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Abstract—In the era of smart agriculture and smart
industry, sensor networks have become indispensable
for gathering crucial data to improve efficiency, reduce
resource consumption, and enhance decision-making
processes. In this context, sensor data transmission
schedules are essential for real-time control in smart
applications. This research explores the optimization of
sensor data transfer schedules in environments where
external sources can also contribute with informative
updates in a non-controllable fashion. We propose an
online method based on dynamic programming for
AoI minimization that obtains optimal budgeted update
instants in the presence of external assistance. Our
findings reveal optimal transmission intervals, addressing
data redundancy challenges and contributing to efficient
sensor network utilization.

Index Terms—Sensor networks; age of information;
data transmission; resource optimization, collaborative
sensing; smart industry.

I. INTRODUCTION

In the era of smart agriculture and industry, sensor
networks have become indispensable for gathering
crucial data to improve efficiency, reduce resource
consumption, and enhance decision-making processes
[1], [2]. In these sophisticated setups, multiple sensors
work collaboratively by continuously transmitting data
to a central receiver [3]–[5]. However, a fundamental
challenge arises when these sensors redundantly trans-
mit similar data [6].

Consider a scenario where two sensors, A and B, are
tasked with measuring the temperature in a plantation
of trees. If sensor A has recently transmitted the
temperature value to the receiver, it is unnecessary for
sensor B to duplicate the effort, even if sensor B has
not reported its reading for some time. This redun-
dancy can lead to inefficient use of resources and may
even contribute to information overload. To address
this challenge, Age of Information (AoI) is used as a
pivotal performance metric [7], quantifying how fresh
or up-to-date the perception of the monitored process
is [8]–[11].

AoI provides a precise and contextually relevant
characterization of information freshness, particu-
larly in domains like remote sensing and vehicu-
lar networks, where maintaining real-time data holds
paramount importance [12]–[15]. While researchers

traditionally emphasize the long-term average AoI, it
is worth noting that various AoI variations, including
Peak AoI and Discounted AoI, have been explored
[16]–[19]. The dynamic nature of this field introduces
nuanced distinctions, encompassing considerations re-
lated to discrete versus continuous time-axis models
and the utilization of mathematical tools such as
Markov chains or renewal theory [20]–[22].

Our research in the present paper diverges from
the widely adopted infinite-horizon modeling approach
and instead closely corresponds with the operational
context of practical Internet of things (IoT) devices,
which function within limited time periods. Within this
defined temporal framework, the transmitter encoun-
ters constraints in its ability to transmit updates, pri-
marily stemming from hardware and cost limitations
[7].

In the context of this study, we perform an analysis
similar to [23] where we consider AoI minimization
within a finite time horizon, specifically addressing
resource-constrained transmitter-receiver systems that
exchange data over a channel. We recognize the prac-
tical relevance of scenarios where only the receiver
possesses information about the communication’s out-
come, including the success of an update in reducing
AoI [23]. Such variations are particularly pertinent in
modern IoT scenarios, where transmissions must be
sparse, and the cost of listening for feedback messages
can be as substantial as transmitting data, as seen
in technologies like LoRaWAN [24]. Moreover, our
research extends its scope to consider the possibility of
external assistance, wherein one sensor may transmit
data on behalf of another.

We take inspiration from the analytical formulation
of [23] to minimize the expected average AoI over
a finite horizon corresponding to the assigned task,
in the presence of correlated transmissions possibly
coming from other sources [25]. In this context, we
explore a stateful optimization for scheduling trans-
mission instants. This dynamic programming-based
strategy makes adaptive and context-aware transmis-
sion decisions to minimize the expected AoI.

In the upcoming sections, we will offer both the-
oretical insights and practical implementations. Our



research represents a step forward in characterizing
status update freshness for real-time control in smart
applications.

The rest of this paper is organized as follows. In
Section II, we review the related literature. Section
III discusses the system model. We present numerical
evaluations in Section IV. Finally, Section V concludes
the paper.

II. RELATED WORKS

The application of AoI as a performance met-
ric bears particular relevance in communication and
control of cyber-physical systems, emphasizing the
pivotal importance of timely data updates [3], [4], [7],
[9], [12], [15], [23], [25]–[27]. As a result, various
methodologies have been adopted in the literature,
each potentially exhibiting different degrees of con-
gruence with the content of the present paper.

The study in [26], places its primary focus on the
development and analysis of transmission scheduling
policies, particularly in the context of AoI. It addresses
multiple sensors actively transmitting data related to
diverse physical phenomena to a central monitoring
system, resulting in a continuous influx of current
data. However, the presence of channel limitations
introduces practical constraints, similar to those en-
countered in our own research.

