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Abstract—Scheduling updates from remote sensors is a key
task for the internet of things (IoT). In this context, the mathe-
matical concept of age of information is often used to capture the
freshness of received data. This is, in turn, relevant to optimize the
frequency of the exchanges, especially for resource constrained
(e.g., energy-limited) sensors. Most investigations on the subject
assume that the transmitter can leverage knowledge of the age
of information at the receiver side to decide when to send data,
even when the communication channel is unreliable. In reality,
tracking the outcome of the updates would require additional
consumption of resources to acquire a feedback. We investigate
the optimal schedule of updates over a finite time horizon for a
resource-constrained sensor that is allowed to perform a limited
number of updates, as typical of IoT devices. We discuss the role
of the feedback from the receiver, and whether it is convenient
to ask for it whenever this causes additional energy consumption
and consequently allows the transmission of a lower number of
updates. We analytically identify regions for the feedback cost
and the reliability of the channel where making use of feedback
may or may not be beneficial.

Index Terms—Age of Information; Internet of Things; Data
acquisition; Feedback; Sensor networks.

I. INTRODUCTION

A widely studied problem in Internet of things (IoT) systems
in the last few years concerns the scheduling of status updates
over a communication channel between a transmitter, usually
a remote sensor, and a receiver. The goal is typically to
minimize the so-called age of information (AoI) metric at
the receiver [1]–[3], capturing how fresh or up-to-date the
available perception of the monitored process is.

Focusing on AoI as the performance indicator enables a
characterization more suitable for remote sensing applications
than what achieved by standard metrics such as throughput or
delay, while at the same time retaining the advantages and the
beauty of a precise mathematical description [4]–[7]. Usually,
the long-term average AoI is specifically considered, even
though there are variations such as the peak AoI, discounted
AoI, or other similar metrics [8]–[10]. Also, the many studies
in the field may have subtle differences in considering a dis-
crete or a continuous time-axis, with subsequent modifications
on the mathematical tools employed such as Markov chains
or renewal theory [11]–[15].
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In this paper, we discuss the average AoI minimization over
a finite time horizon for a resource-constrained transmitter-
receiver system exchanging data over an error-prone channel.
In this setting, we tackle the case in which only the receiver,
and not necessarily the transmitter, knows about the outcome
of the communication and whether it succeeded in bringing a
useful update that lowered the AoI. These specific variations
are actually relevant in practical IoT scenarios, especially con-
sidering modern commercial technologies such as LoRaWAN
[16], where transmissions must be scarce and listening for a
feedback message can be as expensive as transmitting data.

In more detail, we consider a finite-time horizon, which
corresponds to the desired duration of a monitoring task.
This departure from the commonly employed infinite-horizon
modelling approach is, in our opinion, more consistent with
the way of operation of practical IoT devices, which are
assigned tasks over a finite time span. Within this interval, the
transmitter is allowed to send a limited (usually small) number
of updates, mostly due to hardware and cost constraints.1

For this scenario, we present two different analytical formu-
lations depending on the availability at the transmitter’s side
of feedback about the success of updates. We consider first an
offline (stateless) optimization that schedules the instants for
transmitting an update so as to minimize the expected average
AoI across the finite horizon; this is done without exploiting
the online information about the actual AoI, which is not
available. Afterwards, we consider a stateful optimization
of the scheduling instants with an online approach, based
on dynamic programming, assuming the sender to receive
feedback on the outcome of each performed transmission.

Observing that an implementation of feedback may actually
decrease the number of available transmission opportunities
over the finite time horizon, e.g., due to additional energy
consumption [17], [18], we tackle the fundamental question
of whether leaning on a return channel is truly beneficial in
terms of AoI over a statless optimization.

To this aim, we provide an analytical characterization of
the regions where using the feedback is advantageous (or not),
depending on the time horizon, the number of opportunities,
the transmission success probability, and the feedback cost.

1Many IoT technologies such as LoRa have technological and/or legal
limitations that prevent them from going beyond strictly bounded, low duty-
cycles (e.g., in the order of 1% for operations in the ISM band) [16].



