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Abstract—We investigate the Age of Information (AoI) of
status updates, resulting from the convergence of multiple and
federated data sources subject to both independent and voluntary
participation. In this setting, the effectiveness of the status
update requires the simultaneous intervention and aggregation
of multiple data, according to a parametric function. Given the
distributed nature of the problem, such a setup lends itself to
a game theoretic approach, whereby strategic intelligent users
act in a distributed fashion towards the maximization of their
individual utility. The latter is chosen as a combination of the
global AoI resulting from the data aggregation and parametrized
by a tunable function, and an individual cost term. We compute
the Nash equilibrium of the resulting allocation, and show
interesting consequences of the strategic decisions made by the
players.

Index Terms—Age of Information; Participatory sensing; Fed-
erated learning; Mobile crowdsensing; Game Theory.

I. INTRODUCTION

Many modern implementations of communication networks
can be linked to the Internet of things (IoT), a system of
interconnected physical devices that are able to sense the
environment, process data and communicate with other de-
vices over the Internet [1]. These devices tend to have limited
and heterogenous capabilities, and generally need simple
distributed communication protocols to work efficiently [2].

At the same time, participatory and federated paradigms
represent a promising approach for harnessing the power of
data, feeding data analytics algorithms for intelligent deci-
sion making [3]. Participatory sensing is a method for data
acquisition, in which individual nodes are free to collect,
compute and share data, e.g., about their environment and
surroundings. It can be regarded a type of crowd-sourcing that
leverages the widespread availability of mobile devices and
their built-in sensors, to gain intelligence from data in real-
time [4]. However, receiving data from multiple uncoordinated
sources poses a challenge concerning how they are combined.
A solution in this sense can be represented by another hot
research topic, that of federated learning, whereby the learning
process is distributed over a multitude of heterogeneous data
sources [5], [6].
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Participatory sensing has several advantages over traditional
data collection methods [7], [8]. In particular, it can provide
real-time data that are more accurate and up-to-date, and it
can reach a large number of people and areas that would
otherwise be difficult to access. To describe the accuracy
and the timeliness of remote sensing applications, a steadily
growing research direction proposes to use age of information
(AoI) as the main performance metric [9]–[11].

We argue that AoI can be the best way to quantify the
effectiveness of distributed data (model) collection through
independent, geographically distributed nodes. While a partic-
ipatory approach to data collection certainly guarantees more
diversity and is therefore more resilient to outage events, it
may be subject to inefficiency due to the lack of coordina-
tion. This inefficiency may be best addressed by evaluating
the resulting performance through AoI instead of traditional
metrics such as throughput or delay. Indeed, a distributed setup
may fail to guarantee the regular status update patterns that
are best to minimize AoI [12]–[14].

Finally, in recent years, several contributions have been
presented to address the challenges related to the AoI of data
acquisition through the use of game theory (GT) [1], [15],
[16]. This approach is particularly interesting when dealing
with independently-owned devices that cannot be subject to
any form of centralized control. Game theoretic decision
making usually involves societal environments, but more
recently has found considerable applications to distributed
engineered systems. Participatory sensing can combine both
game theoretic applications, due to the technological nature
of IoT applications, but also their societal impact.

In this paper, we present a game theoretic investigation of
a scenario where N independent sources monitor the same
physical phenomenon and can update a receiver through par-
ticipatory and federated sensing. This means that the sources
choose, over multiple rounds, whether to send data or not.
This decision is made according to their own objective that
combines the global AoI at the receiver’s side, which is the
same value for all of them, and an individual cost term
that captures the effort for sending data (e.g., the energy
expenditure) [17]. Moreover, we model the success or lack
thereof of an update, depending on how many nodes transmit
in that slot. This is meant to characterize in a parametric form



the trait of federated learning [6]. Indeed, we adopt a fairly
general representation of the latter part, which can be put in
connection with different practical techniques.

The proposed setup is particularly suitable to a game
theoretic investigation, allowing to regard nodes as strategic
agents having as an objective a low AoI at the receiver’s side
but are also aware that there is no point in participating in
the data collection if enough other nodes are already doing
so. As a result, we are able to derive some extremely inter-
esting conclusions. For example, an “anycast” communication
requiring a minimum number of participating nodes equal to 1
is normally able to keep the information fresh at the receiver’s
side, but if more than 1 participants are required, the AoI is
significantly increased, due to the lack of coordination among
the sources [18].

