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Abstract

We consider status updates exchanged between a transmitter and a legitimate
receiver, also including an eavesdropper that captures pieces of information.
In the absence of such a threat, the connection between the transmitter and
the receiver is controlled by the transmitter with the aim of delivering fresh
information at the receiver's side quanti�ed through the age of information.
Due to the presence of the eavesdropper, the transmitter may further tune the
generation rate of status updates to trade o� the ages of information acquired
by the eavesdropper and the receiver, respectively. We combine both objectives
according to a Bergson social welfare framework and we solve the problem of
�nding the optimal generation rate as a function of the probability of data
capture by the eavesdropper. We consider the age of information minimization
task in the context of queuing systems, at �rst assuming equal service rates at
the legitimate receiver and the eavesdropper, then analyzing scenarios where the
eavesdropper's service rate is di�erent. This enables us to derive notable and
sometimes counter-intuitive conclusions, and possibly establish an extension
of the age of information framework to security aspects from a performance
evaluation perspective.

Keywords: Age of Information; Data acquisition; Modeling; Communication
system security.

1. Introduction

Age of information (AoI) has become a performance indicator adopted fre-
quently to quantify the freshness of status updates from remote transmitters [1,
2]. Many sensing applications are required to track real-time content and, more
than the average delay or the sheer throughput, their most important require-
ment is that the exchanged data be fresh.
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Whenever a transmitter and receiver exchange status updates, the value of
AoI at the receiver is [3]

δ(t) = t− σ(t) (1)

where σ(t) is the instant of reception of the last update. As normally done in this
kind of analysis [4, 5], we consider zero propagation delay in the exchange, so
time instants can be indi�erently computed at the transmitter's or the receiver's
side. Note that considering a nonzero propagation delay results in a shift of
the service time. Moreover, the impact of propagation delay has already been
analyzed in [6] and is out of scope for this paper. We also adopt a generate
at will model, implying that every update, when generated at the transmitter's
side, conveys fresh information [7].

Queueing systems are among the �rst models investigated under this lens,
already in some seminal papers on the topic [3]. Even the study of a simple
M/M/1 queue highlights the following important conclusion. If the transmitter
generates updates with exponentially independent and identically distributed
(i.i.d.) inter-generation times, with tunable rate λ, and the service of the queue,
also a memoryless process, has rate µ, so that the o�ered load is ρ = λ/µ,
the lowest AoI is achieved at a certain intermediate value in the stability range
ρ ∈ [0, 1). This is less straightforward than the delay- or throughput-optimizing
conditions that are ρ → 0+ and ρ → 1−, respectively. This reasoning can
be extended to more complex systems by changing the queue policy [8, 9] or
explicitly including other aspects such as medium access control [10, 11, 12].

In the present paper, we add a new twist, by including a con�dentiality
objective related to the adversarial presence of an eavesdropper. To frame the
problem in a classic setup, we consider a transmitter owned by Alice sending
status updates to Bob, who plays the role of a legitimate receiver. Alice can tune
the generation rate of update packets and the service procedure is according
to a standard M/M/1 queue with �rst-come-�rst-served (FCFS) policy [13].
However, in addition to the aforementioned actors, an eavesdropper is present,
aptly named Eve, who has the ability to capture information sent by Alice
to Bob. All updates from Alice are received by Bob, but each of them has
probability β ∈ [0, 1] of being eavesdropped by Eve.

We assume that Alice is aware of Eve's presence and knows the value of β
2. This changes the objective of the exchange from just sending fresh updates
to Bob, to also including a further goal of leaving only stale information to
Eve [14, 15, 16]. We analyze and simulate the scenario where Eve's and Bob's
queues have the same service rate µ = 1. Then, we also consider the case where
the service rate in Eve's queue is either higher or lower than the service rate in
Bob's queue.

Thus, the �rst contribution of this paper is a reformulation of the problem
with a new objective function that chooses a point over the Pareto frontier of

2We remark that, in most scenarios, it is unlikely that Alice learns the speci�c packet
captured by Eve. So, we adopt a worst-case approach for Alice and Bob, where they only
have access to the statistical behavior of Eve.
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these two contrasting objectives according to Bergson's theory of social welfare
[17]. This allows for an extension of the analytical framework to determine how
the optimal transmission probability is in�uenced by Eve's probability of data
capture.

