
Maximizing Airtime Efficiency for Reliable Broadcast
Streams in WMNs with Multi-Armed Bandits

Giovanni Perin∗, David Nophut†, Leonardo Badia∗ and Frank H.P. Fitzek†
∗Department of Information Engineering, Università degli Studi di Padova, Via Gradenigo 6/b, 35131 Padova, Italy
†Chair of Communication Networks, Technische Universität Dresden, Helmholtzstraße 18, 01069 Dresden, Germany

Email: {peringiova, badia}@dei.unipd.it, {david.nophut, frank.fitzek}@tu-dresden.de

Abstract—Wireless broadcast routing is a complex
problem, shown in the literature to be NP-complete.
Current protocols implement either heuristics to find
solutions that are not guaranteed to be optimal or
classic flooding. However, many future use cases, like
automotive applications, industrial robotics, and mul-
timedia broadcast, will require efficient yet reliable
methods. In this work, we use contextual multi-armed
bandits together with opportunistic routing (OR) and
network coding (NC) to find approximately optimal
solutions to the problem of broadcast routing in a
distributed fashion. Each router independently learns
its own transmission credit, i.e., the number of packets
to forward for each innovative packet received, so that
the airtime cost, subject to latency constraints, is min-
imized. Results show that the proposed solutions, par-
ticularly the deep learning based one, vastly improve
the overall reliability, while performing close to MORE
multicast in terms of airtime and to B.A.T.M.A.N. in
latency, both being the best candidates in the respec-
tive discipline among the tested ones.

Index Terms—Reinforcement learning, multi-armed
bandits, wireless mesh networks, routing, broadcast.

I. Introduction

Access to a shared medium puts a limit to data trans-
mission and can therefore decrease the effectiveness of
routing algorithms designed to improve the information
flow or the latency. We consider broadcast routing, defined
as the challenge of reaching all the nodes of a network as
end destinations of a stream, not to be confused with link-
local broadcasting, which can be actually employed for
opportunistic routing (we will exploit it in our proposal).
While unicast routing is well researched, and elaborate
schemes have been proposed for it [1], even providing
optimal solutions in airtime [2], practical and capacity-
achieving algorithms for broadcast routing have not been
found. As a consequence, state-of-the-art implementations
use approximated heuristics [3]–[5] or even approaches like
flooding, resulting in excessive transmissions [6].

We remark that broadcast routing is of major interest
in scenarios such as wirelessly connected control systems,
media broadcast with mobile devices, and especially up-
coming V2X use cases, e.g., platooning cars being reliably
informed about movement commands or status updates.

For the latter scenario, geographical routing was standard-
ized by ETSI [7]. However, the wireless channel gain only
partially relates to physical distance. Furthermore, even
knowing geographical distances does not solve the problem
of minimal-cost routing. This makes our proposal both
timely in scope and original, since we evolve over the state
of the art thanks to the application of recent trends in
reinforcement learning (RL) [8], [9].
Specifically, we develop a multi-agent RL framework

based on contextual multi-armed bandits (cMABs) [10] to
solve the problem of efficient broadcast routing in terms
of airtime, with constraints on latency in the form of hard
timeout thresholds. We propose two solutions, one based
on classic Q-tables and another implemented thanks to
Bayesian neural networks (BNNs), and we compare them
with standard reference cases, i.e., MORE multicast [2]
and B.A.T.M.A.N. [6] in terms of reliability, airtime, and
latency. Notably, our proposals are realized by making all
the nodes of the network as independent learners, thereby
allowing for distributed implementations.
As a result, we can make the following contributions.

First of all, we discuss how we can implement our
techniques based on cMABs in a distributed fashion;
since this requires to exchange information among the
node/learners, we also explore techniques to keep the
control information exchange limited. Still, this offers a
significant advantage towards scalability with respect to
fully centralized strategies. Moreover, besides exchanging
some information among neighbors, we propose a time-
varying reward function, which forgets outdated situa-
tions, to cope with the problem of non-stationarity typical
of multi agent environments [11]. Second, and most impor-
tantly, we are able to show the superiority of our approach
compared to the benchmark cases, which is especially true
from two different perspectives: not only do we improve
the objective function of our broadcast routing, i.e., the
airtime cost, but we also show that the fraction of nodes
meeting the delivery deadline is significantly improved.
Thus, we improve the overall performance while at the
same time allowing for timely information provision to a
vaster set of nodes, and we realize this without resorting
to a centralized approach.