It is also shown that the resulting AoI can even be decreas-
ing in the number of required participants. This counterintu-
itive consequence happens due to the strategic character of the
sources. In fact, when the number of required participant is
set to a high value, knowledge of this is also available to the
players, and they are more willing to participate. However, if
the number of participant required by the federated learning
is not high, the selfish behavior of the users may encourage
them to avoid transmission (and hence the associated cost)
since they believe that somebody else will take care of it.

The reminder of this paper is organized as follows: Sec.
II compares our contribution to some previously conducted
studies. Sec. III presents the game theoretical scenario and
conducts the analysis. Sec. IV gives the numerical results of
our analysis. Finally Sec. V draws the conclusions.

II. RELATED WORK

The analysis of strategic behavior of individual users in
network scenarios with distributed control can benefit from
game theoretic instruments, in particular when combined with
the AoI metric, which offers the advantage of a precise
mathematical formalization that allows for closed-form inves-
tigations [11].

However, despite being addressed as a development already
in the seminal paper [19], relatively few papers consider a
game theoretic approach where the individual players are
moved by an AoI-related objective. Most of the investigations
actually deal with adversarial setups, thereby implying that
some players have the objective of increasing the AoI of others
[14], [20]. Conversely, just a handful of references consider a
resource-constrained game [1], [15], [21], [22], whose setup
is still competitive, i.e., individual players have their own AoI
term to minimize.

Only [12] addressed for the first time the case of multiple
sources with a common AoI value to minimize, and explore
it via a game theoretic approach. However, the setup is
extremely simplified as it consider just two sources and the
requirement for the AoI to be reset is just that either node
participates with sending data. In this sense, [23] can also
be considered similar. In that paper, an out-of-band relay can
assist the communication and has an objective that partially

overlaps to that of the source’s, i.e., AoI minimization, but
in that case the roles of the involved nodes are different. At
any rate, up to our knowledge no analysis considers multiple
nodes, thus making our contribution novel.

A key ingredient that is usually required to spice up any
game theoretic investigation is the interaction among multiple
players, and how to model it. In our case, it would be
convenient to use a tunable function to represent a successful
combining of the data received by the nodes through federated
learning techniques [24].

The mutual influence of the action of each participant on
the decisions of others is also a characteristic trait of mobile
crowdsensing, for which game theoretic taxonomies already
exist [8]. In particular, the scenario of our considered game
is to be regarded as partially cooperative, in that all the
players are moved by a common AoI term as an objective
(to minimize) but they are also aware of their individual cost
and seek to keep it low as well.

Indeed, modeling an individual cost is very important in
participatory sensing, and can be related for example to energy
consumption, but also to the effort for security and privacy
[25]. Both of them are important issues for any mobile crowd-
sensing platform, but in general there are many equally valid
models that can be used to this end. For example, energy
consumption depends on many technological aspects, for
which reason we adopt a general parametric representation,
but ultimately requires to keep under control the frequency of
sending updates [26].

As a possible extension for future work, we notice that the
residual battery level of devices can also be a key parameter
for the recruitment of a user in a measurement campaign, but
a GT instrument for that exists already, as this can be framed
in the context of Bayesian games [27].

Actually, our transmission cost representation does not
necessarily correlate with physical aspects such as power
consumption, but also more intangible elements such as
privacy, security, confidentiality, and trustworthiness are very
important [28]. User may be concerned with sending their own
data due to possible collection and profiling, or they may not
want to disclose certain specific information. All of this can
be represented in our approach thanks to the parametric rep-
resentation of the utility functions, which essentially creates
a linear combination analogous to [16] between the semantic
objective of a low AoI with cost considerations.

III. SYSTEM MODEL

We consider a discrete time axis divided into slots. Our sys-
tem involves a set of N sensors, that are potential participants
to a given sensing task, and a data collection point R, also
referred to as the receiver. The latter is interested in keeping
fresh information of the process monitored by the sensors,
which is tracked by AoI, denoted as δ and formally defined
as the current time minus the instant of the last successful
update. The sensors can choose, independently of each other,
their transmission probability pi for a specific slot. We further



assume that the sensors have always data to transmit (generate-
at-will model) and we neglect the transmission delay, as
commonly done in the literature [2].