A similar analysis is conducted in [23], empha-
sizing the introduction of feedback mechanisms to
enhance data clarity and the development of an optimal
dynamic algorithm for specific requirements. This
analysis involves a discrete-time system comprising
state, transition, and reward components, addressing
finite-horizon problems. Our investigation aligns with
this approach, exploring scenarios within a finite time
horizon. Furthermore, our study extends to consider
the possibility of external assistance, where one sensor
may transmit data on behalf of another, as considered
in [25]. Prior studies have generally explored scenarios
involving scheduling of transmission instants towards
a guarantee of quality of service (QoS) [28], a role
that in our scenario is played by AoI minimization.

The concept of average AoI within multi-source
queueing models under a first-come-first-served
(FCFS) serving policy is investigated in [4]. While
this paper primarily focuses on information freshness
within queueing models, our research extends this con-
cept to optimize sensor data transmission schedules in
environments with multiple sensors measuring similar
parameters. We aim to understand how AoI behaves in
multi-source queueing models to design efficient data
transmission strategies, enhancing resource utilization
and system efficiency.

The challenges of timely status updates in commu-
nication networks is investigated in [9], which aligns
with our research concerns. The study focuses on
applications requiring efficient transmission of status
updates from sources like people and environmental

sensors. Their introduction of a time-average age met-
ric for performance evaluation aligns with our objec-
tives in optimizing sensor data transmission schedules.
Although their primary focus is on update rates, their
insights seamlessly extend into our study, emphasiz-
ing the importance of real-time status updates and
data transmission optimization in dynamic, resource-
constrained environments.

In the main line of AoI investigation for queueing
systems, [19] evaluates the timeliness of status updates
for multiple source service systems. However, the
focus of that paper is on competing sources sharing
the same capacity, and they introduce a simplified
technique for evaluating AoI in finite-state continuous-
time queuing systems, akin in complexity to determin-
ing the stationary distribution of a finite-state Markov
chain. Our approach takes a complementary view in
that we do not consider external updates to interfere
with the tracking of the process of interest, and con-
versely they both benefit the same AoI value.

Some existing work on AoI minimization for remote
monitoring of correlated sources is also available in
the literature. A simple probabilistic correlation model
is considered in [5], whereas [25] generalizes this ap-
proach to a memoryless scenario that derives a Markov
chain of manageable complexity. These models can
support the derivation of scheduling policies that take
correlation into account, with scalable complexity.
A further reference is [15] that, motivated by AoI
analysis from camera pictures with overlapping fields
of view, considers the case of packets containing rel-
evant information even when coming from a different
source. Our study can be seen as a direct application
of all these models since we assume an individualistic
scheduling [3] of transmission updates from a single
source, yet taking into account correlation with data
sent from other sources, especially for what concerns
the event that these packets allow for decreasing AoI
of the source of interest without costing a transmis-
sion.

The general remark that correlation among multiple
sources is beneficial to AoI and can be leveraged
is also explored in [29], which delves into multiple
independent sources but resonating with our focus on
collaborative updates. Specifically, [29] examines the
dynamics of status updates through a first-come-first-
served M/M/1 queue, introducing a status-age timeli-
ness metric to evaluate the effectiveness of real-time
updates. Their research sheds light on the interplay
between multiple sources and the need for an optimal
update rate. The main difference with the presented ap-
proach is that they consider a queueing system, where
the controllable parameter is the average injection rate,
whereas in our study the horizon is finite, the data
injection is controlled by the precise choice of the
number of foreseen updates, and we investigate the
actual finetuning of them.

In [30], a similar challenge of AoI minimization



is addressed but for multi-hop networks, whereas
we focus on a single link. They investigate differ-
ent transmission policies to take advantage of spatial
redundancy of the transmissions, yet the correlation
of the information content is a direct consequence
of the multi-hop structure, whereas in our scenario
is controllable through the probability of external
intervention.

Another related reference is [31], which challenges
the conventional wisdom that compression conflicts
with information freshness and timely data delivery. In
particular, they show that correlation among multiple
sources can be leveraged to eliminate the traditional
trade-off between compression and AoI, especially
with instantly decodable variants and techniques in-
volving preset and dynamically created dictionaries.
This can be therefore regarded as a complementary
findings to our own that highlight the benefit of
collaborative sensing.

