer occupancyueing delay,
values of the channel burstineBsand error probability. delivery delay and overall delay fon = 7, b = 5, ¢ = 0.1 as a function of\.

whene = 0.1, B = 5 andm = 7, and simulation results arerelevant, where the queueing delay is heavierXas 0.7 and
shown for completeness. For Fig. 3 the additional choice approaching the Heavy Traffic condition. However, these con
A = 0.7 is imposed to obtain a reference case to compare withusions depends on the specific scenario. Moreover, rememb

situations where one parameter is changed. that Fig. 5 does not consider the propagation delag the av-
On the one hand, Fig. 2 shows that the buffer occupaneyagerp.
is more or less reflected on the queueing delay (even though V. CONCLUSIONS

the latter distribution has a heavier tail). On the otherchan
from Fig. 3 itis clear that delivery delay is almost insensito
the packet arrival process, in fact the curves remain vergecl
even with a differenf\. In particular, whem > 0.3 the curves
overlap so to be almost indistinguishable. As a consequen
to study the delivery delay under the Heavy Traffic conditio
is reasonable, unlessis very small. This justifies the stud-

ies presented in [L, 3] where the delivery delay has been a8 atistics. In particular, we analytically showed that ifin@act

lyzed under this assumption. Note that, as holds the afmem§n ;.fgari?rr(lj\fﬂlgrggs: ?r;thfn?:sl';’?;ﬁ (1?:23: :Ztgﬁglyelfﬁ:lg
tioned contributions, the delivery delay curves presenéid p jorty ) v
the arrival rate is very low.

odic descent behavior, which steps down everglots, since Conversely, our analysis is of interest for the queueing de-

this roughly corresponds to one more retransmission. . o L
The effect of the distribution of the error bursts of th(la;ﬁ/ dﬂg&?&?g&'@'ﬁ%ﬁ taitrg?ﬁgtsﬁﬁgf?aé Fr)g{jtnzf ttrri]pe tien\fnzr
Markov channel on the queueing delay is presented in F|g.m, is large, this exact approach becomes prohibitive; however

\évrr:]erheazlirzneudlattrl]%r: trﬁzu'tesr% rfngﬁg rsgog\;?efdognc?:rinp%rliss Olsti.rr:it proximate models, accurate enough to be used for practica
P P P 9. rposes, are possible subjects of future research.
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We studied an exact Markov model to investigate the de-
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