These results can be of significant utility in practical contexts
when setting up the operation policies for fresh status update
from resource-constrained IoT devices [5], [8], potentially es-
tablishing feedback policies that may be actually unnecessary.

The rest of this paper is organized as follows. In Section
II, we review related works, while Section III illustrates our
model and approach, divided into the two scenarios, without
and with feedback. Section IV reports and discusses some
numerical results to highlight the fundamental trade-offs of the
setting, and finally Section V draws conclusions and points at
possible extensions of the work.

II. RELATED WORKS

In the recent literature, many papers investigate the AoI in
communication systems, especially in the context of remote
sensing for the IoT [2]–[14], [17]–[24]. Taking AoI as a
performance metric may lead to various formal approaches,
relating to different degrees with the present paper.

A first class of significant works analyze the theoretical
evaluation of AoI for different medium access policies and/or
queueing disciplines [2], [9], [22]. This is possibly the most
fundamental investigation, which is somehow orthogonal to
our analysis, where we just consider a single node sending
updates and we focus on the role of the feedback that enables
the transmitter to make decisions based on the AoI at the
receiver side. While in our model all the uncertainty about the
transmission process is assumed, for the sake of simplicity,
to be the result of Bernoulli-distributed independent errors,
the same considerations can be extended to comprise other
factors involving the presence of multiple nodes and realistic
communication protocols [4], [12], [23].

A second group of contributions consider, on the other
hand, the problem of scheduling updates from a remote sensor
accounting for AoI. For example, in [3], [6], [10], [19]–
[21], [24] AoI is included as a threshold constraint to be
respected by the scheduling, with different formalizations of
the resulting optimization problems, solved either from a linear
programming perspective or also advancing practical policies
based on greedy or consecutive scheduling.

Another common setup involves the inclusion of the AoI
within the objective function, usually to minimize the long-
term average AoI at a sink node under constraints on the
average number of transmissions at the source node [11], [14],
or related to energy harvesting [12], [13], [17], [18].

In particular, [11] compares automatic retransmission re-
quest (ARQ) policies. The use of feedback is implicitly con-
sidered, as required by standard or hybrid ARQ. However, the
focus of [11] is on minimizing the long-term average AoI with
an infinite horizon, and the specific scheduling pattern over a
finite window is not considered. Moreover, costs of feedback
are not directly addressed, focusing rather on the advantages
of retransmission-based techniques. Our analysis differentiates
itself by explicitly tackling the practical constraint of the price
undergone to trigger the benefits of feedback.

In [12], an approach based on dynamic programming and
Markov decision processes can be found, akin to our study.

Another similar analysis is in [13], where online optimal
policies with and without feedback are compared, similar to
what we do here, and the authors also derive a conclusion of
optimality for a uniformly spread update policy. In both cases,
the transmission constraints that limit the updates relate to
energy harvesting, and an infinite time horizon is considered.

The focus of [17] is on computing age and energy con-
sumption and track their evolution for a coding and ARQ
technique suitable to IoT scenarios, as opposed to considering
a minimization problem. In [18], the problem is expanded,
with the additional dimension of choosing from different
energy sources. AoI-optimal scheduling is also considered
in [4], [7], [14], specifically addressing IoT scenarios where
multiple nodes with massive access are considered, with the
focus being on different packet sizes, power availability, or
random access techniques, respectively. Yet, the objective is
once again the minimum long-term average AoI.

We remark that, from the perspective of dynamic program-
ming, all stateful optimizations with the objective of infinite-
term average AoI minimization often boil down to a threshold
policy, i.e., to transmit when the AoI is overtaking a given
value (and, if energy is considered, when the battery level is
high enough). For our scenario with a finite horizon, the op-
timal scheduling policy changes over time, since transmission
opportunities must be used sparingly at the beginning, but it is
convenient to use all of them by the end of the time window.
This marks a consequence of our analysis not highlighted by
the aforementioned papers, i.e., for a finite time horizon, the
knowledge of the time instant (which does not itself require
a feedback) may be enough, thereby making the feedback
superfluous even if the channel is unreliable.

