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Abstract—We consider an emergency maneuver scenario in-
volving two autonomous vehicles interacting with a road obstacle
characterized by a random behavior. We employ game theory
to solve the resulting problems, first framing a static game of
compete information, and further adding incomplete information
about the obstacle so as to transform it into a Bayesian game.
Depending on the considered scenario, the autonomous vehicles
can have multiple available actions, such as to stay at the same
lane and swerve and move to another one. These actions can lead
to different outcomes, such as keep driving on an empty lane, hit
the obstacle, or hit another car. We analyse the Nash equilibria
of the game and test the hypothesis that the knowledge of one
vehicle about an obstacle can be advantageous to other road
participants, which is key in the context of connected vehicles.

Index Terms—Game theory; smart cities; autonomous driving;
safety-critical application; risk reduction; self driving cars.

I. INTRODUCTION

Autonomous vehicles (AVs), also called self-driving cars,
are expected to become one of the most important inno-
vations in the field of transportation for smart cities. AVs
can bring several technological benefits. First of all, from an
environmental perspective, a large-scale integration of self-
driving vehicles reduces traffic congestions and sequentially
fuel consumption, thereby significantly decreasing the CO2

emissions [1], [2]. Moreover, AV can also bring logistics
advantages such as decreasing the time spent commuting,
reduce the cost of travel time, parking space saving and
improving the ease of access to transportation for the elderly
and disabled people [3], [4].

Another extremely relevant advantage on which we focus in
the present paper is the application of AVs to increase road and
vehicle safety, i.e., reduction of crashes and accidents that lead
to fatalities and injuries. The United States National Highway
Transport Safety Agency claims that 94% of road crashes are
caused by human errors [5]. AVs give hope that these figures
can be significantly reduced since self-driving cars have better
perception and focus on the task than human drivers. Still, we
argue that while AVs are already very efficient under ideal
conditions (empty roads and/or static scenarios without other
vehicles around) they lack the subtlety of interacting with one
another in a safe way, which is possibly the strongest challenge
of driving in the traffic.

This problem arises because, while technology for control-
ling locomotion is further improving [6] and computer vision
capabilities have been dramatically increasing, so that they

surpass the environmental awareness of human agents [7],
[8], the decision making process of smart vehicles is, so far,
only based on data processing and analytics via (sometimes
even very refined) machine learning techniques, without much
interconnection and feedback from the changing environment
[9], [10].

Our proposal is to adopt game theory as a way to tackle
the resulting multi-agent scenario that offers much more
challenges in a holistic perspective as opposed that of a single
autonomic vehicle. Game theory is the study of multi-players
decision problems that capture strategic interactions among
independent and rational players, who seek to maximize their
outcome accounting for the presence of other agents [11]–
[14]. In the game theoretical setup, the key ingredient is the
contribution of all involved agents to the final outcome, which
must be duly taken into account. Thus, even an individual
agent driven by a purely selfish objective can turn to efficient
interaction with the other players in order to avoid suffering
losses in its own payoff [15], [16].

When game theory is applied to the problem of autonomous
driving, AVs are identified as rational players, which makes
sense in light of the advanced capabilities to bring compu-
tational intelligence inside the vehicles themselves. Actually,
since traffic continuously flows and requires to make decisions
in a timescale of the order of milliseconds, a computer can be
much faster than a human driver in this respect. However,
while it is safe to assume that AVs are capable of making
fast and well-informed decisions, the analysis becomes tougher
when it involves the dependance on (guessing) the behavior
of other vehicles or objects [17].

We assume that the rational priority of each AV is to reduce
the damage by avoiding accidents. However, there are several
ways to implement this in the context of road safety, also
depending on the ability of the individual vehicles of making
autonomous intelligent decisions as well as to share them with
other agents in a connected vehicle scenario.

