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Abstract—Remote sensing enables fast and cost-effective data
collection and monitoring, but can be subject to the injection of
false data by adversaries. We consider a remote transmitter that
is sending status updates about a process to a receiver, incurring a
cost when doing so. The system is modeled as transiting between
two conditions, implying that the receiver may start with correct
knowledge about the process, but this information may become
obsolete due to a natural drift of the process toward another
regime and the lack of updates by the transmitter. In normal
conditions, the transmitter would estimate the age of incorrect
information (AoII), a metric proposed in the literature to quantify
the time elapsed from the last instant in which the receiver had
correct knowledge about the process, to determine the required
frequency of updates, balancing it with the transmission cost.
We assume the presence of an adversary that may increase the
process drift, also incurring its own cost when doing so. The
resulting interaction can be analyzed through game theory, with
the transmitter and the adversary as strategic players. We present
an analysis to determine the conditions for the costs paid by the
players and the consequences of their actions on the resulting
system performance.

Index Terms—Cyber-physical systems; Cyberattack; False data
injection; Markov processes; Age of information; Age of incorrect
information; Game theory.

I. INTRODUCTION

In recent years, remote sensing technology has seen signifi-
cant advancements towards the development of high-resolution
sensors, possibly combined with drones [1] or satellites [2].
The resulting cyber-physical systems are capable of collect-
ing and transmitting real-time data and enable a fine-graned
context awareness that can be used for many applications.
Non-invasive and cost-effective sensing technologies can be
employed for monitoring different natural and artificial en-
vironments, including land and water resources, agriculture,
smart cities, eHealth, and the Internet of things (IoT) [3], [4],
also proving themselves to be a valuable asset for tactical
networks, emergency situations, and disaster management.

At the same time, the issue of the vulnerability of remote
sensing arises whenever malicious agents desire to prevent the
network control from effective actions. An attacker can be
injecting malicious data in the sensing process, with the intent
to cause false alarms, or, worse, hide an emergency [5]–[7].

A widely studied approach in the last few years about
remote sensing concerns the performance evaluation of the
exchange of status updates over a communication channel
between a transmitter, often integrated with the remote sensor,

and a receiver. The reference metric is often chosen as the age
of information (AoI), a quantification of how up-to-date the
information about the monitored process is, defined as the time
elapsed since the last received update [8]–[10].

AoI just describes the freshness of the content, and im-
plicitly assumes that the environment is highly mutable, thus,
every new update is relevant. In some situations, the ambient
information is varying slowly and sending status updates
would not be required if the system conditions are unchanged.
This is especially true in emergency situations: as long as the
system operates normally, no update is required. Whenever
there is a malfunction, and an alert is to be raised, it is
important to do so in a timely manner. Thus, some researchers
have proposed the use of the age of incorrect information
(AoII) in these cases [11].

AoII is related to AoI and is used to measure for how long
the receiver possesses information that is no longer up-to-date.
It is defined as the time elapsed from the first time the status
of the process changed, after an update was received. AoII
is relevant in systems where the information is critical and a
high level of accuracy is required, such as in control or safety-
related applications. A high AoII can indicate that the system
is not operating correctly, and that the information being used
may not be accurate [12]. Research on AoII is still relatively
new, but there have been a few studies that have looked at the
impact of different system configurations on the AoII [13].

We analyze a sensing scenario involving status update
exchanges between a controller and a remote station over a
network in the presence of a malicious agent, referred to as
the adversary, able to inject false data. This setup is versatile
and can be applied to many cyber-physical systems in the IoT
or tactical environments.

The controller is assumed to track a process of interest
that, even in the absence of the adversary, is subject to a
natural drift. The rate of transmission to the remote station
ought to be regulated to minimize AoII [14], [15]. However,
the intervention of the malicious agent strengthens said drift,
and therefore increases AoII. This scenario calls for a game
theoretic characterization [1], [3], [9], [10], [16] where the
controller and the adversary are modeled as rational agents,
with the contrasting objectives to minimize and maximize
AoII, respectively. We obtain a sum static game of com-
plete information with an adversarial setup, i.e., played by
a minimizer vs. a maximizer (the controller and the adversary,



respectively) [17], [18]. The game is non zero sum [19],
implying that the utility functions of the two players are not
just taken as opposite, or equal to AoII, but we also include
a transmission cost for both players. Besides being a standard
practice for game theoretic analysis of distributed network
agents, adding a cost term is also required to avoid the trivial
outcome where the two players simply indefinitely increase
their activity [20].