In each slot, the nodes independently may decide to partic-
ipate in the task. Note that the literature offers some similar
analysis in the context of medium access control, where the
sensors belong to the same collision domain and the goal is to
coordinate the transmission from the sensors in a distributed
fashion [16], [19].

Here, we look instead at the sensing process from the
perspective of upper layers, and the physical location of the
nodes is irrelevant, as long as they are all able to collect
information about the process being monitored. In this context,
we are interested in describing the strategic interaction of
the players when making the crowd-sensing decision. Also,
we want to capture that, in our system, the phenomenon
measured by the sensors might not be fully understandable
by the receiver if it gets a number of participants in the same
round lower than a certain threshold, denoted as m. We further
define a concave function that serves the purpose of reducing
the success probability if there are some nodes that decide not
to transmit while at least m of them are collaborating. This
is to account for the fact that there might be some noisy data
collected by the single nodes or some characteristics of the
underlying analyzed phenomenon can be better characterized
only if most of the node collaborate on the update.

Each source has the objective of reducing the AoI at the
receiver and just lacks coordination with others. We introduce
a cost term c which models the burden of an update on the
single source. To correctly reduce the probability of an update
from a source we need to consider c ≥ 1 otherwise this would
be insufficient in making the nodes refrain from transmitting
at every slot.

According to [12], the expected AoI for a receiver that is
getting independent updates that may or may not be successful
can be computed as

E [δ] =
1

Psucc
− 1 (1)

where Psucc is the probability of a successful update to
occur. In turn, this event depends on whether enough sensors
transmit, and since they are independent sources, Psucc follows
a Poisson-Binomial distribution. Knowing that for a successful
transmission at least m nodes have to transmit simultaneously
the probability of success can be written as the survival rate
Q(m) of the distribution, defined as

Psucc = Q(m) =

N∑
t=m

P [x = t] , (2)

where x is the number of participants. This holds true if
we consider that every transmission attempt with at least m
simultaneous transmissions always results in an update.

In our analysis, we focus on a generalized case, where we
want to model the success probability with a soft gradient
along the lines of [29], and we want to account not just for
the requirement of a minimum number of participants, but also
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Fig. 1. Conditional success probability function for m = 11 and various
values for α.

that this does not guarantee success. In particular, the condi-
tional probability of a successful update as a function of the
number of nodes transmitting is taken as a strictly increasing
concave function, regulated by some tunable parameters, such
that it increases if more than m nodes transmit and is equal
to 1 only when m = N . This results in choosing

P [succ|x] =


(√

1− (x−N)2

(N−m+1)2

)α

if m ≤ x ≤ N

0 otherwise
(3)

where the exponent α ≥ 0 is to tune the steepness of the
growth of the success rate. See Fig. 1 for a graphical display
of the resulting function, under various choices of α.

We can write the success probability in a more general form
by applying Bayes’ rules about conditional probabilities, i.e.,

Psucc =

N∑
t=m

P [succ ∩ x = t] (4)

=

N∑
t=m

P [x = t] · P [succ | x = t]

Note that α = 0 in (3) leads to the case previously shown in
(2) as we were previously assuming a probability of update
equal to 1 for every x ≥ m. Expanding further this expression,
we can leverage the results of [30] for the probability mass
function of the Poisson-Binomial distribution to achieve a
closed-form expression for Psucc, and consequently for the
expected AoI by applying it to (1), as

Psucc =

N∑
n=0

{[
N∑

t=m

P [succ | x=t] · exp
(
−2πjnt

N+1

)]
(5)

·
N∏
ℓ=1

(
pℓ

(
exp

(
2πjn

N+1

)
−1

)
+ 1

)}/(
N+1

)
where j is the imaginary unit.

Consequently, each node has its own utility that is depen-
dent not only on the transmission probability of the node itself,
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Fig. 2. Transmission probability with the NE for different values of the parameter α, N = 20 nodes.

but also all the other nodes’ transmission probabilities. More
specifically, the utility of a generic node i is defined as [16]

ui = −E [δ]− cpi = − 1

Psucc
+ 1− cpi (6)

where we consider the linear combination of two terms, the
AoI of the source and the individual cost paid, weighted with
coefficient c. Note the negative sign for both terms, since the
players in the game seek for minimizing both AoI and cost.