978-1-7281-9656-5/20/$31.00 c©2020 IEEE

The rest of the paper is organized as follows. In Sec.
II the benchmark protocols are briefly presented as well
as relevant work found in the literature about routing
employing RL. Sec. III is dedicated to the definition of
the optimization problem, the details of the framework,
and the tools employed to solve it. In Sec. IV the simu-
lation experiments are presented, and results are shown
and commented. Finally, in Sec. V relevant findings are
summarized, and possible future work is suggested.

II. Related Work
An optimal solution concerning airtime cost exists for

opportunistic unicast routing, including also the recoding
ability of network coding [2]. Specifically, random linear
network coding (RLNC) [12] can significantly reduce over-
head transmissions in wireless mesh networks (WMNs).
Using this technique, actually, a relay does not need to
discriminate which packet to forward, and the risk of
sending redundant information is significantly decreased.
This protocol, named MORE, computes the optimal trans-
mission credit, i.e., the number of packets to forward
for each innovative packet received from upstream, based
on distance metrics such as the expected transmissions
(ETX) or the expected anypath transmissions (EAX) [13].
However, because a scalar network order through distance
metrics like these is missing in a broadcast scenario,
every node can be assumed to be closer to the source.
Therefore, the question of setting a transmission credit
in the network to minimize the airtime cost remains.
Moreover, research shows that broadcast routing is harder
to solve. In [14], it is shown that the problem of finding the
minimum broadcast latency is NP-hard, while [4] proves
that finding minimum-cost multicast trees is NP-complete,
even without exploiting the broadcast advantage of the
wireless medium, which adds another layer of complexity.
In order to approximate optimality, heuristics are used
[4], [5], sometimes by step-wise optimization, e.g. in the
OLSR protocol, where a 2-hop Dijkstra-like optimization
is performed [3]. Another popular implementation of a
wireless mesh protocol, B.A.T.M.A.N., uses a simple flood-
ing approach, where every node repeats each message three
times [6]. The multicast extension of the cited MORE
protocol [2] computes the optimal unicast transmission
credit for each node belonging to the multicast group, and
then chooses the maximum value for transmitting. The
procedure is repeated every time a destination received
the message, excluding that node from the new multicast
group. However, this is not necessarily optimal, as can be
easily shown.

The tradition of applying RL to routing problems is
rooted in Q-routing [15]. This work deals with the problem
of path selection, minimizing the end-to-end latency. The
method proves to be beneficial in high load conditions,
where the shortest path may not be the quickest one. How-
ever, the approach of Q-routing and the related following
works were only based on Q-tables, thus not being scal-

able. In more recent years, neural networks (NNs) started
to be profitably employed in routing problems applied to
software defined networks (SDNs). These architectures,
however, have a centralized network controller, and there-
fore single agent RL is applied. Examples can be found in
QAR [16] and DROM [17], where authors also investigate
throughput maximization. A distributed approach using
deep Q-networks with LSTMs in WMNs is adopted in-
stead in [18], outperforming Q-routing. Multicast routing,
however, is still widely unexplored. A survey on this can
be found in [19], with works dealing mostly with multiple
path selection and learning algorithms aiming at improv-
ing existing heuristics. Very few works, however, combine
RL with the possibilities of OR and RLNC. A distributed
and asynchronous algorithm for unicast communications,
d-AdaptOR, is proposed in [20], where RL is exploited in
the absence of reliable estimation of the channel quality.
The objective is the minimization of the expected number
of transmissions for unicast streams, and the method
outperforms ExOR [1]. The broadcast problem of live
video streaming is tackled instead in [21], where packets
are forwarded according to the learned delay-based metric.
Differently from the literature, we do not deal with path

selection minimizing the end-to-end latency nor maximiz-
ing throughput. The proposed algorithms are dedicated
instead to optimize the number of packets to forward using
RLNC, to minimize the number of transmissions.1 We add
latency constraints typical of many applications, increas-
ing the complexity of the problem. Unlike previous work,
which concentrated mostly on unicast communications,
we consider broadcast routing, which makes our proposal
original.

