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Abstract—This letter presents an evaluation of slotted ALOHA
using game theory to capture the strategic choices of the nodes,
considered as independent agents that attempt to obtain updates
from a shared source, with collisions preventing them from
getting a usable update. Their objectives are to minimize the
sum of the average age of information and a transmission cost
term. The latter is an important addition to the model, shown to
achieve better coordination among the nodes, so that, while the
price of anarchy of the system is unbounded, a limited price of
stability, approaching 1 for increasing cost, can be obtained.

Index Terms—Age of Information; Game theory; Price of
Anarchy; Price of Stability; Random Access; Slotted ALOHA.

I. INTRODUCTION

W ITH technologies for the Internet of Things (IoT) on

the rise, analytical studies are increasingly considering

Age of Information (AoI) [1] as a performance metric, espe-

cially for remote sensing applications. Indeed, assessing the

AoI should be at least complementary, if not more valuable,

to evaluations based on throughput or latency [2].

However, IoT paradigms are also generally exploiting

heterogeneous uncoordinated access and distributed control.

These properties relate to the usage of a random-based medium

access control strategy [3] and game theory [4]. While the

former is touched, even briefly, in the seminal papers posing

the foundations of AoI investigations [1], the latter appears to

be relatively unexplored as of now.

Inspired by this reasoning, this letter presents an analytical

model for the evaluation of AoI in uncoordinated medium

access protocols of slotted ALOHA type. Some adjustments

are proposed with respect to [1] to precisely account for

a discrete time axis. This model is subsequently framed as

a game where individual players compete for accessing a

shared resource, which allows them updating their information

as long as they avoid collisions. The game considers AoI-

based utilities for the slotted ALOHA terminals, including a

transmission cost, whose role is discussed in detail.

The literature is relatively abundant with game theoretic

analysis of ALOHA-like systems, but they mostly focus on

maximizing throughput as the objective of the players [5].

This approach results in inefficient Nash Equilibria (NEs), as

discussed in the following, where it is conversely argued that

an AoI-based game can, at least in principle, achieve a better

degree of coordination. There are also some game theoretic
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approaches to AoI, but they resort to a general representation

of the medium access procedure and do not specifically focus

on random access or ALOHA-like protocols. For example, in

[6] the focus is on a broadcast scenario, whereas [7] addresses

multiple age of information values in a distributed fashion,

but the optimization is centralized. Instead, [8] takes a further

step beyond and considers the nodes as distributed players

driven by AoI minimization, but the medium access is not

modeled specifically on slotted ALOHA as done here. A

paper most similar to the present contribution is [9] where

a game theoretic approach is considered with the objective of

minimizing AoI, which is put in comparison with throughput,

and finally random medium access is also considered with

a slotted model. Yet, the analysis of that paper is entirely

different because it considers the objectives of the networks as

the players, and not the nodes, as done here. In other words,

that game involves age vs. throughput as strategies that a local

network can choose, and the network itself is coordinated

without any strategic action within.

Moreover, in the present letter the role of transmission cost

inside the utilities is discussed. On one hand, this reflects the

requirement of consuming energy or activating the transmitting

equipment to get updates. On the other hand, this makes sense

to prevent terminals from persistently requesting updates,

which is (unsurprisingly) found to be dominant strategy if

no cost term is considered. Also, both the price of anarchy

(PoA) and the price of stability (PoS) of the resulting slotted

ALOHA system are shown, defined through the comparison

of the global optimal choices versus the worst and best NEs,

respectively. It is found out that, when AoI-based utilities

are considered, the PoA is unbounded, which reflects the

characters of total discoordination and instability of ALOHA,

but the PoS can be brought down to low values as long as

the cost coefficient c is high enough. Surprisingly, there is no

gradual trend, but rather a precise threshold on c imposed by

algebraic relationships for an additional efficient NE to appear.

II. SYSTEM MODEL

Consider a discrete time axis divided into slots. In a slotted

ALOHA system, N terminals share a resource such as a

channel or a server. In the case of remote sensing, one can

think of N terminals trying to get updates from a common data

source. In the following, the terms “transmission” or “update”

will be used interchangeably, the former being reminiscent of

a random medium access where maximizing throughput is the

objective, while the latter is more adequate for scenarios where

the key goal is to minimize the AoI through sporadic updates.

At each time slot, the terminals independently decide

whether to access the resource and perform a transmission



(or update) attempt, or stay idle. Transmissions succeed only

if exactly one terminal is active, while the remaining N−1 are

idle. If more than one terminal collide, i.e., are active in the

same time slot, they all fail to update. Inactive terminals are

clearly not getting any update either. The AoI [1] is computed

as the difference δ between the present time index and the last

time slot with a successful update. Note that, differently from

[1], δ is always an integer value. In particular, δ = 0 if the

present slot contains a successful update.