In this paper, we model a situation of emergency maneuver
through the game theory from a safety perspective. We con-
sider two cars that have to make a simultaneous decision on
how to respond to a sudden obstacle on a road. We complicated
the scenario under consideration by introducing a part of traffic
which is unknown to both players. For instance, it could
be an animal crossing a road, which is case studied in this
paper. Other possibilities could be the weather conditions or a
pedestrian crossing a road [18], [19]. These objects or items: 978-1-6654-6030-9/22/$31.00 ©2022 IEEE



can be incorporated into a game theoretic framework by a layer
called Nature that randomly draws the behavior of an obstacle.
This situation can be modelled as a Bayesian game, that
models the outcome of player interactions with some degree of
uncertainty, i.e., so-called games with incomplete information.
This ultimately allows us to quantify the benefit of exchanging
information among connected autonomous vehicles.

This paper is organized as follows. In Section II, we provide
a background in AV problems solved by means of game theory.
The problem model as a static game of complete information
is given in Section III, where we consider two scenarios, that
are with or without the AV being able to stop. The problem
framed as a Bayesian game is instead provided in Section IV.
Conclusions are drawn in Section V.

II. BACKGROUND

Drivers have to make many decisions while on the road,
such as whether to accelerate or decelerate [20], which lane
to take [21], [22], which parking slot to choose [23], how
to behave at an intersection [24], and how to interact with
pedestrians [18]. The outcome of these decisions are affected
by many external aspects, such as weather conditions, traffic,
and human factors, for instance, tiredness and experience.
In addition, driving styles might be quite different, either
unpredictable, aggressive or, instead, calm. In the literature,
a number of papers deal with the challenges caused by
differences in a driving style [17], [25], [26].

The technology of autonomous driving aims at coping with
these aspects, but in order to integrate it into daily operation
in pervasive scenarios such a smart city or a congested traffic
hub, a robust and efficient mechanism for making decisions is
required. Many authors have attempted to employ game theory
for this purpose [8], [19], [27], [28].

In this paper, we focus on lane changing games. An exten-
sive overview on models for such a problem is provided in
[29], and variations on this scenario are further explored in
a number of contributions. For instance, in [30], the authors
study a behavioral strategy in a conflict situations between
the autonomous vehicles in a roundabout using game theory,
representing the problem as a Prisoners’ dilemma game with
the objective for individual autonomous vehicles of reducing
waiting time.

An algorithm based on the chicken game is proposed in
[31], in which autonomous vehicles communicate their speed
and location to the central agent at the intersection, and
decide to either swerve or move straight. In [21], the authors
study an urban traffic scenario framed as a game-theoretic
decision problem, in which an AV needs to make a decision
about changing a lane based on the level of cooperation of
the vehicles in the adjacent lane. In [32], the lane-changing
problem is represented as a multi-player non-zero-sum non-
cooperative game where the real-time surrounding traffic data
is a common knowledge.

The authors of [33] frame the lane-changing problem as
two-player, non-cooperative, non-zero sum game where one
player chooses either give or not a way, and the second player

Fig. 1: Representation of the game

decides whether to take the gap in front of the mainline player.
In [34], decision making game for merging maneuvers on a
freeway is considered, which is based on the repeated game
framework. Instead, in our setup, we consider a Bayesian game
approach to cope with random externalities, framed in the
virtual player “Nature.”

III. STATIC GAME OF COMPLETE INFORMATION

First, we consider the scenario described in Fig. 1, as a
static game. This describes a situation of two AVs, which are
the players labeled as “AV1” and “AV2’’, driving side-by-side
on a two-lane road in the same direction. AV1 occupies the
left lane; AV2, instead, drives on the right lane. An obstacle
appears in front of AV1; in the following, we will refer to
this obstacle as a “deer,” since this is a typical scenario also
considered as a safety-critical application. This obstacle will
be still during this initial game. AV1 has two choices, swerving
right (SW) or remaining on the same lane (R). AV2 has the
same space of actions. The outcome of a game depends on a
chosen combinations of actions chosen by both AVs: The goal
of each car is maximizing its payoff. Crashing into another car
is assumed to cause more damage than crashing to an obstacle,
so the corresponding payoff will be lower. If a car goes off
the road, it will have a lower damage than hitting something,
but higher than continuing on an empty road. Respectively,
the payoffs are c if the two cars crash, d if a car hits the deer,
f if a car swerves off the road and e if a car keeps driving on
the road as intended. The payoffs are in this relation:

e > f > d > c (1)