Other notable related approaches involve using the concept
of age of incorrect information (AoII) as in [25] or tracking
the dynamic evolution of AoI when the channel is inherently
unreliable [5]. These contributions implicitly acknowledge for
the cost of obtaining a feedback, which is reflected in the final
measured metric rather than a price to pay in advance, which
is the approach that we use here. An interesting development
could be to link these kinds of investigations whenever the
choice for receiving and exploiting a feedback is made avail-
able in the application design.

III. SYSTEM MODEL AND ANALYSIS

We consider a transmitter/receiver pair interacting over
an error-prone communication channel. The transmitter (also
called source or sensor) sends data to the receiver (alternatively
referred to as the destination or sink), reporting about the status
of a monitored process, with the ultimate goal of keeping the
information available at the sink as up-to-date as possible [11].

For convenience, we divide time into epochs, and assume
that an update transmission can only take place at the start of
an epoch. Without loss of generality, we fix a unit time span
for such slots, and focus on a finite time-horizon of N epochs,
meant to be sufficiently large to provide a sensible model
of operation for real-world sensors. To track the freshness of
information, we define the instantaneous AoI for the source at
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Fig. 1. Example timeline for the AoI evolution over time. In the considered
case, four transmissions are performed over a time horizon of duration N ,
and the second and third transmissions fail.

time t as [1] A(t) := t− σ(t), where σ(t) is the most recent
epoch over which an update was received by the sink as of
time t, and consider the average AoI over the time span of
interest, i.e.

∆ :=
1

N

∫ N

0

A(t) dt. (1)

A possible timeline for the AoI evolution is reported in Fig. 1,
where one may see that ∆ can be computed as the area below
A(t) within the interval [0, N ], normalized to the time-horizon.

We assume that, over the considered horizon of operation,
the sensor can send a maximum number of updates equal to
M ≪ N . Such a constraint can be due to different reasons,
but it is convenient to connect it to limited energy available
at the transmitter’s side, especially if this is a remote battery-
powered sensor placed in a location that is inaccessible (thus
making a battery replacement impossible or costly), or an
energy-harvesting device, in which case M can be connected
to the average energy amount acquired over a recharging cycle.

Finally, update transmissions can be successful or not,
depending on the channel state. We assume transmission
outcomes to be independent of each other, so that the success
of the i-th update follows a Bernoulli process with probability
pi. For analytical tractability, we will assume a time-invariant
distribution, so that pi = p for all i = 1, . . . ,M . We note
that extensions to different choices of pi’s due to channel
correlation or more advanced retransmission techniques are
also possible, e.g., considering approaches such as [11], [15].

A. Optimization without feedback from the receiver

We start by studying how to minimize ∆ in the absence
of feedback from the receiver. In this case, the goal for the
sender is to determine a priori (i.e., offline) how to place the
transmission instants in the optimal way. To this aim, if the
M update epochs are chosen to be τ1, τ2, . . . , τM , we can
define M+1 intervals {yi}, with i = 0, . . . ,M such that
yi = τi+1−τi, with τ0=0 and τM+1=N for consistency.

Leaning on this notation, the problem can be restated in
terms of the M + 1 optimization variables y = {yi} as

min
y

∆(y) (2)

s.t.
M∑
i=0

yi = N

In turn, the average AoI over the finite time horizon can
easily be computed as a function of y as

∆(y) =
1

N

M∑
i=0

yi
2

2
+

M∑
j=i+1

yiyj(1− p)j−i

 (3)

where the first contribution within brackets accounts for the
area of the triangle of side yi that is always associated to the
i-th update, whereas the subsequent summation captures the
area of the parallelograms of sides yi and yj that contribute
to the AoI only in case of failure of the i-th (and possibly of
the following) transmission(s), weighted by the corresponding
probabilities. An example of this reasoning is visually avail-
able in Fig. 1, where the loss of the second and third updates
adds the dashed parallelogram areas y1 y2 and y1 y3 to the
overall computation.

