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Abstract—The age of information (AoI) is a metric represent-
ing the freshness of the information available at the receiver in
a system which involves the exchange of status updates over an
error-prone time-slotted channel between a sensing source and
a receiver. We consider such a system, with the addition of a
relay node that is able to assist the transmission to improve the
resilience against failures, and compute the expected AoI over a
discrete time-slotted channel when both the sensor and relay are
intermittently and independently active. Furthermore, we present
a game theoretic formulation of the optimization of the activity
rate for both nodes when transmissions are expensive, managing
the tradeoff between cost and AoI. The Nash equilibrium (NE)
of the resulting game is found to be both efficient from the
perspective of the resulting performance and computationally
lightweight for a distributed robust control implementation.

Index Terms—Age of Information; Data acquisition; Modeling;
Robust communications; Relay.

I. INTRODUCTION

Many sensing applications in the Internet of things (IoT)
require to track real-time content, both for monitoring and
control. To have an up-to-date picture of the environment, the
main requirement for these applications is not throughput, or
even latency for individual transmissions, but rather freshness:
recent data from the sensors should always be available to
the monitoring application. Age of information (AoI) is a
performance metric that aims to evaluate the freshness of the
data updates coming from a remote sensing source [1].

Compared to the aforementioned conventional memoryless
metrics such as latency/delay, AoI is better able to characterize
not only the performance of the transmission schedule, but also
the robustness of the associated network control, and can be
connected to the state estimation error as related to the system
outage [2], [3]. AoI and related metrics have seen a significant
amount of interest from the research community over the past
decade, and analytical and experimental studies exist for many
schemes and communication technologies [4].

In order to provide reliable performance, several works in
the literature have considered coding and automatic repeat re-
quest (ARQ) strategies to minimize AoI. The use of repetition
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in time [5] or over orthogonal communication channels [6] can
provide significant reductions of the average and worst-case
AoI, but comes at the cost of a higher load on the commu-
nication channel. Interestingly, this often comes at the cost of
a lower reliability or higher latency for individual packets,
as AoI minimization strategies can often involve dropping
out-of-date packets [7]. For what concerns the performance
improvement that ARQ can provide in terms of AoI [8], [9],
it is found to be often better than with error correction coding,
as individual updates can be retransmitted only when needed,
but requires a feedback channel, which is often costly or even
unavailable for low-power IoT nodes.

Energy-limited IoT nodes often have other constraints to
consider, such as limited energy or low-bitrate communica-
tion channels: in this case, strategies to minimize AoI are
often more complex [10] to take into account the additional
requirements. Redundant communication schemes increase
energy consumption, as the additional transmitted data requires
power, so that the consideration of transmission costs is
crucial [11]. In general, any redundant solution that can relax
either communication or other constraints can be beneficial
to the information freshness: as an example, it is possible to
consider redundancy in terms of energy [12], using a backup
energy source for energy-harvesting nodes.

In this work, we consider a novel scenario, in which a
sensor is aided by a relay node [13]: transmissions from the
sensor may fail, leading to a higher AoI, but the relay can
recover from these failures by retransmitting the message at a
higher power, ensuring that it is delivered to the receiver. We
analyze the average AoI in this scenario, providing a closed-
form evaluation, and define a game theoretic optimization in
which transmissions from the node and relay have a cost: the
Nash equilibrium (NE) of the game between the sensor and
relay represents an easily computable, Pareto efficient solution
to the problem of optimizing their activity rate [14]–[16].

The rest of this paper is organized as follows. We start by
defining the communication system model in Sec. II. Sec. III
presents the analysis, first deriving the AoI in closed form and
subsequently introducing the cost model for the sensor and the
relay. The analysis of the NE as a possible way to implement
a distributed strategic management of the system to increase
its resilience is developed in Sec. IV. Sec. V then presents
the numerical results, and Sec. VI concludes the paper and
presents some possible avenues of future work.978-1-6654-7598-3/23/$31.00 c©2023 IEEE



II. SYSTEM MODEL

We consider a sensor and receiver exchanging status updates
over a time-slotted wireless channel. We also consider an
update-at-will model, where fresh information is always avail-
able at the sensor, but transmitting updates has a cost, which
will be discussed in the following. As commonly done in the
literature [4]–[6], [15], [17], [18], we neglect the propagation
delay in the information exchange, so in the following, time
instants can be indifferently computed at the transmitter or the
receiver side. Thus, the AoI at the receiver in time slot t is
given by [1]

δ(t) = t− u(t), (1)

where u(t) is the time slot index corresponding to the recep-
tion of the last update before t, inclusive. So, for the time
slots where we perform an update, the AoI is reset to 0, and
it linearly grows afterwards.