We can characterize the strategic interaction among the
players, focusing on the impact of the adversary on AoII
and the countermeasures required by the network controller
to counteract its increases. The main finding is that, if both
players are rational, the attacks of the adversary can be reason-
ably contained. The extent of this conclusion actually depends
on the natural drift of the system; since this corresponds to a
baseline increase of AoII that must be counteracted anyways,
and comes at no cost for the adversary, it does not make sense
for the latter to be overly active unless its transmission cost
is low. Thus, for reasonable choices of the parameters, i.e.,
except for the cases where the adversary has no limitations
and therefore cannot be defeated, a tailored increase of the
transmission rate by the network controller can prevent from
an extreme outburst of AoII. This can be a precious finding to
further expand the investigations about strategic interactions
in security of cyber-physical systems [21].

The rest of this paper is organized as follows. In Section
II, we review related work on AoII and game theoretic
interactions. Section III gives a technical description of the
system, and its analytical characterization. In Section IV, we
solve the interaction between the rational agents as a non zero
sum static game of complete information. Section V displays
the numerical results, and Section VI concludes the paper.

II. RELATED WORK

The concept of AoII as a metric to better connect status
updates with their semantic meaning is quite recent. It was
proposed for the first time in [11], where the authors discuss
the option to weigh the time elapsed after a correct information
drifts toward an incorrect state, resulting in an increasing AoII.
This can also be framed in the broader context of shaping AoI
as discussed in [22], where different penalties are considered
as opposed to the linear increase of standard AoI.

Still, in most follow-up contributions [12]–[15] the defi-
nition of AoII follows the original proposal of [11], i.e., to
combine a constant weight to represent incorrect information
with a linear ageing. We will adopt this approach as well
and consider an AoII term that stays at zero after receiving
an update, as long as the status update correctly describes
the process being monitored. After that point, whenever the
process drifts towards a different value and therefore the last
update is no longer descriptive of the real status of the system,
we have a linear increase of the AoII as a penalty term [23].

In this form, or under minor variations, AoII has re-
ceived dedicated studies for different scenarios of interest.
For example, [14] considers its minimization through a proper
scheduling of updates. Other recent contributions investigate

the relationship between the mean absolute error in the reports
of a specific (piecewise linear) signal over a noisy channel and
AoII [13], as well as the minimization of AoII through proper
setup of slotted ALOHA parameters [15].

Finally, [12] and [23] consider a real-time tracking of a
Markov system, which is similar to what done in the present
paper. However, we abstract from the specific chain, still
retaining its Markov characteristics, as we are not primarily
interested in the source characterization but rather in the
impact of adversarial attacks. For this reason, we consider
a two-state Markov chain not to represent a binary status,
but rather to distinguish whether the information about the
process at the receiver’s side matches reality or not. In other
words, our system is an abstract representation of an arbitrary
number of states, where the only concern is whether the status
is accurately tracked and the probability that the system reverts
back to a correct information after a drift is negligible.

Another original element of this paper is the use of game
theory for AoII in the context of an adversary injecting false
information. Game theory is in general a powerful tool for
modeling, analyzing, and optimizing the behavior of agents
in cyber-physical systems, and can be used to design efficient
and robust control strategies [24].

For example, in a multi-robot system, game theory can be
used to design coordination strategies that optimize task per-
formance [1]. This depends on the efficiency of the resulting
Nash equilibrium (NE), which may allow to approach the
problem from a decentralized perspective [16].

Alternatively, game theory can be used to model and analyze
security aspects of cyber-physical systems, to model the inter-
actions between attackers and defenders, and identify efficient
strategies [18]. Indeed, while there exist various game theoretic
approaches for AoI [3], [9], [20], [22], the literature is very
scarce for applications that involve security aspects.

The only approaches concern the case of AoI under mutual
interference conditions [10], [19] or jamming [17]. In this case,
the action of the adversary is more limited compared to what
we consider here, since we consider malicious data injection
[5], and also, we focus on AoII instead. In this sense, our more
advanced objectives with respect to the literature are not just
a mere theoretical advancement, but make particular sense in
light of the increased strategic capabilities of nodes in cyber-
physical environments [21].