Finding the AoI minimum requires nulling the gradient
∇∆(y), which, in the specific coordinates yi-s, corresponds
to setting the first-order partial derivatives of (3) to 0, i.e.,

∂∆(y)

∂yi
= 0 ∀i. (4)

Observing that, by definition, yM = N −
∑M−1

i=0 yi, (4) leads
after simple manipulations to(

2yi −N +
∑
j ̸=i

yj

)[
1− (1−p)M−i

]
(5)

+
∑
j ̸=i

yj

[
(1−p)|i−j| − (1−p)M−j

]
= 0

for all i = 0, . . . ,M . We thus obtain a full-rank system of
M linear equations in M unknowns, whose solution (easily
obtained with standard tools) offers the sought optimal trans-
mission times in the absence of feedback.

B. Optimization when feedback is available

Most of the scheduling optimizations for status updates do
not perform the previously discussed offline optimization, but
rather consider a stateful online procedure where the AoI after
each update is known at the transmitter side. This approach
would require an instantaneous and cost-free feedback, avail-
able at the sensor when scheduling the updates. In practical
systems, however, waiting and receiving a feedback (even if
we assume the round-trip time to be so short that it does
not cause any lag in the scheduling) has a cost [13]. In fact,
the retrieval of M return messages typically entails an energy
expenditure for the sensor that can be of the same order of
magnitude than that for transmitting the original packets.

To capture and characterize these aspects, we assume the
sink to be able to send such a feedback, received without
errors at the source. Incidentally, we note that this is a common
assumption in the literature, as the feedback packets are usu-
ally limited in size and possibly sent over a different channel.
Nonetheless, feedback errors could easily be accounted for by
adapting the success probability p, see, e.g., [26].

We account for the cost of feedback by considering a
different value Mf of available transmission opportunities over



0 20 40 60 80 100

(a) p = 1

0 20 40 60 80 100 0 20 40 60 80 100

(b) p = 0.8

0 20 40 60 80 100

(c) p = 0.4

Fig. 2. Schedules for N=100, m=4, for different values of the success probability p. Black stems represent the offline optimization (without feedback). Red
dashed stems are the average instants of the scheduled updates in the online optimization with feedback. In (b), the additional plot to the right reports two
instances of online schedule based on the outcomes, for 4 consecutive successful transmissions (dark red, ∗) or 2 failures followed by 2 successes (pink, △).

the N epochs, with Mf ≤ M . Specifically, we introduce the
feedback cost coefficient η > 0, so that Mf = M/(1+η). In
other words, for zero feedback cost, the transmitter is able to
use Mf = M transmission opportunities, the same for the case
without feedback. For a larger η, Mf is decreased accordingly;
for example, if receiving a feedback message has the same cost
as transmitting an update, i.e., η = 1, then Mf = M/2.

Even though the number of transmission opportunities may
decrease, the presence of feedback can still offer an advantage
to the optimization, in that we can achieve a more efficient
schedule of the status updates, following a dynamic pro-
gramming approach. This problem can be classically cast on
defining a state, a control vector, and a noise component [27].
The state of the system at time t is x(t) =

(
A(t),m(t)

)
, where

A(t) is the instantaneous AoI at time t. This is initialized
as A(0) = 0, whereas m(t) is the number of transmission
opportunities still available at t, for which m(0)=Mf . The
control of the system u(t) simply results in a binary choice
on whether to transmit at epoch t, while the noise component
is completely captured by the success probability p. With these
conventions, the system evolves from x(t) as

• x(t + 1) =
(
A(t)+1,m(t)

)
if no update is attempted at

time t (i.e., u(t)=0). When no update is sent at t, in fact,
the AoI increases by one epoch, and the same number of
transmissions remain available to the sensor

• x(t + 1) =
(
A(t)+1,m(t)−1

)
if m(t) > 0 and the

sensor sends an update at time t (i.e., u(t)=1), but it
is unsuccessful, which happens with probability 1− p

• x(t+1) =
(
0,m(t)−1

)
if m(t) > 0 and the sensor sends

instead a successful update at time t that resets the AoI,
which happens with probability p.

The problem under study can then be solved by find-
ing the optimal control policy µt(x(t), p) to apply at any
state x(t) =

(
A(t),m(t)

)
, i.e. the strategy that minimizes the

expectation over the time horizon of N epochs of a cost
gt
(
x(t), u(t), p

)
= A(t).