It is sensible to assume that resource limitations limit the
rate at which the sensor can transmit updates. We model this
limitation as a per-slot probability p: at each time slot, the
sensor independently draws a Bernoulli sample, transmitting
only if it is equal to 1. We also consider the unreliability of
the wireless channel, which may be due to fading and other
propagation phenomena or to interference on a shared medium.
This is modeled as a packet erasure channel (PEC) with an
erasure probability f , which is known to the source.

We consider the presence of a relay node [13], [19], which
is known to improve the resilience of the transmission and
achieve lower delays. The relay is also randomly and inde-
pendently active with probability b. When active, the relay is
able to capture the information sent by the source and forward
it to the receiver via an out-of-band exchange in the case of
failure. However, the retransmission performed by the relay
is less fresh than the original update, as it is delayed by one
additional time slot. In this case, the AoI is reset to 1 instead of
0. This model can also represent a random repetition code [5]
with maximal ratio combining (MRC) decoding.

We assume that both the sensor and the relay node are
controlled by strategic agents operating with the aim to mini-
mize the AoI at the receiver’s side. At the same time, we also
consider activity costs for both the sensor and the relay. We
leverage and expand analytical results for AoI in the presence
of independent random transmissions over a slotted channel.
From a performance evaluation perspective, we discuss how
our problem can be framed as a potential game [20], whose
NE is found to be an efficient tradeoff between achieving fresh
information without incurring excessive costs. At the same
time, the strategic interaction between the two agents can take
place without any explicit exchange of control information,
which makes our approach particularly suitable for distributed
robust implementations.

We also highlight that our system requires no feedback
channel toward the sensor: as transmission is random, and the
relay operates independently, the sensor can become active in
a given slot, obtain a measurement, transmit its value, and
return to sleep mode, without needing to remain awake and

receive feedback. As reception may require almost as much
power as active transmission [21] for low-power sensors, this
can significantly extend the lifetime of the sensor’s battery
with respect to a scheme relying on feedback.

III. ANALYSIS

We consider a slotted time indexed by integer numbers.
A sensor may send updates to a destination following inde-
pendent and identically distributed (i.i.d) binary variables in
each time slot whose probability is p. These updates may be
successful or fail, and failures are also i.i.d with probability
f . Finally, a relay node may be randomly active during each
time slot according to an i.i.d process of probability b; when
active, it performs backups of the updates sent by the sensor
to the destination, if any, and can reliably send them to the
destination. When updates are successful, they are received
at the destination without any delay. Conversely, if an update
fails but the relay node is active, we assume that the very same
update can be delivered to the destination in the following time
slot, thanks to an out-of-band transmission. If the update fails
but the relay node is inactive, the update is simply lost.

Note that the retransmission by the relay is assumed to
be always successful, since it takes place on an orthogonal
reliable communication channel, but it would be trivial to
include i.i.d failures on this side too, by simply rescaling the
value of b. In other words, if the relay node has an i.i.d failure
rate h, we can effectively replace b with bh in the following.
We first derive a closed-form expression of the expected AoI
in this scenario and subsequently discuss the role of the relay
and the optimization of its activity.

A. AoI Derivation

Following [22], the expected AoI ∆ = Et[δ(t)] for a sensor
with i.i.d updates in each slot whose success rate is ρ can be
computed as

∆ =
1

ρ
− 1 . (2)

If we consider a renewal process whose cycles are defined as
periods between successful updates, using the AoI as a reward,
we can compute the expected AoI by dividing the expected
total reward over a cycle by the average duration of a cycle. If
updates happen with probability p and are always successful
(f = 0), then (2) simply becomes ∆ = (1 − p)/p. If we
include failures, then ρ = p(1− f) and we can write (2) as

∆ = [p(1− f)]−1 − 1 . (3)

This last result can also be derived by a different approach.
If we define a renewal cycle to be the time between different
updates of any kind, successful or not, we need to introduce
a bias on the reward due to failures for unsuccessful updates.
Following the analysis above, the duration of a cycle is taken
as (1 − p)/p and the expected reward during each cycle is
increased by (1− f)−1f(1− p)/p2 from its original value of
(1− p)2/p2 because of failures.

