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Abstract—The rapid integration of digital technologies into
physical systems has given rise to cyber-physical systems, where
the interaction between the computational and physical compo-
nents plays a crucial role. This study explores optimal decision-
making in event detection and transmission scheduling within
cyber-physical systems, emphasizing the crucial aspect of efficient
decision-making. We consider the problem of monitoring and
reporting about a single event taking place within a finite time
window achieving a reward related to the timeliness of the status
update. Thus, the objective corresponds to minimizing the age
of information between the instant of the event x and the status
update time t, with a further penalty for a missed event. The
monitoring apparatus decides when to perform the status update
without knowing the value of x, but only knowing its statistical
distribution. We assume a triangular probability density function
for the instant of the event taking place, with a variable average.
We provide an analytical derivation of the optimal choice of
the status update, highlighting interesting trends, such as the
saturation in the value of t as x grows close to the limit of the
observation window. This proposed problem and its analytical
formalization may serve as a further foundation for the general
analysis of optimal monitoring of cyber-physical systems.

Index Terms—Internet of Things; Age of Information; Sensor
Networks; Optimal Transmission Scheduling

I. INTRODUCTION

Real-time monitoring is becoming increasingly important
in cyber-physical systems to enhance the ability of decision-
making and achieve more efficient control [1]. This is driven
by a need for immediacy of information, which is gaining
momentum across various domains and applications [2], but
is to be combined with the standard objectives of resource
optimization [3], information security [4], and improved effi-
ciency of the cyber-physical systems [5].

Timely reporting of measurements is generally considered
crucial in highly dynamic systems, such as vehicular and
transportation networks [6]. For these scenarios, the system
control needs to leverage fresh and accurate information to
avoid congestion, improve safety, and overall achieve customer
satisfaction and/or sustainability in urban mobility [7]. To this
end, several approaches have been proposed in the literature
based on the general idea of minimizing the so-called Age
of Information (AoI) [8]–[10]. AoI can be used to optimize
the reporting from information sources towards data freshness,
even for decentralized multi-agent systems [11]. Also, correla-
tion among sensors and concurrent transmissions can improve
AoI in certain scenarios [12].

However, the usual approach to minimize the average
AoI suffers from potential drawbacks. First of all, it does
not give guarantees on absolute freshness (i.e., it does not
prevent isolated data packets from being obsolete). For this
reason, some papers integrate the evaluation of the average
AoI with that of peak AoI and include other more practical
aspects [13], [14]. Also, most of the studies on AoI assume
that continuous data exchange is required [15]. In realistic
scenarios, sporadic generation of data is possible, and in the
general case of context-aware communications, most applica-
tions would require timely delivery of specific events that do
not continuously happen but have a specific instantiation over
time. To this end, researchers have proposed metrics like Age
of Task-oriented Information (AoTI) for industrial tasks [16].

This idea marks a paradigm shift concerning applications
with continuous reporting, as vehicular communications that
represent the original scenario for AoI-based optimization,
to more general event-driven contexts, including industrial
applications [17], but also other fields such as emergency or
mission-critical communications [18], [19]. Also in healthcare,
real-time monitoring of patient data, vital signs, and medical
equipment is important but triggering an event is often only
required in situations where immediate medical attention is
needed [20], [21]. Similarly, when cyber-physical systems
are used for the safety and security of both physical assets
and individuals (e.g., in areas such as surveillance, public
safety, and critical infrastructure protection, timely detection of
security threats is essential for a rapid and effective response,
but only to specific events [22]). In all these contexts, timely
reporting of events allows for the immediate detection of
criticalities and anomalies, and the ability to respond promptly
is crucial for preventing or mitigating potential risks. However,
the general effort to keep a low average AoI may be inadequate
as it leads to considerable effort and resource wastage, whereas
only sporadic events need to be monitored [23].

In this work, we propose the analysis of optimally tracking
an isolated event happening at time x over a finite time window
[24]. Such an event may represent a system change or a critical
episode, but its precise instant x, while bound to fall within
the window, is not known and only statistically characterized
through its pdf. The delayed reporting of the event at time t
incurs a linear penalty in line with the definition of AoI [9].
In the case of too early monitoring for the event, the total



penalty until the end of the window is paid. For the sake of
analytical tractability, our investigation focuses on a triangular
probability distribution function (pdf), with variable mode (i.e.,
peak value) denoted as a, which allows us to compute the
objective function in closed form but makes it possible to
skew the distribution of the event x toward a specific instant
inside the observation window. The problem becomes a single
variable optimization for t as a function of a, which is also
numerically evaluated and discussed.