This can be achieved by exploiting Bellman’s optimality
condition [27], since it clearly holds that, if the optimal policy
is described by µ0, µ1, . . . , µN−1, then for any value of an
intermediate state x(t) at time t, 0 < t < N , occurring with
positive probability, the minimizing policy for the residual cost
from t till N is µt, . . . , µN−1.

Specifically, at a given state x(t), the optimal policy is

µt (x(t), p) = 1

[
(1−p)Rt+1(A(t)+1,m(t)−1) (6)

+ pRt+1 (0,m(t)−1) < Rt+1 (A(t)+1,m(t))

]
where

Rt

(
x(t)

)
=

N∑
i=t

gi

(
x(i), µ

(
x(i)

)
, p
)

(7)

and 1[·] is an indicator function, equal to 1 if the condition
inside is true, 0 otherwise. In other words, the optimal control
at time t is achieved by making the decision that minimizes an
expected total cost equal to the AoI, assuming future decisions
are optimally made and averaging over channel errors.

Remarkably, the only actions for the border cases
x(N−1) = (A,m) with m > 0 and x(t) =

(
A, 0

)
are to

transmit and not to transmit, respectively, so one can start by
defining µ for these cases and proceed backwards to find the
optimal online scheduling for all reachable states at every t.

C. Practical consequences

Fig. 2 shows an instance of the previous analytical results.
In all cases, M=Mf=4 updates can be scheduled over a time
horizon of N=100 epochs. In the case of a perfectly reliable
channel, Fig. 2a shows that the optimal update instants are
uniformly spread over the time horizon [13], and there is no
difference between a stateful or stateless optimization, since
there is anyway no need for feedback.

In Fig. 2b, the probability of success is set to p=0.8 and a
difference appears between the offline or online scheduling. In
particular, the scheduling instants in the offline optimization
shift towards the center of the window of interest. For what
concerns the case with feedback, the figure shows the average
positions of the scheduling instants, since they clearly depend
on the specific realization of the channel. The average position
of the updates across the time window is slightly postponed for
the online optimization, since the availability of the feedback
can be better exploited and this allows to intervene even at a
later stage. The same trend is confirmed in Fig. 2c for an even
lower success probability p = 0.4.

For p=0.8, an extra plot in Fig. 2b shows also a comparison
of practical realizations of the schedule in the presence of
feedback, depending on whether the updates succeed or fail.
In more detail, we compare a case where all updates are
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Fig. 3. Optimal average AoI vs. success probability for different values of
M in the absence of feedback (solid lines), with cost-free feedback (circle-
marked) and feedback with η=0.4 (dash-dotted). In all cases, N=1000.

successful (star markers) with one where the first two trans-
missions fail (triangle markers). As visible from the plot, in
the latter case, subsequent updates are scheduled much earlier
to counteract the missing updates due to the channel failures.

IV. PERFORMANCE EVALUATION

To gauge the role of feedback in the setting under study,
we report and discuss some key trends of interest. Unless
otherwise specified, all numerical results have been obtained
considering a time horizon of N = 1000 epochs, and assuming
M = 10 transmissions available to the device when operating
without resorting to feedback. Such a configuration is inspired
by practical IoT systems such as LoRaWAN, where duty
cycles in the order of 1% are typical in the ISM band [16].

We start by considering Fig. 3, which shows the average
AoI achieved by optimizing the transmission times over the
time horizon. Plain solid lines report the behavior in the
absence of feedback, whereas circle-marked ones indicate
the performance with a cost-free feedback (i.e., η = 0).
Finally, dash-dotted lines refer to the use of a costly feedback
(η = 0.4), resulting in a reduction of the number of available
transmissions from the device to the sink. In the no-feedback
case, the average AoI was directly computed through (3).
Conversely, results in the presence of feedback were obtained
applying the dynamic optimization process described in Sec-
tion III-B and verified by means of Montecarlo simulations.