In other words, this correspond to comparing two different
approaches that must give the same result. In the former, we



consider cycles only between transitions where the AoI returns
to 0 (successful updates), which gives (3). Alternatively, we
can obtain the same equation by considering cycles between
updates of any kind (successful or unsuccessful), which gives
the same linear increase of the AoI, but reduces the duration
of a cycle. The initial value of the AoI may also be non-zero,
which happens if the previous update is not successful. This
means that we compute ∆ as the sum of p−1−1 and a bias β
due to previous failures, equal to f times a geometric number
of slots until reaching a success, with probability p(1 − f),
averaging over the number of slots, which leads to:

∆ = p−1 − 1 +

+∞∑
j=0

(j + 1)fp(1− f)(1− p+ fp)j . (4)

Clearly, the result of the summation in (4) is the same as
in (3) as trivially verifiable. However, we can use this method
to account for the relay by adjusting the bias.

In this case, the bias due to failed updates is different
and can be computed through three different terms. In the
following, for notational convenience, we will set q = 1 − b,
representing the probability that the backup is inactive.Note
that all three terms require that the update from the intended
source fails, so we always have a coefficient f . The terms are
then as follows:

1) If the backup is active for the update, the bias is simply
equal to 1. This happens with probability x1 = f(1−q);

2) If the backup is inactive, which happens with probability
q, and the last successful update from the sensor was
j + 1 slots ago, the bias is the same in the computation
of (4). In this case, the probability of the bias being
equal to j + 1 is x2(j) = pq(1− f)(1− p + fpq)j , as
we must consider both the case of no transmission and
of a failed transmission without backup;

3) If the last successful update j + 1 slots ago was from
the relay, i.e., the transmission of the sensor failed, but
the relay retransmitted it correctly, the bias is j+2; this
happens with probability x3(j) = pf2q(1− q)(1− p+
fpq)j .

Combining the three terms, we find that the bias is in this case
equal to

β =x1 +

+∞∑
j=0

[
x2(j)(j + 1) + x3(j)(j + 2)

]
=f(1− q) + pfq

+∞∑
j=0

{
(1− p+ fpq)j

[
(j + 1)(1− f)

+ (j + 2)f(1− q)
]}

=
f(p+ q − pq)
p(1− fq)

.

(5)
After some algebra and including the bias in the total compu-
tation by adding it to p−1 − 1 as per (4), we get

∆ =
1− p(1− f)

p(1− fq)
. (6)

We remark that the effect of the backup at the relay node is
localized in the addition of a q term in the denominator to the

result for the system without a relay as given in (3). Naturally,
the result of (6) implies that when q = 1, i.e., the relay never
performs a backup, the expected AoI ∆ is the same as derived
in (3). On the other hand, when q = 0, i.e., the relay is always
active, we get ∆ = p−1 − 1 + f , which is consistent with
failures causing a fixed increase of 1 in the AoI, since the
relay is always delivering the update, but introduces a delay
of 1 slot, thus increasing the expected AoI by f .

B. Node Activity Optimization

Similar to [22], [23], we investigate the optimization of the
activation probability of the sensor, assuming it incurs a cost c
every time it sends an update. This implies that the expected
cost paid by the source is cp, which is compared with the
expected AoI. Since they are both objectives to minimize, the
utility function of the source can be described as

uS(p, b) = −∆− cp , (7)

following the standard convention that the utility represents an
objective to maximize instead [24].

This cost term can model the expenditure of a finite resource
by the sensor (e.g., energy in a battery-powered or energy-
harvesting sensor), but also the use of the shared wireless
medium and of the resources of the relay. From a network con-
trol perspective, trivial situations when the sensor constantly
sends updates represent a waste of bandwidth. Thus, the cost
can be seen as a way to regulate the sensor activity as the result
of a tradeoff between transmitting as sparsely as possible and
minimizing the AoI. We also remark that uS(p, b), coherently
with the usual requirements of utility theory, is written as a
function of both p and b, the dependence on b being through ∆
that is a function of both parameters, reminding that q = 1−b.
This means that we can account for the beneficial impact that
the relay node and its backups have on the AoI, which in
turn allows to transmit more often, in spite of this causing an
increased cost cp.