III. Methods
A. Problem statement
The optimization objective of this work is the airtime

cost minimization, pursued by finding an approximately
optimal transmission credit c∗

i for each relay node i, given
the context of the transmission. We consider a simple
scenario with single rate links and fixed packet error
rates per link. Therefore, the airtime cost for delivering
a message throughout the whole mesh is defined as the
sum of the total number of transmissions performed by
each node. The optimization problem is thus defined as
follows:

min
N∑
i=1

nitx (1)

where nitx represents the total number of transmissions ex-
ecuted by node i. Furthermore, as broadcast applications
often involve time deadlines for the execution, hard latency
constraints are added to the optimization. We demand
that all the nodes of the mesh receive the message within

1Actually, this is inversely proportional to throughput in case of
no spatial reuse.

a deadline, that is, the delay experienced by the last node
able to decode the message is below a threshold τ . Hence,

max
i

(di) < τ (2)

with di being the latency associated with node i for the
entire message. A feasible transmission credits combina-
tion [c0, . . . , cn] must guarantee that the information flow
is 1 at all the destinations. However, this requirement is
implicitly satisfied in the formulated problem thanks to
constraint (2), as it is asked that all the nodes receive the
entire message in a limited amount of time.

B. Contextual Multi-Armed Bandits

A cMAB is a simpler form of RL whose goal is to select
the best action a ∈ A, with A being the set of actions,
according to a policy π, and given a context s ∈ S, where
S is the set of system states [10]. Every agent keeps a
state-action value function Qπ(s, a), which denotes the
value of taking action a in state s, following a policy
π. This function, also called Q-function, or Q-value is
equal to the expected reward given to the bandit while in
state s and after taking action a. It is computed updating
progressively its value with the new observation in the
following way:

Qπ(s, a)← Qπ(s, a) + α[r −Qπ(s, a)] (3)

where r is the reward given to the bandit from the
environment, i.e., the system, and α is the learning rate.
Intuitively, the best choice would be to select, at any
instant t, always the action at leading to the best Q-
value, that is at = arg maxaQπ(st, a). Such a policy,
which only exploits the Q-value, is called greedy, but it
has the problem that the state-action pair space would
not be searched enough to find out which is the actual
best action, given the context. Therefore, some exploration
must be introduced, at least at the beginning of the
learning process.

In this work, two cMAB based solutions are compared,
the first using a classic discrete tabular approach and the
other one approximating the Q-function with an NN. The
exploration-exploitation trade-off policy for the Q-table is
realized using an upper confidence bound (UCB1) decision
rule for every context, expressed as

at = arg max
a

[
Qπ(st, a) + c

√
ln t

Nt(st, a)

]
(4)

with Nt(st, a) denoting the number of times that action
a was chosen while in state st, and c > 0 controlling
the amount of exploration. The algorithm based on deep
learning earns instead the needed randomized behavior
thanks to Thompson sampling, realizing Bayesian NNs
with concrete dropout, a recent technique allowing to tune
progressively the dropout parameter [8], [9].

C. Distributed algorithms
Each node of the network has its own cMAB and is

regarded as an agent. Nodes are hence trained as indepen-
dent learners in a multi-agent scenario. To improve coop-
eration, some information is exchanged between neighbors.
This additional overhead constitutes the context given
as input to the bandits, and it comprises: i) source ID,
ii) destination IDs, iii) delivery probabilities to the neigh-
bors, and iv) most recent available cis picked from the
neighbors. We highlight that the required information is at
local level and can be retrieved just by piggybacking it over
data packets, and by estimating periodically the channel
quality. The topology of the mesh at global level is instead
learned by the bandits as a consequence of experience.

1) Tabular bandits: every router i keeps its own table
Qi, initialized to an all-zero matrix of size | S | × |A |,
where | S | and | A | denote the cardinalities of the sets of
states and actions respectively. When dealing with large
networks, it is infeasible to store all the cited data in a
table. Therefore, the state space dimensionality of this
algorithm is reduced, taking into account only the source
ID, hence having a cardinality equal to the number of
possible sources. The training phase is performed online:
at the beginning of a batch transmission, the router gets
the source ID as a context st and sample an action at
according to (4). This sampled real value corresponds
to the transmission credit ci that will be played by the
router during the whole batch transmission. Each node
should also keep track of the number of transmissions
performed and broadcast the final value when it stops
forwarding packets. This way, the total number of trans-
missions accomplished by the network can be retrieved,
thus obtaining the reward. At the end of each batch, every
agent updates Qπi (st, at) according to (3).