III. SYSTEM MODEL

We consider a networked control system whose dynamics
is, for simplicity, described in a scalar domain as{

ẋ(t) = ax(t) + u(t)
y(t) = x(t)

(1)

where x(t), a, u(t), y(t) are real numbers representing the
plant state, open-loop gain of the plant, control input end
output, respectively, at time t. The control signal u(t) is
generated with a memory-less control policy and is therefore
only dependent on y(t); thus, the process x(t) is Markov [12].



The controller, in addition to generating a control signal
u(t), communicates with a remote station (e.g., a SCADA sys-
tem) sending the measurement of the output y(t). In this work,
we neglect the propagation delay between the controller and
the remote station, so the time can be computed indifferently
on the transmitter or the receiver side [25].

When the controller sends the output measure to the remote
station, the latter performs an update of the stored value of the
system’s output. Thus, AoI at time t is [8]

γ(t) = t− tu (2)

where tu is the last time instant corresponding to the reception
of the last update before t, inclusive.

After an update, the AoI linearly increases as time goes by.
However, the reported value might still describe the correct
system state. In certain scenarios [11], we may want to explore
whether the status is still correct or has become wrong due
to a drift. This can be modeled through a continuous time
Markov chain with two states, namely, right (R) and wrong
(W ), whose transitions are as follows.

The information at the remote station’s side can become
inaccurate due to a natural drift, whose rate d determines
the transition from R to W . Additionally, we assume that
the adversary can decrease the time spent in state R (and
therefore increasing AoII) by increasing the drift rate by a
term q > 0, which corresponds to the injection rate of false
data that compromise the SCADA functionality.

Transitions from W to R happen instead because the
controller sends updates to the remote station, which occurs
with rate p > 0. It is not restrictive to assume that the updates
are always successful, since in case they can be missed with a
certain probability, one can correspondingly re-scale the value
of p [25]. The remote system is aware that a malicious agent
is present, but is unable to distinguish between the updates
sent by the controller and the malicious agent.

We remark that characterizing the actions of the involved
rational agents (the controller and the adversary) just through
their activity rates p and q is a standard approach that allows
to define a clear-cut strategic action of these agents as players
in a game [9], [10], [19]. From the mathematical standpoint,
the system respects the Markov property as all the three events
of an update from the controller, a natural drift, and false data
injection by the adversary are independent of one another, so
the transitions are memoryless, and the two last ones just sum
up to cause the transition rate from R to W be equal to d+ q.
The resulting Markov model is summarized in Fig. 1.

The receiver possesses a correct measure of the output of
the system until a drift occurs or a malicious agent sends
false sensor reading. From the perspective of the controller,
the objective is to minimize AoII defined as [11]

δ(t) = f(k) · g(y(t), y(tu), y(tm)) (3)

where g(·, ·, ·) is a function that reflects the gap between the
real output of the system in time slot t i.e., y(t), the last correct
update sent by the controller to the remote station in time
slot tu i.e, y(tu) and the last false sensor reading sent by the

R W

d+ q

p

Fig. 1. Illustration of a continuous time Markov process with the respective
rates of moving to one state to one another

Fig. 2. Age metrics are initialized to 0 at t0. From that instant onwards,
AoI increases linearly, whereas AoII initially stays at 0 (status is obsolete but
correct). At t1, AoII starts increasing as well due to a drift. At t2, status is
refreshed. For any t ∈ (t1, t2), AoI and AoII are t−t0 and t−t1, respectively.

malicious agent to the remote station at tm i.e, y(tm). Function
f(·) is non-decreasing and plays the role of penalizing the
system as g(·, ·, ·) increases.

We first derive a closed form of AoII in the scenario
without an adversary, then we introduce the malicious agent
and discuss its impact. We consider the expected value of the
AoII ∆ = Et

[
δ(t)

]
meant as a time average. To compute ∆,

we exploit functions g(·, ·, ·) and f(·) introduced in (3). For
example, we can use

g(y(t), y(tu), y(tm)) =

{
1 if |y(t)− y(ts)| ≥ ϑ

0 otherwise
(4)

where ts = min(tu, tm) and ϑ > 0 is an arbitrary threshold.
This is an adequate choice when the remote system perfor-
mance is immune to small mismatches between y(t) and y(ts)
[11]. We assume that, following a drift or a malicious transmis-
sion, |y(t)−y(ts)| > ϑ until an update takes place. We define
td as the index of the last instant where g(y(t), y(tu), y(tm))
was equal to 0, i.e., the index of first instant after the last
update where a drift or a malicious injection occurred. For
AoII, we use a linear f(·) defined as [11]

f(t) = t− td. (5)

Fig. 2 shows a comparison between AoI and AoII for a
sample situation where a drift (either naturally present or
maliciously induced by an adversary) occurs at time t1, while
at t2 a new update is performed.