Finally, we also mention [32], where the focus
is on parameter estimation in statistical signal pro-
cessing, highlighting the versatility of Monte Carlo
(MC) methods in scenarios with challenging analytical
expressions for estimators. In our study, we utilize
MC simulations to optimize sensor data transmission
schedules, recognizing their significance in enhancing
resource utilization and system efficiency. By applying
MC techniques in collaborative sensing within sensor
networks, we aim to provide practical insights for
effective data transmission management.

III. SYSTEM MODEL AND ANALYSIS

We consider a sensor tasked with transmitting data
to a central receiver, providing information pertaining
to a specific monitored process. The principal objec-
tive is to deliver the data to the receiver with the
utmost freshness [26], [27]. For the sake of the present
analysis, we further consider that all transmissions are
error free at the receiver’s side. The impact of erasures
that lead to increased AoI can be further taken into
account by expanding our framework along the lines
of [20], [22], [23].

The sensor has to monitor a physical process P ,
having its own budget of M of updates that it can
perform in a finite time horizon T , where M ≪ T .
This constraint on the update rate may arise due to
various factors, but it is particularly convenient to as-
sociate it with the limited energy resources available at
the transmitter’s end [24]. This is especially pertinent
in the case of remote battery-powered sensors situated
in inaccessible locations, where battery replacement is
infeasible or prohibitively costly. Alternatively, in the
context of energy-harvesting devices, M can be linked
to the average energy harvested over a recharge cycle
[17], [20], [33]. We further consider time to be divided
into slots having all the same duration.

We consider that other agents are able to intervene
in the network operation by sending a status update
that is relevant for the sensor of interest. This may
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Fig. 1. An example timeline for the AoI evolution over time.

happen because they are tracking another process
correlated with P . Following [25], we concentrate
the action of any of these external agents into a
single parameter α ∈ [0, 1] that we call probability
of external intervention. As argued in [25], assuming
that the activity of other informative sources that are
not directly under control happens with independent
and identically distributed probability α is a very good
approximation of many underlying process, even with
correlated sources [21], if the proper numerical value
is set.

In turn, the event of external intervention corre-
sponds to an informative contribution to the tracking
of P , therefore we consider that any of these external
events is counted as new information on the process of
interest that benefits the AoI of the sensor of interest.

According to [7], we compute AoI A(·) as the
difference between the current time slot and the last
successful update. Mathematically we define the cur-
rent time instant as t and τi as the last successful
update. With this notation the AoI becomes

A(t) = t− τi. (1)

A potential timeline illustrating the evolution of
AoI is presented in Fig. 1. The blue lines depict the
temporal evolution of the Age of Information within
an ideal system devoid of any external interventions,
while the red line illustrates the timeline when exter-
nal assistance is introduced as a possibility. We are
interested in two different metrics, the Average AoI
and the Peak AoI. The former, denoted as E[A], is
computed as the time average of the AoI in a time
frame T

E[A(t)] =
1

T

∫ T

0

A(t)dt. (2)

Conversely, the Peak AoI is computed as the aver-
age of all the peaks reached by the AoI. Formally, if
we denote Pτ,i the peak of the AoI reached at time



instant i and we assume that in a time frame T there
are exactly M updates the Peak AoI PT is

PT =
1

M − 1

M−1∑
i=1

Pτ,i. (3)

We want to minimize the expected AoI in an online
fashion when subject to a probability of external
intervention α. To accomplish this task we use a dy-
namic programming approach [34]. This is a sensible
instrument to apply if we limit our study to relatively
short time frames.

This approach implies to define a system state
over discrete time instants n = 0, . . . , T as x[n] =(
A[n],m[n]

)
, where

• A[n] ∈ Z+ is the instantaneous AoI;
• m[n] ∈ Z+, m[n] ≤ M is the number of the

update available to the sensor.
The dynamic programming framework also includes a
control action u(x[n]) with a binary value correspond-
ing to transmission activity, and the effect of external
intervention, which is non-controllable by the sensor
of interest and therefore treated as a noise.

This problem admits optimal control through back-
ward induction [34]. Specifically, control u(x[n]) must
be set to non-transmission whenever m[n] = 0, and to
transmission when n = T and m[n] > 0, i.e., there
are transmission opportunities left at the end of the
schedule. Quite evidently, the system state evolution
to x[n+1] just depends on x[n], u(x[n]), and α. Thus,
the optimal control action in the nth instant follows
from Bellman equation, and backward induction can
be applied from state n to state n−1 until the begin-
ning of the schedule is reached. This approach was
implemented in Matlab, with a pseudocode of our
approach reported in Algorithm 1.

IV. RESULTS AND DISCUSSION

We present numerical results obtained through our
approach. First, the online optimization policy was
derived, and the plots obtain the actual evaluation
of the metrics of interest through a Monte Carlo
simulation with a very high number of runs that make
the confidence of the shown results above 99%.