First, consider the case M=10 (yellow curves), and focus
on operations without feedback. As expected, AoI decreases
as the success probability increases, thanks to the more fre-
quent delivery of status updates, reaching the minimum value
N/[2(M+1)] when p = 1. In turn, when feedback is available
at no cost (η = 0), an improvement emerges. In this case, the
possibility to adapt the upcoming transmission times based
on the outcome of the current attempt is beneficial, enabling a
reduction of the AoI of up to 35%. We note that the achievable
gain is larger for moderately low success probability values,
whereas the two policies behave similarly (and eventually
coincide) when p is either very high or very low.
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Fig. 4. Average AoI vs feedback cost η for different success probability p.
Circle-marked consider stateful optimization (with feedback), non-marked are
for no feedback. In all cases, N=1000, M=10.

Interestingly, things change significantly when the cost
entailed by feedback is accounted for. In fact, while for lower
success rates the use of feedback continues to be beneficial,
there exist values of p (e.g., p > 0.75 in the considered
example) for which an offline optimization of the transmission
times emerges as the policy of choice. In such conditions, the
availability of fewer delivery attempts – induced by employing
feedback procedures – more than counterbalances the positive
effects of dynamically adapting the transmission times, ren-
dering the no-feedback approach more effective in terms of
AoI. The result offers a first important and non-trivial insight,
pinpointing how the use of a return channel shall be carefully
considered in practical IoT systems.

Similar trends also emerge when the device is allowed to
access the channel more often (case M = 20, red lines in the
plot). In this case, lower values of AoI are attained by all the
considered strategies, as a consequence of the more frequent
transmissions. The same rationale explains why the use of a
costly feedback starts performing worse than the no-feedback
counterpart already for lower success probability p, thanks to
the increased robustness to failures of the latter.

The impact of the feedback cost is further explored in
Fig. 4, where the average AoI is reported against η. In
the plot, non-marked lines denote the performance of the
no-feedback solution (not affected by η), whereas circle-
marked ones refer to the use of feedback. Different results
are obtained for p = 0.9 (dash-dotted red lines) and p = 0.7
(solid blue lines). The trends highlight how the use of a
costly feedback quickly becomes detrimental for the practical
values of success probability reported in the figure. From this
standpoint, for instance, worse AoI performance is attained
already for η = 0.1 when p = 0.9. Furthermore, AoI quickly
deteriorates with the feedback cost. Interestingly, for η = 1
– corresponding to a practically relevant condition in which
the reception of feedback may entail an energy cost similar
to the one of a transmission – a performance loss of up to
60% is experienced for p = 0.9 in comparison to the simpler
no-feedback approach.
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The discussed trends are summarized in Fig. 5, which
identifies in the (p, η) parameter plane the region where
the use of feedback shall or shall not be used from an
AoI standpoint. The plot offers a simple yet useful system
design tool, quickly identifying the most suitable strategy to
be followed under any operating condition. The importance
of carefully considering the cost of implementing feedback
clearly emerges. In particular, the implementation of a return
channel leads to an AoI reduction under harsh channel condi-
tions (i.e., low probability of success), even at the expense of
the availability of fewer update delivery attempts. Conversely,
a simpler offline optimization is to be preferred when more
reliable transmissions can be performed.

Incidentally, the staircase shape of the plot stems from the
fact that a change in performance is only observed when
the cost leads to a reduction of the number of available
transmissions. In this sense, increasing the time horizon and
the number of available transmissions would naturally smooth
the curve, without altering the fundamental reported trends.

V. CONCLUSIONS AND FUTURE WORK

We investigated the role of feedback in AoI-optimal finite-
horizon scheduling for IoT devices. We developed two differ-
ent analytical frameworks for stateless and stateful optimiza-
tion, and we compared them to see whether a feedback from
the sink node is required if it comes at a cost (captured by
a reduction in the number of available sensor transmissions).
We obtained a comparison of the two scheduling approaches
depending on the reliability of the channel, the time horizon,
the allowed transmission opportunities, and the feedback cost.

A possible direction to extend the present work would
be to expand the time horizon, still keeping it finite, but
also allowing for concatenation of different scheduling cycles,
which can be a realistic way to represent operation of IoT
nodes. The specific comparison between stateless and stateful
optimization, and its implications on the utility of exploiting a
feedback at the transmitter’s side can be extended to more
general scenarios also including multiple nodes [4], access
protocol aspects [7], or energy harvesting [12].
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