2) BNNs: the major advantage of using an NN in RL is
that the dimension of the input space can be increased at
low memory and complexity costs. Therefore, each BNNi
belonging to router i is fed with the whole information
aforementioned. Thus, this method would support also
general multicast communications, as long as destination
IDs are specified. The learning algorithm is basically the
same as the tabular bandit, except that action sampling
is fulfilled with the forward pass of the BNN, taking
the transmission credit corresponding to the maximum
Q-value predicted. Moreover, because training an NN is
expensive, it is not done for every batch. A replay memory
buffer is kept at each node, and the BNN is trained with
an exponentially decreasing rate, but with more samples
each time, until a certain maximum retraining period T
and dataset size M . Parameters regarding the size of the
dataset of concrete dropout are tuned accordingly.

D. Reward shaping
Because in RL the expected reward is maximized, the

reward function has its maximum when the message is
successfully broadcast within the latency constraint and

with the smallest airtime cost experienced. A penalty
is given, instead, when the constraint is violated, and
intermediate values encode conditions for which the time-
out threshold is satisfied, but the airtime is suboptimal.
Generally, multi-agent games are played in highly non-
stationary conditions, because each agent modifies the
environment for other players with continually changing
policies [11]. To overcome this problem, other than the
aforementioned information exchanged among neighbors,
the reward is made a function of the past but only most
recent observations. This way, the effects of outdated poli-
cies are progressively forgotten. The proposed procedure is
also useful as the channel conditions, or even the topology
of the network, can change during learning, for instance
as a result of a movement of some nodes. Therefore, each
router, other than the replay memory buffer, keeps track of
the maximum and minimum number of transmissions that
satisfied the delay constraint for each context, refreshing
these values when they get outdated. If a timeout is not
met, the network airtime cost experienced is firstly linearly
mapped to [0, 1] thanks to these two stored values:

rl(si, ai) =
∑
j n

j
tx −minhπ

i
Ntx

maxhπ
i
Ntx −minhπ

i
Ntx

(5)

with hπi denoting the past history of node i under policy
π. Then, a non-linear weighted gamma transformation is
applied:

rNNi(rl) =
{
w(1− rγl) + (1− w) if maxj(dj) < τ

0 otherwise
(6)

where w ∈ [0, 1], which is the gap width, balances the
trade-off between the avoidance of the timeout and the
numerical differentiation among similar solutions, and γ
controls the non-linearity of the function, encoding quality
and speed of convergence.

IV. Results and Discussion
A. Simulation settings
In this work, the two learning algorithms are compared

with the multicast versions of MORE and B.A.T.M.A.N.

To provide a fair comparison between routing protocols,
each one uses RLNC with a finite generation size to ex-
amine the practicability of the approaches. A transmission
batch is only successful if all nodes in the network can
decode. Rules of transmissions are the same for every
protocol, except for the policy selecting the transmission
credit ci. 1) Every time a node receives an innovative
packet, i.e., linearly independent with those already in
the buffer, it increases its credit counter of ci. 2) A node
transmits in the current slot only if its credit counter is
positive, decreasing it by 1. 3) When a node can decode,
an ACK is broadcast and assumed to be received with no
loss. 4) If a node received ACKs from all of its neighbors,
it stops transmitting. The transmission credit ci is chosen
by the bandits as a consequence of learning among a
discrete set of 50 values in [0,maxj(1/pij)], where pij is
the delivery link probability from i to j. MORE selects
ci values according to the rules defined in [2], requiring
global knowledge on the topology of the mesh, whereas
B.A.T.M.A.N. chooses a fixed ci = 3 for all the routers.
We highlight that an enhanced version of this protocol is
considered, with encoded packets and feedback.

The behavior of 15 meshes with 10 nodes having routing
functions and created with a random geometric graph
generator with distance correlated error probabilities on
links is evaluated. Experiments are performed with 5
different average degrees and 3 coding generation sizes,
and last 2000 broadcast epochs comprising 32 batch trans-
missions. The last 500 epochs are used for evaluation: the
exploration policy is switched off, and actions are selected
greedily.

The simulator is entirely written in Python, using Py-
Torch to develop the BNNs. They have a simple feed-
forward structure, with three inner layers with size 128,
the first one being composed of 4 separate sets of 32 units,
one for each input piece of information. The output layer
is trained to predict the Q-values for each action with the
MSE criterion. Simulation parameters are listed in Tab. I,
unless differently stated in what follows.