We argue that this preliminary study can be generalized to
multiple events and monitoring instances following the same
analytical pattern [25]. Our approach not only contributes
to theoretical foundations but also provides practical insights
into optimizing decision points and understanding temporal
dynamics. Our study demonstrates that, as the mode of
probability distribution increases, optimal penalties decrease,
and corresponding transmission times exhibit specific trends.
These trends reach saturation as the pdf of the monitored
event becomes increasingly skewed towards the end of the
observation period. Further research can contribute to finding
intelligent decision-making guiding event detection and trans-
mission scheduling strategies in dynamic and interconnected
environments [26].

The rest of this paper is organized as follows. In Section III,
we present the system model. Section IV develops the analysis
and finds the closed-form solution to the optimization problem.
We present numerical results in Section V and we conclude
in Section VI.

II. RELATED WORK

The concept of Age of Information (AoI) as a metric for
optimizing information reporting from various sources has
been the subject of a sizable body of research. The age metric
proposed in [8] accounts for the constrained network resources
and gauges how quickly the recipients receive status updates.
It offers information on how frequently status updates ought
to be produced in order to reduce aging and guarantee on-
time delivery. The authors of [9] aim to optimize information
reporting by taking into account the age of updates and
creating effective techniques to minimize delay and maximize
freshness by utilizing the concept of AoI. In a different study,
the concepts of AoI and game theory are used to optimize
information reporting by determining the optimal update plan
for the strategic sources while taking into account the sources’
individual costs as well as the global objective of minimizing
AoI [10].

In the context of decentralized multi-agent systems, the
AoI metric has received a lot of attention [11]. In order to
guarantee complete data freshness, several researchers have
expanded their investigations to include peak AoI and other
practical factors, even though the majority of studies have
focused on decreasing the average AoI. [13] investigates the
likelihood of peak-age violation and delay in a point-to-
point communication system using brief information packets.
The study offers insights into the system parameters that
impact data freshness, such as frame size and undetected error

probability, by examining the delay violation and peak-age
violation probabilities. The authors in [14] examine synchro-
nization strategies that lower the overall AoI and maintain
accurate timestamps. Additionally, they look into how different
transport layer protocols and congestion control mechanisms
contribute to minimizing the AoI and maximizing data fresh-
ness.

However, in situations where data generation is sporadic
or communication is event-driven, conventional methods that
minimize average AoI might not be adequate [15]. To ad-
dress the specific needs of industrial tasks, researchers have
suggested alternative metrics like the Age of Task-oriented
Information (AoTI) in response to this limitation. By taking
into account the amount of time that has passed between the
generation of the first sampling data of the newest task and
the last successfully received system update at the receiver, the
Age of Task-oriented Information (AoTI) metric in industrial
wireless sensor networks accurately measures the freshness of
system information [16]. For a given task, the AoTI metric
considers the processing of data from multiple multi-type
sensors. AoTI gives an accurate indication of how recent the
system information is in sensor networks by timing the interval
between the creation of the sampling data and the receipt
of the system update. Because of this paradigm shift, AoI-
based optimization is now applied in a wider range of event-
driven contexts, such as industrial applications, emergency
communications, and healthcare, rather than just continuous
reporting scenarios like vehicular communications [17]–[21].

Real-time monitoring in healthcare environments, in partic-
ular, has brought attention to the significance of only triggering
events when immediate attention is needed [20], [21]. Similar
to this, timely detection of particular events is essential for
efficient responses in areas like critical infrastructure protec-
tion, public safety, and surveillance in cyber-physical systems
used for safety and security reasons [22]. These various
contexts highlight how important it is to report anomalies and
criticalities immediately in order to detect them right away.

III. SYSTEM MODEL

We consider a problem of timely event detection and re-
porting in the context of an observation window of normalized
duration L = 1, for a cyber-physical system consisting of an
event source generating a relevant phenomenon (such as an
alert or a critical system condition) and a transmitter/receiver
pair to describe the update sent about it to a remote observer
[23]. We denote the timing of the event as x and the trans-
mission instant as t. For the specific analysis presented in this
paper, the communication part is assumed to be fully reliable,
even though an extension with channel erasures and/or delays
would be immediate along the lines of [18], [25], [27].