We can consider the cost of keep driving on road to be e =
0, which makes all the other outcomes as negatively-valued.
We also remark that including a non-zero value for e would



TABLE I: Static base game with payoff values.

AV
1

AV2

SW R

SW e, f c, c

R d, f d, e

just result in more complex equations with basically the same
insight.

The structure of the game is summarized in Table I. This
game can be seen as an instance of Chicken Game [31].
Players strive for a minimal-cost outcome, but they seek for
it through a selfish approach. This leads to identifying the
predicted outcomes as the Nash equilibria (NEs), of which this
game has three. Beyond two NEs in pure strategies, i.e., (SW,
SW) and (R, R), the game also has one in mixed strategies,
where, if α is the probability of AV1 playing “SW”, and β
the probability of AV2 playing “SW”, we obtain

α =
c− d
c

and β =
f

c
(2)

IV. IMPERFECT INFORMATION WITH DEER MOVEMENT

We can add complexity to the game considering that the
deer, upon seeing the approaching cars, can also move. The
AVs cannot know in advance what the deer will do, but they
know that the deer can move.

We consider three actions for the deer. First of all, the deer
can stay in the left lane (as the situation model above); or,
it can move to the right lane, i.e., the one where AV2 is
located. Or finally, the deer can move out of the road entirely.
These three events are described through probabilities p, q,
and 1−p−q, respectively. We assume that these values are
common knowledge among the players.

A. Equal imperfect information

We start with a first scenario where the deer movement is
unknown to both AVs, so that this is an externality known
to the players only through its probability distribution. This
can be split into three versions of the previous static games,
depending on the deer movements. Thanks to the players being
rational, the solution of this game consists in evaluating the
best strategy that the AVs adopt in each of the three cases
(leading to a NE) and averaging this over all the possibilities,
with proper weights depending on the probabilities of each of
them to happen.

The first case, happening with probability p is already
represented in Table I and has the same solution as per the
previous section.

Consider the case of the deer moving to the other lane,
which happens with probability q. In Table II, we can see the
different costs for the different actions taken by the cars. If
AV1 swerves, it will hit the deer that has moved to the other
lane, so its payoff will be d. In the case that AV2 remains
on the road, the two cars will hit each other and hit the
deer reaching a payoff of d + c (the sum of the cost of the

TABLE II: Payoffs values for the case of the deer moving to
the other lane.

AV
1

AV2

SW R

SW d, f d+ c, d+ c

R e, f e, d

accident and of hitting the deer). The same reasoning holds for
action “R” of AV2, if AV2 remains on the same lane without
swerving, it will hit the deer (and also AV1 if it swerves). If
AV2 remains on its empty lane, it will get a payoff of e, while,
if it swerves, the payoff will be f .

Now, consider the costs of the different strategies in the
case of the deer moving out of the road, which happens with
probability 1− p− q. These costs are reported In Table III.

TABLE III: Payoffs values for the case that the deer moves
out of the road.

AV
1

AV2

SW R

SW e, f c, c

R e, f e, e

We can notice that action “SW” of AV2 gives payoff f
in any case, and action “R” of AV1 has a payoff of e = 0.
Action “SW” of AV1 has a payoff of e if AV1 stops or swerves
making the lane free for the other car. An incident happens if
AV1 swerves and AV2 remains in the same lane. As the deer
moves out of the road, no car will have the cost of d of hitting
the deer.