With δ(t) so defined, the expected value ∆ can be computed
by averaging over a period between any two subsequent
updates, thus obtaining

∆ =
1/(2 · p2)
1/p+ 1/b

(6)

where b = d + q. In (6), the numerator 1/2p2 is the average
area below the AoII in a period, whereas the denominator



Fig. 3. Optimal transmission rate with transmission cost C = 1 and natural
drift rate d = 0.5

1/p + 1/b is the expected value of the time elapsed between
two adjacent updates.

The controller can achieve a very low AoII with a high
p, i.e., updating very often. However, we assume that sending
transmissions to the remote station has a cost proportional to p
through a coefficient C that can be interpreted as either related
to energy expenditure or just as a shadow price accounting for
any factor that limits the updating frequency [16].

If no adversary is present in the system, the optimal trans-
mission rate p is just obtained from balancing the cost term
C · p and the drift average rate d, solving an unconstrained
optimization of the controller’s utility function defined as

uN(p) = −∆− Cp. (7)

A graphical representation of a possible optimal transmis-
sion rate is shown in Fig. 3. One can see that, the larger the
natural drift d, the larger the optimal p. Yet, the curve saturates
for high d, due to transmission costs that make it inconvenient
to further increase the transmission rate.

With an adversary trying to compromise communication,
the term ∆ also depends on q, and the utility in (7) must
be written as uN(p, q). We assume that the adversary incurs
a cost Kq, with direct proportionality to the injection rate q
through a coefficient K > 0, limiting its false data injection.
The utility of the adversary, whose aim is a high AoII, can be
written as

uM(p, q) = ∆−Kq. (8)

The symbols used for the parameters are reported in Table I.

TABLE I
SUMMARY OF THE NOTATIONS

Parameter Symbol
Transmission cost for sensors C
Injection cost for malicious agent K
Natural drift rate of the physical system d

Variable Symbol
Transmission rate for sensors p
Injection rate for malicious agent q

IV. GAME THEORETIC ANALYSIS

We denote the controller and the adversary as two rational
agents N and M, respectively. They play a static game of
complete information with continuous valued actions p and
q, both chosen in (0,∞). A static (one-shot) game concen-
trates the strategic interplay in one interaction, where agents
selfishly follow their own utilities [26], which are uN(p, q)
and uM(p, q). Values p and q are determined by N and M,
respectively, independently and unbeknownst of each other.

The NE is derived from
∂uM(p, q)

∂q
= 0

∂uN(p, q)

∂p
= 0 (9)

which implies
∂∆

∂q
= K

∂∆

∂p
= −C. (10)

Rearranging the terms in (10) gives
p =

1√
2K + 2C

q = −d− p+
1√
2K

.
(11)

Within (11), K must be low enough to meet the requirement
that q is positive. If q < 0, the adversary has no advantage
in injecting false data, and is actually silent. In that case,
the optimal update frequency p reduces to a single-agent
optimization maximizing (7). Thus, in (11), the injection cost
term K is contrasted by the natural drift d and the transmission
rate p: whenever they are too large, q is positive only if K is
very low. More in general, we can discuss the choice of values
for K such that player M is taking part in the game and (11)
correctly represents the NE.

From (11), if K > d−2/2, it is impossible to get q > 0.
Even if K < d−2/2, it might be inconvenient for the adversary
to transmit, as it must also hold

−d− 1√
2K + 2C

+
1√
2K

> 0. (12)

Rearranging (12), we get K <
(

1√
2K+2C

+ d
)−2

/2, which
is easy to check despite a term K being in both sides of the
inequality, as K, C, and d are parameters known to both the
controller and the adversary. Thus, if

K >
1

2
min

[( 1√
2K + 2C

+ d
)−2

, d−2
]
, (13)

then the adversary has no advantage in transmitting. Since
(2K + 2C) > 0, it is immediately verified that the right-
hand side of (13) is always

(
1√

2K+2C
+ d

)−2
/2. Thus, the

NE conditions are

p =


(2K + 2C)−0.5 if K <

(
1√

2K+2C
+ d

)−2
/2

√
(d+p)2(1−2Cp2) otherwise

(14)

q =

−d− p+
1√
2K

if K <
(

1√
2K+2C

+ d
)−2

/2

0 otherwise
(15)

where the second part of (14) comes from minimizing (7).