From a GT perspective, we can model the interaction
between the nodes as a static game of complete information
G = (S,A,U) where S = {S1, S2, . . . , SN} is the set of all
the players, where ∥S∥ = N as the receiver is just a passive
entity and therefore not regarded as a player. A is the set
of the possible actions, namely the transmission probability
p ∈ [0, 1] for each player i, and U is the set of the utilities of
the players as written in (6).

The NE of G is obtained through a one-sided optimization
of the utility, i.e. each player looks for a best response to
the unchanged actions of the other players. Without loss of
generality we will focus on player 1 as the solution for the NE
of the others is symmetrical. A NE must satisfy the condition

∂u1

∂p1
=

∂Psucc

∂p1
· 1

(Psucc)
2 − c = 0 (7)

that can be computed applying the chain rule on (6). The
derivative of Psucc with respect to p1 can be obtained in
closed-form from (5) with simple derivation rules. The con-
straint pi ∈ [0, 1] leads to a single feasible NE where nodes
choose transmission probabilities p1 = p2 = . . . = pN

.
= p

due to the symmetries previously shown.

IV. RESULTS

In this section, we discuss the results obtained by solving
the previously derived equations for different values of the
number of collaborating nodes m and coefficient α while
keeping the total number of nodes N = 20 constant.

Fig. 2 shows the transmission probabilities at the NE. As
it can be expected, larger values for m indicate the need of
bigger values for p as it is inconvenient for the single nodes
to choose to reduce their transmission probability too heavily,
otherwise the AoI will grow, which is an undesirable outcome.
Interestingly, we notice that increasing values of α lead to a
larger p. This is due to the fact that as α ≫ 1 we are implicitly
requiring that x > m nodes need to be transmitting simulta-
neously to achieve a successful transmission and eventually
α → ∞ will mean that x → N, p = 1 for all values of m
independently of the cost c.

Fig. 3 represents the utility values achieved by the nodes at
the NE solution. While for α = 0 the utilities decrease linearly
with growing cost values, as α increases all the curves start
to lean towards the same direction and are indistinguishable
from each other for bigger and bigger costs as can be seen
when α = 2. This phenomenon is again a consequence of
the effect of parameter α in the success probability that we
already showed in the previous paragraph.

Fig. 4 shows the expected AoI obtained at the NE. Differ-
ently from the utility and the transmission probability, we can
appreciate sensible differences for the effect of the required
number of nodes transmitting m while α increases. In fact,
while for α = 0 there is a clear advantage in lowering the
AoI when m is really small, this situation drastically changes
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Fig. 3. Utility with the NE for different values of the parameter α, N = 20 nodes.

for bigger values of α. It is clear that the more exigent we
are with the number of simultaneously transmitting nodes,
the higher the efficiency in lowering the expected AoI for
large values of the cost coefficient c. This is somehow to
be expected as bigger values for m and α lead to bigger
transmission probabilities as presented in Fig. 2 and this
benefit will eventually wear out when α → ∞ as all the
transmission probabilities are equal to 1 independently of m.

An interesting trend related to this last figure is also that the
expected AoI E[δ] is not necessarily decreasing in m, which is
a consequence of the strategic behavior of the sensors. Indeed,
when m is high (and this is common knowledge among the
players), while the total utility is low as the sensing task is less
likely to succeed, nevertheless the sensors are more compelled
to participate and therefore the AoI alone is lower. However, if
the cost is increased, their voluntary participation to the task is
dampened, and the AoI increases. This also seems to imply an
amplified importance of the cost coefficient in determining the
participation, beyond the individual selfish evaluation. That is,
a difficult sensing task sees an increased participation if the
cost is low, but a cost increase discourages the sensors to
participate and makes the success even less likely.

V. CONCLUSIONS

We analyzed, from a game theoretic standpoint, the interac-
tion between nodes collaborating to achieve fresh information
at the receiver side. We considered a scenario where a suc-
cessful update is possible only when a number of nodes must
choose to transmit at the same time. We further generalized
this condition by applying a monotonically increasing function

to reduce the probability of success if fewer than all the nodes
send an update at the same time. We derived some closed-form
expressions for the expected average AoI and demonstrated
the existence of a single NE, where all the nodes choose to
transmit with the same transmission probability. We argued
that there exist some situations where a condition for the
update more difficult to achieve is beneficial in lowering the
AoI at the receiver when compared to less strict requirements
on the number of simultaneous transmissions.
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