All the following evaluations report different values
of M and consider a different choice of α. To make
homogeneous comparisons, instead of the direct prob-
ability α, we plotted the expected number of external
interventions over the time horizon, i.e., αT . Although
irrelevant for the following plots (the AoI values are
normalized to a unit horizon), the actual granularity
considered in the evaluation is T = 1000 slots.

In Fig. 2 we present the Average AoI values ob-
tained by the online optimization, normalized to T 2 to
consider a unit time horizon. As expected, increasing
the number of external assistance interventions reduces
drastically the metric of interest. Furthermore if the
node has multiple opportunities for its own transmis-
sions the Average AoI if further reduced.

Algorithm 1 Backward Induction
Require: alphas: values of external assistance prob-

abilities; Nmax: total number of slots; M : total
number of opportunities; Amax: Maximum AoI
value

Ensure: bestmov: Tensor of best moves to apply for
each possible state of the system; bestage: Tensor
of AoI values obtained through moves of bestmov

1: Initialize bestage and bestmov arrays ▷ both
have dimensions (Nmax,M,Amax)

2: for α in alphas do
3: Initialize tensors bestage and bestmov for age

and movement decision storage.
4: bestage[1, 1, 1 : Amax] ← ZEROS(Amax, 1)
5: bestmov[1, 1, 1 : Amax] ← 0 : Amax − 1
6: for m = 2 to M do
7: bestage[1,m, 1 : Amax] ←

ONES(Amax, 1)
8: bestmov[1,m, 1 : Amax] ← (1 − α) · 0 :

Amax − 1
9: end for

10: bestage[1, :, :] ← REPMAT(RESHAPE(0 :
Amax− 1, [1, 1, Amax]), [1,M, 1])

11: for n = 2 to Nmax do ▷ derive n from n−1
12: for a = 1 to Amax − n+ 1 do ▷ no more

TXOPs
13: bestmov[n, 1, a] ← 0
14: bestage[n, 1, a] ← (a − 1 + (n − 1) ·

bestage]n− 1, 1, a+ 1])/n
15: end for
16: for m = 2 to M do
17: for a = 1 to Amax− n+ 1 do ▷

Determining the optimal movement and age
18: iftxage ← (α(a − 1 + (n −

1)bestage[n−1,m−1,min{a+1, Amax}])+(1−
α)(a− 1+ (n− 1) · bestage[n− 1,m− 1, 1]))/n

19: notxage ← (a − 1 + (n − 1) ·
bestage[n− 1,m,min{a+ 1, Amax}])/n

20: if iftxage ≤ notxage then
21: bestmov[n,m, a] ← 1
22: bestage[n,m, a]← iftxage
23: else
24: bestmov[n,m, a] ← 0
25: bestage[n,m, a]← notxage
26: end if
27: end for
28: end for
29: end for
30: end for
31: return bestmov, bestage

In Fig. 3 we report the Peak AoI obtained in the
online optimization, with a similar normalization to
before. The curves also present a similar trend to
the ones of the previous figure, although they do not
asymptotically converge towards zero as the number
of expected external interventions increases.
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Fig. 2. Average Age of Information in the online optimization case.
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Fig. 3. Peak Age of Information in the online optimization case.

It is interesting to note that the effect of the external
intervention to lower the normalized AoI (both average
and peak) does not require a very high number of
expected interventions to be noticeable. Clearly, when
the number of external assistences becomes very high,
the AoI values of the sensor of interest are consider-
ably lowered (and, as a side effect, the optimality of
the control action matters little, since the majority of
the updates are non-controllable). Yet, the results show
that even a moderate number of external updates can
be extremely beneficial to lower AoI, which may sug-
gest practical guidelines in sensing implementations of
highly correlated measurement scenarios.

V. CONCLUSIONS

We analyzed the optimization of sensor data trans-
mission in environments where external sources can
also contribute with informative updates in a non-
controllable fashion.

We proposed an online method based on dynamic
programming for AoI minimization that obtains op-
timal budgeted update instants in the presence of
external assistance. While increasing external assis-
tance opportunities naturally results into a reduction
of both Average AoI and Peak AoI, we argued that
the quantitative effect of this trend can be particularly

noticeable even with a relatively limited number of
interventions [25].

This can suggest further extensions to distributed
control scenario, possibly through participatory sens-
ing [3], where the local control of the nodes is
translated to a myopic choice instead of a global
optimization with full network awareness, to see if
these beneficial role of information correlation still
applies in these more realistic contexts.
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