The following simplifying assumptions are made for the

sake of analytical tractability. Relaxing them would only cause

the model to become more involuted without any significant

additional insight. First of all, a simplified ALOHA-like sys-

tem is considered, where no retransmissions after a backoff

are performed. This means that each terminal j = 1, . . . , N
access the shared resource (i.e., the channel or the data source)

with independent and identically distributed (i.i.d.) probability

tj over different time slots. This is consistent with other

investigations in the field [3], [9]. While it would make sense

to think of more complex strategies, e.g., where the terminals

become increasingly aggressive as their AoI grows, this would

cause an explosion in the game theoretical analysis of the

strategic choices of each terminal, as well as their informa-

tion sets and the countermoves available to their opponents

[10]. Also, it would require a return channel and a general

adaptive behavior that are likely outside the capabilities of

commercial IoT devices, such as LoRa or Sigfox [2]. At any

rate, the considerations about the PoA or PoS are unaffected,

as they can still be computed over specific available strategies

corresponding to the choice of a given tj for each player j.

Moreover, it is assumed that whenever a terminal transmits

alone on a given time slot, its request is always successful,

i.e., failures to update are only related to collisions. Indeed,

it would be easy to extend this analysis to the case of non-

guaranteed decoding of the update, as per [1], by rescaling the

success rate of a transmission attempt through a constant term

representing the probability of decoding.

According to these assumptions, the expected value of the

AoI δj of user j can be obtained as

E[δj ](t) =
1

tj
∏

k 6=j(1− tk)
− 1 . (1)

Note that (1) is an adjusted version of what derived in [1],

since in that paper the evaluation of slotted ALOHA considers

a continuous time variable. In the presented formulation with

a discrete time axis, the expected δj is computed through the

following steps. If ρ = tj
∏

k 6=j(1 − tk) is the probability

of a successful attempt by user j, and κ + 1 is a random

number of slots between successful updates, whose probability

is ρ(1−ρ)κ, the expected AoI is obtained as the ratio of second

and first order moments of the inter-update (discrete) time, i.e.

E[δj ](ρ) =

∞∑

κ=0

κ

2
(κ+ 1)ρ(1− ρ)κ

∞∑

κ=0

(κ+ 1)ρ(1− ρ)κ
(2)

that, after some algebra, reduces to ρ−1−1, as per (1).

Another aspect considered in this letter concerns the cost

of a transmission attempt and its impact on PoA or PoS. It

is assumed that each individual transmission attempt implies

a fixed cost term equal to c for the terminal, paid even if the

attempt turns out to be unsuccessful due to collisions. This

results in a different computation of the overall utilities of

the terminals and a slightly changing definition of PoA/PoS,

depending on what is the overall end goal of the terminals.

In a standard slotted ALOHA analysis, the ultimate ob-

jective of the terminals would be high throughput and thus

high success probability, so we can define the utility of each

terminal j = 1, . . . , N , as a function of the combined strategic

choice t = (t1, t2, . . . tN ) of all players

u
(thr)
j (t) = tj

∏

k 6=j

(1 − tk)− c tj . (3)

Since c often multiplies the transmission probabilities tj ,

which ought to be of the same order of magnitude of 1/N ,

especially to visualize the numerical results, it may be conve-

nient to define a normalized c̃ = c/N . We can compute the

PoA and the PoS as the ratios between the highest sum utility

among all choices of t and the sum utility at the worst and

the best NEs, respectively.

Symmetry reasons lead to the conclusion that tj must be

identical for all the terminals in the optimal choice that can

be therefore written as t
∗ = (t∗, t∗, . . . , t∗), and similarly for

the NEs, aside from degenerate cases discussed later, so that

if we have a number of L NEs (in mixed strategies), we can

write t
(k) = (t(k), t(k), . . . , t(k)) as the vector of (identical)

transmission probabilities at the kth NE, k = 1, . . . , L. Due

to this symmetry, the PoA and PoS related to throughput can

be computed as

PoA(thr) =
u
(thr)
1 (t∗)

mink∈{1,...,L} u
(thr)
1 (t(k))

(4)

PoS(thr) =
u
(thr)
1 (t∗)

maxk∈{1,...,L} u
(thr)
1 (t(k))

(5)

both being larger than or equal to 1 by construction.