The cost of the different actions if the player stays in the
same lane can be found in Table I. Now we can compute the
final cost of the actions. Since the AVs do not know what
the deer will ultimately do, their strategies are the same for
the previous game (“SW” and “R”), but the payoffs are now
computed in expectation as a weighed average of the different
payoffs over the probability of occurrence.

We can compute the mixed strategies at the NE as

α =
e− c− qd+ p(d− e)

e− qe− c
(3)

β =
f − e− qd+ qe

c− e+ qe
(4)

where α and β are the probabilities of AV2 and AV1, respec-
tively, to play “SW”. If we consider the payoff e as equal to 0,
and the other payoffs as negative values as per (1), we obtain

α∗ = 1− d

c
(p− q) (5)

β∗ =
f

c
− d

c
q (6)

We can assign K = d/c, such that 0 < K < 1, which
allows for rewriting (5) as α = 1 + K(q − p). Recall that



Fig. 2: α∗ as a function of α and β

Fig. 3: β∗ as a function of q.

0 < α < 1, and it imposes the constraint p ≥ q, i.e., the
probability of moving deer to the right lane should be higher
than that of staying in the same lane. If it is equally likely
that the deer would stay either on left or right lane, then AV2
will adopt strategy SW (α = 1). All other cases are covered
in Fig. 2 that displays α∗, as a function of q and p in [0, 1].

After setting K1 = f/c and K2 = d/c, and following K1 <
K2, one can see that the mixed strategy exists if the probability
of the deer switching the lane does not exceed q′ = K1

2K1−K2

(see Fig. 3). At q′, strategy SW is never adopted. One can also
notice that the maximum value for β is K1 < 1, which means
that SW is not a dominant strategy in any case.

If no particular behavioral pattern can be assumed on the
deer behavior, one reasonable assumption for the priors of
its movement is that all three events happen with the same
probability, i.e., p = q = 1/3. In this case, α = 1, meaning
that SW is a dominant strategy and AV2 should always steer on
the right, while the strategy of AV1 is defined by β = K1−K2

3 .
Assigning c = −3, d = −2 and f = −1, β = 1/9, i.e., with
higher probability AV1 should remain on its own lane.

B. Deer’s Movement seen by AV1

We extend the previous results to a more advanced game,
still involving two AVs and a moving obstacle (deer). The

TABLE IV: Bayesian game 1, without detection: the deer is
an externality choosing actions with known priors.

AV
1

AV2

SW R

SW e+ q(d− e), f c+ qd, c+ qd

R e+ p(d− e), f e+ p(d− e), e+ q(d− e)

actions available to the vehicles are the same (“SW” and “R”),
and once again the deer can move with three different actions
as before, with respective probabilities p, q, and 1 − p − q.
However, we assume now that AV1 detects the movement
of the deer and so can act on it. AV2 also has additional
information since, unlike the previous version of the game
where imperfect information is just an externality, now AV2
is aware of AV1 being able to predict the deer’s behavior.

We stress that this further element emphasizes the need
for a connected awareness among the vehicles. While the
time for AV1 to undertake any action is too short to also
communicate it to AV2 sufficiently in advance, the presence of
such capability of AV1 can be reasonably common knowledge
among other connected vehicles.

In the jargon of game theory, the situation that we are
considering now is classified as a Bayesian game, since we
categorize the deer’s movement (known to AV1 but not AV2)
as the type of AV1 [35], [36]. We remark that even the previous
situation where the deer moves at random and its movement
is only known through its prior probabilities p, q, and 1−p−q
can be considered to be a Bayesian game (hereafter called
“Bayesian game 1”), whose resulting normal form is displayed
in Table IV. However, this game involves random choices by
Nature ultimately determining the types of the players that
are just resolved by taking expectations, as discussed in the
previous section.