2.5 3 3.5 4 4.5 5 5.5 6
Average degree

0.0

0.2

0.4

0.6

0.8

1.0

PD
R

BNN
Q-TABLE
MORE
BATMAN

(a) Generation size = 64

16 32 64 128
Generation size

0.5

0.6

0.7

0.8

0.9

1.0

PD
R

BNN
Q-TABLE
MORE
BATMAN

(b) d̄ = 3

Figure 1: Packet delivery ratio (PDR) w.r.t. the average degree and the generation size.

2.5 3 3.5 4 4.5 5 5.5 6
Average degree

1.0

1.5

2.0

A
irt

im
e
co
st

[#
tx
]

×103

BNN
Q-TABLE
MORE
BATMAN

(a) Airtime

2.5 3 3.5 4 4.5 5 5.5 6
Average degree

1.0

1.5

2.0

2.5

3.0

3.5

La
te
nc

y
[ti
m
es
te
ps
]

×102

BNN
Q-TABLE
MORE
BATMAN

(b) Latency

Figure 2: Median of airtime and latency w.r.t. the average degree (Generation size = 64).

16 32 64 128
Generation size

0.5

1.0

1.5

2.0

A
irt

im
e
co
st

[#
tx
]

×103

BNN
Q-TABLE
MORE
BATMAN

(a) Airtime

16 32 64 128
Generation size

1

2

3

La
te
nc

y
[ti
m
es
te
ps
]

×102

BNN
Q-TABLE
MORE
BATMAN

(b) Latency

Figure 3: Median of airtime and latency w.r.t. the generation size (d̄ = 3.8).

Parameter Value
c (tabular exploration coefficient)

√
2

α (tabular learning rate) 1
Nt

lr (BNN learning rate) 0.001
|A| (# of actions) 50
minibatch size (for training BNNs) 64
w (reward function weight) 0.9
γ (reward function exponent) 1.2
C (BNN max buffer capacity) 8000
K (exponential retraining coefficient) 1.01
N (# of nodes in the mesh) 10
G (coding generation size) [16, 64, 128]
τ (latency threshold in timesteps) [2000, 1500, 1000, 700, 400]
d̄ (average degree) [2.6, 3.0, 3.8, 4.6, 5.8]
batch size (# of subtransmissions) 32

Table I: Summary of the parameters used for the simulations.

B. Reliability
The packet delivery ratio (PDR) is shown in Fig. 1. Even

when the network is poorly connected, RL can guarantee
that the full message is retrieved in time by all the
components consistently above the 90% of the cases, and
above 99% as soon as d̄ ≥ 3. MORE multicast becomes
more reliable as the connectivity increases, because minor
contributions increase the robustness against dead ends.
These may occur quite often in poorly connected networks,
because the generation size is not infinite and MORE
only contemplates average results, without considering

deviations. B.A.T.M.A.N., instead, suffers from the fact
that 3 forwarded packets are too few in regions with
low connectivity, unless link qualities are sufficiently high.
In case the connectivity is high enough, messages are
correctly received with high probability, but the medium is
often filled with useless overhead and energy is wasted. It is
also notable that the learning algorithms are slightly more
robust with higher generation sizes (Fig. 1b), because data
collected for training is more reliable and stabler. On the
other hand, MORE decreases its robustness because the
latency threshold is fixed, and sending more data requires
more time, making MORE’s minimal solutions sometimes
infeasible.

C. Airtime and latency
As explained in Sec. III, delay constraints are also

considered, conflicting with the general purpose of min-
imizing the airtime cost. They may force the bandits to
choose higher transmission credits than the optimal ones.
Nonetheless, results evaluating airtime and latency, shown
in Figs. 2 and 3, prove that the proposed algorithms can
reach good performance in both metrics. In these plots,
only assessable points are depicted. Hence, the benchmark
protocols performance relative to d̄ = 2.6 is not considered,
as the number of available points is statistically misleading

500 1000 1500 2000
Transmission

1.00

1.25

1.50

1.75

2.00

2.25

A
irt

im
e

co
st

[#
tx

]

×103

Q-TABLE
BNN

(a) Airtime

500 1000 1500 2000
Transmission

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

[ti
m

es
te

ps
]

×103

Q-TABLE
BNN

(b) Latency

Figure 4: Learning history of the bandits. The solid line is obtained with a moving average filter with a window of 10 full transmissions
and the background shaded error is the standard deviation, computed on the same window.