The transmission of the status update is guided by the
general criterion that t ought to be bigger than x but as
close to it as possible [17], [22]. We distinguish between two
cases: (i) the status reporting is performed after the event,
i.e., t > x. In this case, the event is detected at time t.
Conversely, the case where t < x corresponds to a missed
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Fig. 1. Instantaneous penalty depending on the reporting time if t < x.
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Fig. 2. Instantaneous penalty depending on the reporting time if t > x.

detection of the event, and the event is only noted at the end
of the transmission window. Thus, the detection happens at
D(t, x) = t+(1−t)1(x−t), where 1(·) is a unit step function.

Accordingly, if we consider a generic u inside the window,
we can set a penalty equal to the age of information (AoI) of
the event reporting [9]. The instantaneous value of this penalty
pt,x(u) at time u as being 0 before the event happens, then
growing linearly until it is finally detected, which happens
either at time t (if t > u) or at the end of the window. Thus,
pt,x(u) can be expressed as (1).

pt,x(u) =

{
u− x, if x < u < D(t, x)
0, otherwise (1)

This linear increase of the penalty propagates over time, and
the objective of the optimization is the integral of the penalty
over the entire window, i.e. (2).

P(t, x) =

∫ L

0

pt,x(u)du =

{
(1− x)2/2, if t < x
(t− x)2/2, if t > x

(2)

This total penalty P(t, x) actually can also be seen as an
average penalty over the time window, since we considered
a normalized time interval L = 1.

Illustrated in Fig. 1 and 2 are the two options discussed
previously. If the event monitoring is scheduled at time t,
depending on the occurrence of the event, we can distinguish
between the case x = x1 < t and x = x2 > t, leading to a
different value of the total penalty P(t, x) as per (2).
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Fig. 3. Probability density function of event x inside the window.

For what concerns the actual position of x, we assume
it is randomly distributed within the horizon and we adopt
a triangular shape for its pdf, to reflect a possible uneven
distribution of the event. In particular, we use a parameter
a to denote the mode, i.e., the peak of the distribution. This
implies that the pdf governing the occurrence of the event x,
denoted as f(x), is set as (3).

f(x) =


2x

a
, if 0 ≤ x ≤ a

−2x+ 2

1− a
, if a < x ≤ 1

0, otherwise

(3)

The triangular shape of the pdf signifies that the probability of
the event varies on either side of the mode, with a diminishing
likelihood as we move away from this central point. A
graphical depiction is reported in Fig. 3.

IV. ANALYTICAL FRAMEWORK

Building upon the previously defined system model, we
can underpin the decision-making process for an advance
scheduling of the observation event t following the objective
of minimizing the expectation of the total penalty P(t, x),
which we denote as P (t) = Ex[P(t, x)], where Ex[·] is the
expectation over x. Thus, from (2) and (3), the expected total
penalty can be expressed as (4).

P (t) =

∫ t

0

(t− x)2

2
f(x) dx+

∫ 1

t

(1− x)2

2
f(x) dx (4)



The resulting piece-wise expression for P (t) is (5).

∫ t

0

(t− x)2

2

2x

a
dx+

∫ a

t

(1− x)2

2

2x

a
dx

+

∫ 1

a

(1− x)2

2

−2x+ 2

1− a
dx, if t ≤ a

∫ a

0

(t− x)2

2

2x

a
dx+

∫ t

a

(t− x)2

2

−2x+ 2

1− a
dx

+

∫ 1

t

(1− x)2

2

−2x+ 2

1− a
dx, if t ≥ a,

(5)
By solving the integrals, P (t) can be expressed as (6).

−2t4+8t3−6t2+a3−3a2+3a

12a
, if t ≤ a

−2t4+8t3+6at2−18t2−4a2t+12t+a3−3

12(a−1)
, if t ≥ a

(6)
This characterizes the AoI-related dependence on timely event
detection.

These closed-form formulations provide a comprehensive
framework for evaluating and optimizing the penalty as-
sociated with event detection and transmission scheduling,
considering the dynamic interplay between the event pdf, the
transmission timing, and the resulting penalty [24].

The impact of the system parameters (in our case, the
mode of the event distribution a) and the control choice t
can therefore be evaluated by solving an optimization problem
formalized as (7).

mint, P (t)
s.t., 0 ≤ t ≤ 1

(7)

We remark that this simple formulation can be generalized to
more complex contexts, i.e., including a different pdf than (3)
or multiple monitoring instants [25].