Instead, we want to consider a more refined game, denoted
as “Bayesian game 2,” in which knowledge about the deer’s
movement determines a different type of player AV1 that is
revealed to that player (but not to AV2) before taking action.
The strategy for AV1 as a player consists now on choosing
three binary choices, one for each of the possible types, which
results in 23 = 8 possible actions. AV2 does not have a type,
so its strategy is a single action, which is however chosen
knowing of this more detailed information available to AV1.
Thus, while AV1’s strategy is a response to each of the three
scenarios (deer stays in its lane, deer moves to the right lane,
and deer moves out of the road), AV2 can still apply rational
decision making to knowing that AV1 knows the behavior of
the deer. In Table V, we can see the payoffs for each strategy
of AV1 and AV2, as functions of the values c, d, e, f and
probabilities p and q.

We can notice that the action “R” of AV2 is dominated
by the action “SW”, however, it is not strictly dominated.
Through sequential rationality, we can iteratively eliminate
strictly dominated strategies, which are courses of action that



TABLE V: Bayesian game 2 with detection by AV1.
AV

1

AV2

SW R

(SW, SW, SW) qd, f c+ qd, c+ qd

(SW, SW, R) qd, f (p+ q)c+ qd, (p+ q)c+ qd

(SW, R, SW) 0, f (1− q)c, (1− q)c+ qd

(R, SW, SW) (p+ q)d, f (p+ q)d+ (1− p)c, qd+ (1− p)c

(SW, R, R) 0, f pc, pc+ qd

(R, SW, R) (p+ q)d, f (p+ q) + qc, qd+ qc

(R, R, SW) pd, f pd+ (1− p− q)c, qd+ (1− p− q)c

(R, R, R) pd, f pd, qd

are not chosen by rational players. For AV1, (SW, SW, R),
(R, SW, SW), and (SW, SW, SW) are strictly dominated by
(SW, R, SW). Moreover, (R, SW, R), (R, R, SW) are strictly
dominated by (SW, R, R) for any values of c, d, e, f that follow
condition (1).

In Table VI, we provided a reduced game in a bi-matrix
form, following from these eliminations, by assigning sample
values c = −3, d = −2, f = −1 and p = q = 1/3. It
is relevant to remark that these choices are just made for
numerical convenience in discussing the example, but the
results are actually more general given the ordinal meaning
of the utilities, that are just required to satisfy (1).

This game has three Bayesian NEs in the pure strategies:
((SW, R, SW), SW), ((SW, R, R), SW) and ((R, R, R), R).
No NEs were found in the mixed strategies. In general form,
the mixed strategy for AV2 can be expressed as

α = 1− d

c
· p

1− q
(7)

if α is a probability of AV2 to play strategy SW. However,
there exists a special condition in which AV2 is indifferent
between playing R an SW that is p + q = 1, i.e. the deer
never goes away from the road. In this case

α∗ = 1− d

c
. (8)

Considering this scenario, one can notice that α∗ = 1
for Bayesian game 1, that is always higher than α∗ for
Bayesian game 2. Meaning that, in Bayesian game 1, for
the worst possible scenario (i.e. the deer always stays on the
road), AV2 must always choose the strategy SW providing
the expected payoff equal to f . In Bayesian game 2, instead,
the higher the difference between d and c, the higher the
probability to choose strategy SW, but it is never a domi-
nant strategy. In this case, the expected payoff will become
F = f(1− d

c )+
d
c

(
pc+(1−p)d

)
. One can notice that F < f

for any c, d, f , p that satisfies constraints (1). This bring us
to a not so intuitive conclusion that if AV1 is in possess of
information about the deer movement, this does not provide
an advantage for AV2, which is also supported by the fact that
the game has multiple semi-separating NEs that complicates
the prediction of the opponent’s movement.

TABLE VI: Bayesian game 2 from Table V after removing
the strictly dominated strategies.

AV
1

AV2

SW R

(SW, R, SW) 0, -1 -2, - 4
3

(SW, R, R) 0, -1 -1, - 2
3

(R, R, R) - 2
3

, -1 - 2
3

,- 2
3

V. CONCLUSIONS

Autonomous connected vehicles can solve many problems
of road safety provided that they are enabled to achieve fast
response to external events in a short time interval.