(less than 20%, see Fig. 1). From Fig. 2, we find that
MORE multicast is the best evaluated protocol in airtime.
However, we remark that this comes at the cost of being
slower and that global knowledge of the topology is re-
quired. B.A.T.M.A.N. shows the opposite behavior as it is
consistently the least efficient protocol in airtime and the
best in latency. The learning algorithms, instead, are often
close enough to MORE in airtime and to B.A.T.M.A.N.
in latency. Moreover, the BNN based algorithm performs
better or equal than the Q-table one in both metrics.
For d̄ = 3.8, for instance, it is 15% worse than MORE
multicast considering the median airtime, but it has a 20%
higher PDR and is 25% faster. Fig. 3 shows that there
exists a linear dependence between the generation size and
both airtime and latency, with a protocol-dependent slope.
Again, the BNN based algorithm is the closest to MORE
in airtime, whereas, in latency, both the learning methods
outperform it, being close to B.A.T.M.A.N.

D. Convergence and adaptability
In Fig. 4, the learning history of the bandits is shown,

considering a mesh with d̄ = 3.8. In the experiment
performed, 3 random links are deleted at mid simulation,
the exploration-exploitation policy is reset, and the replay
buffer is emptied. In particular, parameters of concrete
dropout are reinitialized, whereas, for what concerns the
UCB1 policy, Nt(s, a) is reset to zero for all the state-
action pairs, and c = 0.4. The ability of the bandits to
learn and recover a good solution can be thus evaluated
by looking at the performance before and after mid simula-
tion. As can be seen, BNNs can reach a better and stabler
solution in terms of airtime, and in a lower amount of time.
Contrarily, the tabular bandits minimize the cost only
marginally, worrying mostly about the latency threshold.
Nonetheless, this is violated in 1.1% of the cases before the
links deletion and in 2.2% after by the Q-tables, whereas
never before and in 2% of the cases after for the BNN
bandits. Notably, the standard deviation of the results,
i.e., the stability of the solutions, is greatly affected in
latency for the BNNs after the links removal. However, this

is because exploration was reset, and, actually, the airtime
cost starts again to decrease to find a new minimum.
This behavior proves the superiority of the exploration
technique implemented for the BNNs. Note, moreover,
that this plot also shows the convergence of the algorithm
to (at least) a local optimum. Actually, the reward, as
explained in Sec. III-D, is the direct output of a map
that takes as input the global airtime cost of the network,
subject to latency constraints. As can be seen in Fig. 4,
both airtime and latency converge to a stable solution even
after heavy environment modifications, this being possible
if and only if the average reward also converged to a stable
value.

V. Concluding remarks

In this work, we presented two multi agent RL frame-
works for broadcast routing in WMNs, based on cMABs,
to minimize the airtime cost with latency constraints.
Specifically, we evolve over the optimal solution for unicast
routing to propose a learning framework for the broadcast
case. We propose an effective way to compute the reward,
so that the agents can learn in a time-varying environment,
adjusting their policies. Notably, we explore information
exchange among nodes, in such a way to induce coopera-
tion in a fully decentralized environment.
Results show that the BNNs based algorithm performs

close to MORE multicast in airtime, while improving
in latency. Actually, a better compromise between these
two contrasting objectives is reached with the proposed
framework, concerning standard reference cases such as
MORE and B.A.T.M.A.N. Notably, reliability is signifi-
cantly improved in terms of PDR with respect to both
benchmark protocols, especially in poorly connected net-
works. Moreover, the framework shows good adaptability
to channel variations, as it can recover a good solution
after a disruptive event such as link removals.
Although the results look promising, there is certainly

room for improvements. Possible future work may involve
the transition from a discrete to a continuous control

framework, for instance employing a multi agent actor-
critic approach [22]. The Q-value could be learned via
federated learning [23] on a higher hierarchy architecture,
while the private policy is trained locally at each router.
The addition of more and diverse input information could
finally be investigated.

References
[1] S. Biswas and R. Morris, “Exor: opportunistic multi-hop routing

for wireless networks,” in ACM SIGCOMM computer commu-
nication review, vol. 35, no. 4. ACM, 2005, pp. 133–144.