In the same spirit, we can write that the relay node also
incurs a cost for every time slot it is active, and we denote it
as a coefficient k. In expectation, the average cost is then kb
and the utility of the relay node can be assumed to be

uR(p, b) = −∆− kb , (8)

since the relay is also interested in minimizing the AoI. Finally,
we can also define a system welfare that can analogously
represent the utility of the whole system, as

w(p, b) = −∆− cp− kb . (9)

The system welfare w(p, b) is actually slightly different from
the total utility uS(p, b) + uR(p, b) = −2∆ − cp − kb since
a factor 2 is missing. The choice of defining it in this way
is justified by remarking that the maximal welfare can be
achieved by a NE of the system, where the sensor and the
relay nodes are individually managed by a distributed control.
The derivation of this NE and its analytical implications is
developed in the next section.



IV. GAME THEORETIC ANALYSIS

We treat the sensor and the relay as two rational agents
S and R playing a static game of complete information
with continuously valued actions p and b, both of which
fall in [0, 1]. These agents follow their respective utilities
uS(p, b) and uR(p, b). This game structure implies that values
p and b (we equivalently use q = 1 − b in the following
for notational convenience) are determined by each agent
independently and unbeknownst of each other, which would
fulfill the typical requirements of IoT systems to minimize the
signaling between nodes and also offers improved robustness
against wrong or missing exchanges [16]. As remarked above,
the sensor does not require reception capabilities to determine
the strategy, only knowledge of the erasure probability f and
of the cost parameters c and k.

The NE condition can be derived as

∂uS(p, b)

∂p
= 0 ,

∂uR(p, b)

∂b
= 0 , (10)

which implies

∂∆

∂p
= −c , ∂∆

∂b
= −k , (11)

and also shows that w(p, b) is a potential function of a
proper potential game [20]. This entails that this game has
a NE that can be found in a computationally efficient way
that translates into a distributed system management, through
the procedure known as fictitious play [25], [26], which in
essence corresponds to each node working independently to
locally maximize its own utility function without the need of
coordinating with the other node.

An analytical evaluation of the conditions that an NE
satisfies can be derived by combining (6) with (11). This
results in the following system of equations:

p =

√
1

c(1− fq)

q =
1

f
−

√
1− p(1− f)

fkp

, (12)

where we used the artifice q = 1−b and therefore we actually
rewrote the second condition of (11) as ∂∆/∂q = k.

However, p and q must fall within [0, 1], thus we must also
verify the border conditions. For the sensor node, a simple
way to guarantee that is to impose c ≥ 1, which also makes
sense if compared with a strategic case without relays [22].
The condition is more complicated for the relay and it can
actually serve to derive particular working regimes, such as
the relay being always active or inactive.

It turns out that the behavior of the relay node ultimately
depends on the numerical value of k (as is also intuitive).
The higher the value of k, the lower the probability of an
active relay becomes, but when this value goes outside the
interval [0, 1] it simply means that the NE is found at a border
condition for the choice of b (or q, equivalently). The condition
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Fig. 1. Lower and upper bounds on k for the relay activity to fall inside [0, 1],
vs. transmission failure probability f , for sensor transmission cost c = 5.

for the relay node being always active (i.e., q = 0) can be
found by forcing q ≤ 0 in (12), which gives

k ≤ f
√
c− f(1− f) (13)

whereas the same approach for q ≥ 1 determines the range of
k for which the relay is always inactive, i.e.,

k ≥ f(
√
c−
√

1− f)

(1− f)1.5
. (14)

The NE condition can be computed by first verifying if
either of these bounds holds, in which case, q is immediately
determined and p is derived accordingly as the best strategic
choice for the sensor, i.e., p = (c)−0.5 or p = (c(1−f))−0.5 if
the strategic relay is always active and inactive, respectively.
Instead, if f

(√
c − (1 − f)

)
≤ k ≤ f

(√
c −
√

1− f
)
/(1 −

f)1.5, then the NE is found in an inner point of [0, 1] for both
strategic choices of the agents.