If instead the minimization of the expected AoI as computed

through (1) is taken as the end goal, the following modifica-

tions are needed. Since it is a metric to be minimized, the

expected transmission cost is to be added to it, rather than

subtracted. The utility of terminal j, meant as a value that j
prefers to maximize, can be computed with a negative sign as

u
(AoI)
j (t) = −E[δj ](t)− c tj = −

1

tj
∏

k 6=j(1−tk)
+1−c tj

(6)

and in this case the PoA and the PoS are, for consistency, the

reverse ratios of (4) and (5), respectively, since the absolute

values of the (negative) utilities are higher at the NE. Thus,

PoA(AoI) =
mink∈{1,...,L} u

(AoI)
1 (t(k))

u
(AoI)
1 (t∗)

, (7)

PoS(AoI) =
maxk∈{1,...,L} u

(AoI)
1 (t(k))

u
(AoI)
1 (t∗)

. (8)



III. GAME THEORETIC ANALYSIS

A slotted ALOHA game played by N terminals, where

the utilities to maximize for each player are related to the

individual throughput of the terminals, is a standard scenario

often used as an introductory example [4]. It can be thought

of a static game of complete information with a finite set of

strategic actions, where each player has the choice between

transmit (T) or stay silent (S). This game has N pure strategies

NEs where one player transmits and all the others stay idle.

These are clearly unfair outcomes, therefore a symmetric

mixed strategy NE is considered instead.

Locally optimal values of t can be found as the probabilities

of each player choosing action T at the mixed strategy NE, if

any. Without a cost term (i.e., c = 0), the mixed strategy NE

degenerates into choosing t = 1 (i.e., to always transmit), as

it can be shown that T is a dominant strategy for the players.

Incidentally, it is also well known that the best choice of

the transmission probability vector from a global perspective

would be t
∗=(1/N, 1/N, . . . , 1/N), which is an even simpler

exercise for beginners in communications engineering.

Introducing a cost term c makes the game more interesting.

In this case, c < 1 is required, or else S would now become a

dominant strategy. Through some computations, the global op-

timum is found as t
∗ = ( (1−c)/N, (1−c)/N, . . . , (1−c)/N),

and the mixed strategy NE can be proven to be unique and

given by t
(1) = (1−c, 1−c, . . . , 1−c). Indeed, the scenario

without transmission cost results as a continuous extension

for c→0. The mixed strategy NE also follows the indifference

criterion of game theory [10], implying that players are indif-

ferent among any linear combination of the pure strategies in

the NE support, which necessarily consists of both T and S.

Thus, despite the structure of the game being more interesting

due to the introduction of a transmission cost, and also the

aggressiveness of the transmitters being now mitigated, the

PoA (and also the PoS, due to the mixed strategy NE being

unique) is always infinite, since the payoff at the NE is 0 as

a consequence of the indifference criterion.

A game theoretic evaluation for AoI-based utilities becomes

instead appealing. If c=0, the optimal transmission probabil-

ities are once again found as t
∗ = (1/N, 1/N, . . . , 1/N),

which mirrors the case of the throughput-based utility [1]. It is

intuitive that always attempting an update is still a dominant

strategy, but this unfortunately leads to a unique bad NE,

whose PoA and PoS are again infinite since the AoI explodes.

If cost c > 0 is introduced, the condition for the optimal

transmission probability maximizing the global utility of the

N players once again implies t1 = t2 = · · · = tN = t but

requires to solve a (N+2)th-degree equation

1−Nt+ ct2(1 − t)N = 0 , (9)

and it can be observed that (9) always admits exactly one

solution in the range [0, 1] that can be read as a probability; it

actually always falls in [0, 1/N ], thereby confirming the effect

of the cost term to decrease the transmission probability.

From a game theoretic perspective, a NE can be derived

through a one-sided maximization of the utility; that is, each

player looks for a best response [5], [10] to the unchanged

moves of the other players. Without loss of generality, focus

on player 1. The NE corresponds to a point where

du1(t)

dt1
=

1

t21
∏N

j=2(1−tj)
− c = 0 (10)

and the same condition holds for any other player, replacing

the indices accordingly. This leads to an interesting develop-

ment, where the only choice of t consistent with its elements

being probability values is t1 = t2 = · · · = tN = t, leading

to a (N+1)th degree equation Θ(t) = 0 where

Θ(t) = t2(1− t)N−1
−

1

c
(11)

to find the critical point of the utilities. This is different from

throughput-based utilities, where the cost term had a gradual

impact in decreasing the transmission probability. For AoI-

based utilities, c must be significantly high (for example, we

certainly need c > 1, differently from the previous game) to

cause a decrease in the first derivative of the utility.

In other words, for low values of c, the utility of each

player is always increasing in t, which still leads to an

aggressive transmission policy t = 1 and an inefficient NE.