In this paper, we considered an interaction of autonomous
vehicles with an occurring road obstacle and also with each
other, where available actions consist of choosing the best
available lane [22], [29]. The resulting scenario was modeled
via game theory, and NEs were found. Furthermore, we
consider an extension of the game to incomplete information
available to the players and the resulting Bayesian equilibria,
which offer further insight.

In particular, the most interesting conclusions of Bayesian
game theory are drawn if we assume that only one of the
vehicles is capable of anticipating the presence of the obstacle.
The remaining AV, while not noticing the obstacle, is aware
of the extra information available to the first vehicle. Bayesian
NEs were found in this game, showing that this is often
insufficient to obtain an effective reaction for the AV that is
unaware of the obstacle.

We remark that this situation would be of particular interest
for a scenario where AVs not only possess capabilities of
intelligent decision making but, through their connectivity, are
also aware of each other. However, without any more explicit
interaction, the resulting NEs do not necessarily represent an
improvement for the final outcome (as visible that certain
NEs of the last game are even more accident-prone than
the previous ones). Also, if there are multiple NEs, the best
choice is not straightforward. As the problems become more
challenging, the equations will bring more complex structures
and finding multiple NEs will not solve the decision making
process of the cars.

The take-away message is that beyond empowering self
driving cars with safest equipments and powerful sensors,
and especially the ability to make autonomous decisions,
explicit interactions among the vehicles are also necessary to
improve road safety [37]. If we assume AVs to be driven by
selfish objectives, just improving their technologies without
any communications will lead to worse interactions, as the
vehicles will be prone to causing accidents to others for the
others for their own safeguard.

Thus, emergency stop functions and explicit notifications
among the vehicles should be foreseen [38]. In this spirit, game
theory can be used together with communication exchanges
[39] as an important tool in the decision making process that
autonomous vehicles will have to face.



REFERENCES

[1] P. Kopelias, E. Demiridi, K. Vogiatzis, A. Skabardonis, and
V. Zafiropoulou, “Connected & autonomous vehicles–environmental
impacts–a review,” Sc. Tot. Env., vol. 712, p. 135237, 2020.

[2] E. Gindullina, L. Badia, and X. Vilajosana, “Energy modeling and
adaptive sampling algorithms for energy-harvesting powered nodes with
sampling rate limitations,” Trans. Emerg. Telecommun. Technol., vol. 31,
no. 3, p. e3754, 2020.

[3] S. A. Cohen and D. Hopkins, “Autonomous vehicles and the future of
urban tourism,” Ann. Tour. Res., vol. 74, pp. 33–42, 2019.

[4] G. Cisotto and S. Pupolin, “Evolution of ICT for the improvement of
quality of life,” IEEE Aerosp. Electron. Syst. Mag., vol. 33, no. 5-6, pp.
6–12, 2018.

[5] G. J. Read, S. Shorrock, G. H. Walker, and P. M. Salmon, “State of
science: Evolving perspectives on human error,” Ergonomics, vol. 64,
no. 9, pp. 1091–1114, 2021.

[6] L. Calabrese, A. Berardo, D. De Rossi, M. Gei, N. M. Pugno, and
G. Fantoni, “A soft robot structure with limbless resonant, stick and slip
locomotion,” Smart Mat. Struct., vol. 28, no. 10, p. 104005, 2019.

[7] E. Gindullina, E. Peagno, G. Peron, and L. Badia, “A game theory model
for multi robot cooperation in industry 4.0 scenarios,” in Proc. IEEE
APCCAS, 2021, pp. 237–240.

[8] L. Claussmann, M. Revilloud, S. Glaser, and D. Gruyer, “A study
on AI-based approaches for high-level decision making in highway
autonomous driving,” in Proc. IEEE SMC, 2017, pp. 3671–3676.

[9] A. Baiocchi, I. Turcanu, N. Lyamin, K. Sjöberg, and A. Vinel, “Age
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