Fig. 1 can offer some further numerical insight on the
actual values involved. In particular, we highlight that the
two conditions converge to a very narrow range when the
probability of transmission failure f is low. For f → 0, both
conditions tend to 0. In this case the relay is always inactive
if its cost is not 0, and any activity probability is equivalent
if it is: indeed, there is no need for a relay to assist an error-
free communication. As f increases, the value of k lingers
around values that are much lower than c. This is also justified
by the remark that, while the relay retransmission is always
free from errors, it introduces a further latency. Thus, it is
convenient only if its associated cost k is generally lower than
the sensor transmission cost c (at least for values of f that
are not excessively large). When f increases, the gap between
the two conditions widens and we get a significant range of
values for k within which the NE is found outside the border
conditions for b.

In the case p and b both fall in inner points of [0, 1], their
numerical values can be immediately found by a recursive
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Fig. 2. Comparison of a relay with fixed activity probability b = 0.5 and a
strategic sensor. System welfare w(p, b) vs. transmission failure probability
f , for sensor transmission cost c = 5 and relay activity cost k = 1.

approach, where an initial value p = p(0) can be set and
then used to solve (12) to derive any q(i) from p(i) and then
p(i+1) from q(i). Actually, this procedure would correspond
to the practical game theoretic technique known as fictitious
play, where each player computes the best response to the
current belief about the other player’s move, and, assuming the
other player is rational as well, updates the belief accordingly
[25]. Especially, this procedure works in our specific case as
the game possesses a potential function (the welfare w(p, b))
and this even guarantees the uniqueness of the NE. Practical
instances of fictitious play for the problem at hand show that
even considering p(0) = 0, numerical convergence of the
procedure under a very fine-graned precision is guaranteed
already after few iterations (usually fewer than 10). The fact
that the NE is computable through simple operations is par-
ticularly relevant in light of possible protocol implementations
on real IoT devices with limited processing capabilities.

V. NUMERICAL RESULTS

We evaluate the resulting analytical framework and the sys-
tem performance at the NE for the sensor and the relay being
strategic agents that are driven by (7) and (8), respectively. In
other words, they both try to minimize the AoI but at the same
time they want to limit their individual costs. In the following,
the value of the sensor transmission cost c is always taken
equal to 5, whereas different values of the relay activation
cost k are considered. All the results have been confirmed by
Monte Carlo simulation.

Fig. 2 highlights the effect of a strategic behavior by the
relay node, as we compare the resulting system welfare w(p, b)
for two scenarios, both of which consider a strategic sensor
(i.e., the sensor tries to optimize its own objective). However,
in the former case, the relay is active with a fixed probability
b = 0.5, regardless of the cost, while in the latter the relay
is also strategic and a NE can be computed through fictitious
play. Naturally, the NE achieves a better system welfare thanks
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Fig. 3. Comparison of a relay with fixed activity probability b = 0.5 and
a strategic sensor. Sensor transmission probability p vs. transmission failure
probability f , for sensor transmission cost c = 5 and relay activity cost k = 1.

to the strategic interaction between sensor and relay. The two
curves only coincide when b = 0.5 actually happens to be the
best strategic choice for the relay.

It is worth noting that considering a strategic relay changes
not only the behavior of the relay itself, but also that of the sen-
sor, since the latter behaves as a rational agent that can exploit
the more efficient performance of the system. This is visible
in Fig. 3, which plots the sensor transmission probability p
as a function of the transmission failure probability f . When
the relay node has a fixed activity pattern, the sensor can only
exploit its intervention to a limited extent. For example, as f
increases, the sensor is forced to be more active to compensate
for the increased failures; however, it is limited by its own cost,
leading to an increased AoI.

Conversely, the trend of the sensor transmission probability
when the relay is strategic (and the sensor is aware of that) is
much more interesting. We can notice that, for low values of f ,
the sensor is sending updates more often; this happens because
the strategic relay is always inactive, as its intervention is
deemed to be less convenient – however, this still results in a
better system welfare. As we will see in the following results,
the strategic relay becomes active only for f approximately
greater than 0.36 and from this point on, the value of p
decreases sharply, until reaching a floor when the relay is
always active at around f = 0.57. From this point on, both
the sensor and the relay keep a fixed activity rate, with that
of the relay being b = 1.