Yet, surprisingly, there is a threshold point γ, such that, beyond

the inefficient NE t = 1, a better one exists if c ≥ γ with

γ =
(N+1)N+1

4(N−1)N−1
. (12)

This can be seen from the graph of Θ(t) from (11), which has

a local maximum in 2/(N + 1) and Θ(t)=0 always admits a

first solution τ1 that is negative anyways, and therefore not a

legitimate probability value. If c ≥ γ, the local maximum

is non-negative and the function has two more zeros in

[0, 1] that are labeled as τ2 and τ3. Note that τ2 is always

between 0 and 2/(N+1) and gives a maximum of the utility,

while τ3 gives a minimum. Additionally, depending on N
being odd or even, there may be another zero τ4 > 1, also

irrelevant as a probability. As a result, in addition to the

first NE (NE 1), t(1)=(1, 1, . . . , 1), a second NE (NE 2) at

t
(2)=(τ2, τ2, . . . , τ2) is obtained, which gives a bounded PoS.

To sum up, a game with AoI-based utilities including a

transmission cost always gets NE 1 for t = 1, where utilities

are infinitely low, thereby causing an unbounded PoA. This

is akin to the model with throughput-based utilities, and a

consequence of the distributed and unstable nature of slotted

ALOHA. However, if transmission cost c ≥ γ is sufficiently

high, NE 2 appears, where all terminals update with probabil-

ity τ2 that is a solution of Θ(t) = 0, and is significantly less

aggressive than NE 1, leading to a bounded PoS.

IV. NUMERICAL EVALUATIONS

This section presents some practical computations of the

previously derived equations to better clarify the numerical ex-

tent of the results found. Consider a slotted ALOHA scenario,

modeled as a N -player game with AoI-based utilities, where

the strategic choice is the pre-determined i.i.d. probability

value according to which to try to update from the source

at each slot. Update attempts have cost c = c̃ N regardless of

whether they are successful or not, and every time an attempt
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Fig. 1. Update probability t as a function of the normalized transmission cost
c̃, chosen at NE 2 or with a globally optimal choice.
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Fig. 2. AoI-based utility of each terminal, as a function of the normalized
transmission cost c̃, for t chosen at NE 2 or with a globally optimal choice.

does not collide with other terminals in the same time slot, it

is always successful in pushing the AoI back to 0. Given the

symmetry of the scenario, all approaches to solve the problem,

either from a global perspective or a selfish one of a NE,

result in the same update probability t for every terminal.

All the results are displayed as functions of the normalized

transmission cost c̃, for two cases, N=2 or N=10.

Fig. 1 compares the optimal choice of the transmission prob-

ability from a global standpoint with the selfish perspective of

the NE 2. Importantly, NE 1 is always present, where t=1
regardless of the cost c, whereas NE 2 only exists if c ≥ γ,

with γ=27/4 for N=2, which can be related to the sign of the

discriminant of cubic equation (11), and γ≈184.11 for N=10.

Remarkably, the value of t = τ2 at NE 2 starts from a much

higher value than the optimal t when c = γ but decreases

rapidly. For increasing cost, the two values become closer even

though, naturally, τ2 is always greater than t∗.

The resulting utilities get even closer for increasing c̃, as

shown in Fig. 2 where the value of each terminal’s utility is

shown, once again for NE 2 with t = τ2 and the globally

optimal choice t = t∗. Utilities are negative, and the optimal

value is always higher, but the utility at NE 2 rapidly ap-

proaches it as c̃ increases. For N=2 they become very similar

when c̃ > 5 and almost undistinguishable if c̃ > 8. For N=10,

higher values of c̃ are required but the trend is similar.

This is confirmed by Fig. 3, where it is shown that, in

opposition to the unbounded PoA, for a sufficiently high

transmission cost, a better NE is also present and its choice

gives margin to introduce some coordination, that is, the PoS

becomes close to 1 with increasing c̃.

Finally, Figs. 4 and 5 show the AoI and the total throughput,

respectively, which for NE 2 may even get a better value than

with the optimal choice of t. The reason is that the optimal

value is not based on the throughput or the AoI alone, but also

includes the cost; thus, NE 2 results in an overall lower utility.

However, the trends of AoI and throughput at NE 2 show that,

for a properly chosen cost, these metrics can be assigned to

the best achievable values by an uncoordinated approach.
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Fig. 3. Price of stability for AoI-based utility, as a function of the normalized
transmission cost c̃.

0 10 20 30 40 50 60
0

10

20

30

Fig. 4. Expected AoI, as a function of the normalized transmission cost c̃,
for t chosen at NE 2 or with a globally optimal choice.
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Fig. 5. System throughput, as a function of the normalized transmission cost
c̃, for t chosen at NE 2 or with a globally optimal choice.

V. CONCLUSIONS

A game theoretic analysis of a slotted ALOHA system with

AoI-based utilities including a transmission cost term was

given. A closed-form derivation of the NEs was presented,

showing that, while the PoA is unbounded, for sufficiently high

transmission cost, an additional NE appears, which implies

that the PoS can be kept limited and close to 1.
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