V. RESULTS

In this section, we explore the relationships between the
value of the penalty P (t), the chosen transmission time t,
the mode of the probability distribution function a, and the
resulting optimized system control.

The graph in Fig. 4 shows the direct connection between
penalty P (t) and transmission time t, following from (6) and
showcasing distinct curves for varying values of the mode a
of the probability distribution of x. This visual exploration
provides insight into how the timing of status monitoring
and the statistics of the event influence the penalty function.
In particular, it is sensible to consider the optimal value of
the penalty P ∗ = mint P (t), as a function of a, and the
corresponding minimizing value of t, denoted as t∗, for further
discussion in the following.

These results highlight a noteworthy trend, namely, as the
mode a of the pdf increases, the optimal penalty P ∗ decreases,
and the minimizing point t∗ grows. To better understand
this behavior, Fig. 5 considers P ∗ as a function of a. The
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Fig. 4. Relationship between t and the achieved penalty P (t) for different
values of a.
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Fig. 5. Optimal penalty P ∗ vs. the mode a of the pdf of the event.

behavior is monotonically decreasing, with a notable change
of convexity when a = 0.634. This is a consequence of the
instant of the event being bound within the horizon, and the
detection is ultimately constrained to the last instant of the
window even if t < x (missed event) so that the instantaneous
penalty pt,x(u) stops growing after 1 as per (1). In other words,
we consider that the event under monitoring is always reported
at the end of the window (i.e., in the case of missed detection,
we have a detection at D(t, x) = 1).

Furthermore, the optimized system can calibrate the re-
porting instant t in the intermediate values of a. This is a
remarkable outcome considering that the span of the penalty
is overall two-fold, for 0.2 ≤ a ≤ 0.8 the difference is just
within a 30% range.

The flex point of the curve around a = 0.634, which



corresponds to a minimal penalty P ∗ = 0.0334, also suggests
a change of behavior in the optimization. If we further inves-
tigate the penalty-minimizing transmission time (t∗) versus a,
which is addressed in Fig. 6, we see that the initial behavior
of t∗ is linearly increasing, but with a relatively low slope
since even a = 0 attains the lowest value of t∗ ≈ 0.446.
For larger values of a, t∗ increases, still always being around
the middle of the observation window, thereby suggesting that
as a grows, i.e., the event is more likely to happen toward
the end of the window, the optimal reporting favors a more
protracted approach. However, when the point a = 0.634 is
reached, t∗ saturates (also to this very value, i.e., t∗ = 0.634),
which means that it is preferable to keep the observation
point t at that value. This is because the penalty function is
not growing beyond the end of the finite horizon. Thus, it
is more convenient to try to report the event at that specific
intermediate point of the window rather than postpone t and
risk an increased penalty if x < a.
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Fig. 6. Optimal transmission time t∗ vs. the mode a of the pdf of the event.

VI. CONCLUSIONS

Real-time decision-making driven by AoI within the context
of cyber-physical systems follows intricate dynamics that bear
theoretical insights and practical implications [8]. The integra-
tion of timely event detection and transmission scheduling is
paramount in obtaining control efficiency and achieving the
objectives of the next-generation communication systems for
time-sensitive applications [3].

We considered a scenario of event detection over a finite
horizon, which is only known through the prior statistics. This
means that we decide the monitoring instant t only knowing
the pdf of the event location x, aiming at the minimization of
an AoI-related penalty that distinguishes between the cases of
correct or missing detection of the event. We further performed
a numerical analysis for the case of x following a triangular
pdf, whose peak a (the statistical mode) is taken as a variable
parameter.

Building upon this foundation, we formulated a mathemat-
ical optimization to quantify penalties associated with late
event detection and missed transmissions [16]. The analytical
framework offers actionable insights for decision optimization,
aligning strategies with the temporal patterns suggested by the
probabilistic nature of event occurrences.

The insights gained from this research can prompt the de-
velopment of intelligent systems that are not only efficient but
also adaptable to the probabilistic nature of events in dynamic
environments. Moreover, the study lays the foundation for
extending research into the realm of probability distribution
functions, offering a promising avenue for extended investi-
gation. Future work can experiment with specific applications
and/or various probability distribution functions, to extend the
analysis to different kinds of uncertainties inherent in dynamic
environments.

At the same time, the interaction of multiple intelligent
agents taking subsequent actions can be envisioned, both in
a dynamic setup [26] and/or from a game theoretic perspec-
tive [10], to investigate the consequences and the resulting
efficiency of strategic decision control.
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