To explore these differences in a more general way, we
consider the NE for different values of the relay activation
cost k, and we evaluate different metrics of interest. We start
by considering the expected AoI, which is displayed in Fig. 4.
While it is intuitive that the AoI generally increases with f ,
we can see that the presence of the relay twists this trend in
an interesting way. In particular, the AoI transitions between
two increasing trends, from a higher one corresponding to a
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Fig. 4. Expected age of information ∆ at the NE as a function of transmission
failure probability f , for different values of the relay activity cost k and sensor
transmission cost c = 5.

strategic relay that is always inactive as its activation cost
is too high, to a lower one where the relay is always active.
These correspond to the limit conditions found in the previous
section. The higher the cost, the longer the transition between
the two trends and also the higher the value of f for which
it takes place. Remarkably, this transition is plateau-like but
not exactly, as we can notice some counterintuitive trends (for
example, the expected AoI for k = 0.5 has a minimum that
is also an angular point for f ≈ 0.32). This happens because
the system welfare w(p, b), which is the common objective
of the strategic nodes at the NE, does not consist of the AoI
alone, but it also includes the costs that the nodes incur. Since
higher values of f must be contrasted by a higher activity by
the nodes, the total welfare is still decreasing in f even though
the expected AoI might be locally decreasing as well.

This is confirmed by Fig. 5, which shows the system welfare
w(p, b), i.e., the real objective of the strategic agents, as a
function of f . Here, the curves do not exhibit any angular
point, but just a generally decreasing trend as f increases;
however, the descent is slower when the relay node intervenes
– which happens only at high values of f if the cost k is high.

Figs. 6 and 7 report the behavior of the strategic nodes,
showing the sensor transmission probability p and the relay
node activity probability b, respectively. These results simply
generalize the trends already highlighted for the specific case
in Fig. 3. In particular, the relay transitions from being always
inactive if f is relatively low, as the sensor can achieve a
low AoI on its own, to being always active when f is high.
Naturally, a higher value of k makes the relay more reluctant
to intervene, increasing both the minimum f at which the relay
is always active and the range of values of f for which the
solution is an inner point.

Finally, we highlight that the two figures have parallel
trends: if b = 0, the sensor activity increases with f , while it is
stable if b = 1. On the other hand, the sensor activity decreases
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Fig. 5. Welfare w(p, b) at the NE as a function of transmission failure
probability f , for different values of the relay activity cost k and sensor
transmission cost c = 5.
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Fig. 6. Source transmission probability (at the NE) as a function of
transmission failure probability f , for different values of the relay activity
cost k and sensor transmission cost c = 5.

if f increases and the solution is an inner point of [0, 1]: this
is because the relay activity cost is smaller, so that the relay
gradually takes up more of the burden of compensating for
transmission failures, until it reaches b = 1 and all packets
are retransmitted.

VI. CONCLUSIONS

We studied a scenario of status updates between a sensor
and receiver over an error-prone slotted channel, considering
the presence of a relay node that, when active, can recover
failures in the subsequent slot. We leveraged a closed-form
analytical computation of the AoI as a function of the involved
parameters, to derive a game theoretic representation of the
interaction between the sensor and the relay as strategic agents
driven by a common potential, consisting of the expected AoI
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Fig. 7. Relay activity probability (at the NE) as a function of transmission
failure probability f , for different values of the relay activity cost k and sensor
transmission cost c = 5.

and the involved costs, that they evaluate according to their
individual benefit.

We showed that such an approach is able to derive an
efficient system working point, and is able to do so without
any signaling exchange but just through local computation at
each node. Thus, our proposed approach can be generalized to
a framework for practical implementations in IoT scenarios,
for any context where additional nodes can intervene to assist
failure in the status updates exchange and thereby improving
system reliability [5], [21]. Also, it may serve to design prac-
tical protocols for the assisting nodes, as well as identifying
theoretical conditions for their introduction, e.g., avoiding their
implementation if it does not meet significant benefits.

Future extensions may consider different models for the
activity of the nodes other than i.i.d activation probabilities,
e.g., stateful optimizations can be performed [27], and the
same for the failure rate of the channel [28], as well as the data
generation process [29], or including an underlying process
that correlate all of them [15], such as the energy harvesting
pattern [12].
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[11] E. T. Ceran, D. Gündüz, and A. György, “Reinforcement learning to
minimize age of information with an energy harvesting sensor with
HARQ and sensing cost,” in Proc. IEEE Infocom Wkshps, 2019, pp.
656–661.

[12] E. Gindullina, L. Badia, and D. Gündüz, “Average age-of-information
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