[2] S. Chachulski, M. Jennings, S. Katti, and D. Katabi,
“Trading structure for randomness in wireless opportunistic
routing,” SIGCOMM Comput. Commun. Rev., vol. 37,
no. 4, pp. 169–180, Aug. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1282427.1282400

[3] T. Clausen and P. Jacquet, “ Optimized Link State
Routing Protocol (OLSR),” Internet Requests for Comments,
IETF, RFC 3626, October 2003. [Online]. Available:
https://tools.ietf.org/html/rfc3626

[4] P. Ruiz and A. Skarmeta, “Approximating optimal multicast
trees in wireless multihop networks.” Proceedings - IEEE Sym-
posium on Computers and Communications, pp. 686–691, 01
2005.

[5] C. T. Chou, A. Misra, and J. Qadir, “Low-latency broadcast in
multirate wireless mesh networks,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 11, pp. 2081–2091, Nov
2006.

[6] Open Mesh. (2019) Broadcasts in B.A.T.M.A.N. advanced. [On-
line]. Available: https://www.open-mesh.org/projects/batman-
adv/wiki/Broadcast

[7] ETSI, “Part 4: Geographical addressing and forwarding for
point-to-point and point-to-multipoint communications,” Intel-
ligent Transport Systems (ITS), 2011.

[8] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approxi-
mation: Representing model uncertainty in deep learning,” in
international conference on machine learning, 2016, pp. 1050–
1059.

[9] Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” in Ad-
vances in Neural Information Processing Systems, 2017, pp.
3581–3590.

[10] L. Zhou, “A survey on contextual multi-armed bandits,” arXiv
preprint arXiv:1508.03326, 2015.

[11] G. Papoudakis, F. Christianos, A. Rahman, and S. V. Albrecht,
“Dealing with non-stationarity in multi-agent deep reinforce-
ment learning,” arXiv preprint arXiv:1906.04737, 2019.

[12] T. Ho, M. Medard, J. Shi, M. Effros, and D. R. Karger, “On
randomized network coding,” in Proceedings of the 41st Annual
Allerton Conference on Communication, Control and Comput-
ing, vol. 41, no. 1, 2003, pp. 11–20.

[13] Z. Zhong and S. Nelakuditi, “On the efficacy of opportunistic
routing,” in 2007 4th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and
Networks. IEEE, 2007, pp. 441–450.

[14] R. Gandhi, A. Mishra, and S. Parthasarathy, “Minimiz-
ing broadcast latency and redundancy in ad hoc networks,”
IEEE/ACM Transactions on Networking, vol. 16, no. 4, pp.
840–851, Aug 2008.

[15] J. A. Boyan and M. L. Littman, “Packet routing in dynami-
cally changing networks: A reinforcement learning approach,”
in Advances in neural information processing systems, 1994, pp.
671–678.

[16] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “Qos-aware
adaptive routing in multi-layer hierarchical software defined
networks: A reinforcement learning approach,” in 2016 IEEE In-
ternational Conference on Services Computing (SCC). IEEE,
2016, pp. 25–33.

[17] C. Yu, J. Lan, Z. Guo, and Y. Hu, “Drom: Optimizing the
routing in software-defined networks with deep reinforcement
learning,” IEEE Access, vol. 6, pp. 64 533–64 539, 2018.

[18] X. You, X. Li, Y. Xu, H. Feng, and J. Zhao, “Toward packet
routing with fully-distributed multi-agent deep reinforcement
learning,” arXiv preprint arXiv:1905.03494, 2019.

[19] O. Ashour, M. St-Hilaire, T. Kunz, and M. Wang, “A sur-
vey of applying reinforcement learning techniques to multicast
routing,” in 2019 IEEE 10th Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON).
IEEE, 2019, pp. 1145–1151.

[20] A. A. Bhorkar, M. Naghshvar, T. Javidi, and B. D. Rao,
“Adaptive opportunistic routing for wireless ad hoc networks,”
IEEE/ACM Transactions On Networking, vol. 20, no. 1, pp.
243–256, 2011.

[21] K. Tang, C. Li, H. Xiong, J. Zou, and P. Frossard, “Rein-
forcement learning-based opportunistic routing for live video
streaming over multi-hop wireless networks,” in 2017 IEEE
19th International Workshop on Multimedia Signal Processing
(MMSP). IEEE, 2017, pp. 1–6.

[22] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and
I. Mordatch, “Multi-agent actor-critic for mixed cooperative-
competitive environments,” in Advances in neural information
processing systems, 2017, pp. 6379–6390.

[23] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated
learning: Challenges, methods, and future directions,” IEEE
Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