Fig. 4. Utility uM(p, q) for C = 4, K = 0.1, d = 0.1, and q = 0, 1, 2.

Fig. 5. Utility uM(p, q) for C = 4, K = 0.1, d = 1, and q = 0, 1, 2.

V. NUMERICAL RESULTS

We evaluate the system performance at NE for the con-
troller and the malicious agent being strategic agents driven
by uN(p, q) and uM(p, q), respectively. This means that the
controller wants to minimize AoII at the remote station, while
the adversary wants to maximize it, but at the same time they
both try minimizing their individual activity costs.

Figs. 4 and 5 investigate how the controller can choose its
activity rate and show that utility uM(p, q) with fixed q has a
maximum in p. As the injection rate q increases, the maximum
of uM(p, q) decreases. This is due to the fact that the controller
has to transmit more often to minimize AoII, resulting in
higher costs. The figures investigate a different natural drift
rate: d = 0.1 and d = 1 for Figs. 4 and 5, respectively. From
their comparison, it is also inferred that as d increases, the NE
in the presence of the adversary tends to approach the optimal
value in its absence.

Figs. 6 and 7 show the strategic value of p depending on the
presence (or not) of player M in the game at a fixed natural
drift rate d (for which, we considered different values of 0.1
and 1, respectively) and injection cost K. The adversary causes
an increase in the strategic transmission rate of the controller,
and as its transmission cost increases, the difference between
the two cases decreases. This is because a high transmission
cost makes it inconvenient for the controller to increase the
transmission rate, which is advantageous for the adversary.
The results also show that as the natural drift d increases, the
effect of the adversary on the NE decreases.

Fig. 6. Comparison of strategical update rate p with and without a malicious
agent, K = 0.1 and d = 0.1

Fig. 7. Comparison of strategic update rate p with and without a malicious
agent, K = 0.1 and d = 1.

Figs. 8 and 9 show the effect of the strategic behavior.
In Fig. 8, as the transmission cost for player M increases,
q decreases until it reaches 0, at which point it is no longer
convenient for the adversary to inject data. Also, as the drift
rate d increases, the injection rate agent decreases according
to (15). This implies that when the malicious agent transmits,
the lower the drift rate, the higher the update rate required to
the controller to contrast the malicious injections. Fig. 9 shows
that, as the transmission cost for the controller increases, it gets
more convenient for the adversary to transmit. In accordance
with (15) and its related discussion, as the drift rate increases,
the value of q chosen by a strategic player decreases.

Fig. 8. Transmission rate p and injection rate q at the NE, for C = 4 and
d ∈ {0.1, 0.5, 1, 2}.



Fig. 9. Transmission rate p and injection rate q at the NE, for K = 0.1 and
d ∈ {0.1, 0.5, 1, 2}.

Overall, the main takeaway message from our results is that
false data injection can be effectively counteracted. First, there
is a wide range of scenarios where the adversary ends up
being inactive (essentially, due to high costs). The threat of
data injection is concrete only if it comes at a very low cost,
and even in this case, it can be strongly limited by a proper
increase of the activity rate of the controller.

However, our analysis considers a scenario with complete
information, especially meaning that the controller is aware
of the presence of the adversary in the game. Hence, another
insight gained is about the importance of monitoring for
external data injected. All of these aspects can be seen as
interesting extensions for future work, especially in the context
of more advanced game-theoretic approaches, leveraging for
example on Bayesian games [18].

VI. CONCLUSIONS

We investigated a scenario involving status updates between
a controller and a remote station over a network in the presence
of a malicious agent that sends fake status updates.

We provided a game theoretic description of the interaction
between the controller and the adversary. The latter seeks to
maximize AoII at the remote station and minimize its own
cost, whereas the former wants to minimize AoII at the remote
station and its own cost. We computed the NE, which is
guaranteed to exist and be unique. The NE implies certain
conditions that may cause the adversary to be inactive and
the problem to revert to a plain nonlinear optimization. Even
when this does not happen, our formulation as a static game
of complete information gives an advantage for the controller
that, for the same transmission and injection costs, does not
significantly change its policy because of the adversary. This
also stresses the importance of a careful monitoring to discover
the presence of a potential threat beforehand and be aware of
its presence. Future investigations may extend these results to
more general scenarios and advanced strategic interactions.
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