The second contribution is the analysis of the optimal transmission rate
when the attacker and legitimate receiver queues have di�erent service rates,
which leads to some interesting and non-trivial conclusions about how Alice can
counteract the presence of Eve.

Finally, we discuss quantitative results and highlight important conclusions,
such as the optimal transmission probability chosen by Alice being, under proper
conditions, a decreasing function of the probability β of data captured by Eve.
In general, our investigation may set the basis for the extension of the AoI
framework to security issues with analytical instruments.

The rest of this paper is organized as follows. In Section 2, we discuss models
from the literature for AoI of queuing systems, since our analysis piggybacks on
them, and we also review the (actually few) e�orts made to conjugate AoI and
security aspects, especially for what concerns covert communications against
eavesdropping. We present the system model in Section 3; at �rst, we identify a
trade-o� between minimizing the AoI of the legitimate receiver and maximizing
that of the eavesdropper, and then we solve it through an entirely analytical
framework. Section 4 presents numerical results. Finally, we conclude in Section
5.

2. Related Work

Many studies evaluate AoI in queuing systems, for various settings but espe-
cially based on classic memoryless systems with various disciplines [12, 18, 19].

The FCFS M/M/1 queue presents a compelling behavior for what concerns
its AoI. In a stable system for which the arrival rate λ and the service rate µ
satisfy ρ = λ/µ < 1, the highest throughput is achieved whenever ρ approaches
1, whereas the delay is minimized when ρ is close to 0. Conversely, AoI can be
optimized by o�ering tra�c in an intermediate condition, even though the server
is slightly biased towards being busy over being idle and so the optimal load
factor ρ is actually ρ0 ≈ 0.531 [3]. In other words, optimizing AoI in an M/M/1
queue implies seeking non-aggressive management, where λ is signi�cantly lower
than µ, so there is already a self-limitation imposed on the data generation.

This and other quite elegant analytical results presented by Kaul and Yates
in [3], and subsequent contributions [20], are important sources of inspiration
for the present work. In particular, the full expression of the average AoI ∆ =
E[δ(t)] for an M/M/1 queue with FCFS policy is [3]

∆ = λ

(
E[XT ] + E

[
X2

]
/2

)
=

1

µ

(
1 +

1

ρ
+

ρ2

1− ρ

)
, (2)

where random variables X and T are the interarrival time and system time of
an update packet, respectively.
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Some side remarks involve that there are substantially equivalent expres-
sions, at least for what concerns the extensions meant in the present paper,
to the cases of M/D/1, D/M/1, G/M/1, and so on, as well as with switching
the discipline of the queue to last-come-�rst-served (LCFS), adding preemption,
and more [9, 12, 18, 21]. For the purposes of our study, we will just deal with
the simpler M/M/1 queue, even though the analysis can be promptly extended
to other kinds of queues.

Security issues are rarely explored together with AoI, and most of the studies
consider adversaries that resort to jamming [22, 23]. Hence, the objective of the
attackers is seen as increasing AoI of legitimate communication, as opposed
to capturing information for themselves. In this sense, these frameworks are
prone to investigations through adversarial game theory [24, 25], by considering
a maximizer of AoI, as opposed to the legitimate transmitter being a minimizer.

Instead, the subject of con�dentiality is seldom explored together with AoI,
despite many mission critical applications relying on timely exchanges, which
an attacker may want to intercept, forge, or modify. This would be inherently
di�erent from jamming, and likely incompatible with it [26].

Among the few contributions on this matter, [27] proposes AoI as an inte-
grated indicator of the quality of service and security to discriminate the validity
of a hash key in urban rail communication-based train control data communi-
cation systems. However, AoI is not used as a performance metric, but rather
as a tool to improve secrecy, and it is only regarded from the perspective of
the legitimate users. In [28], instead, a generic Internet of Vehicles network is
investigated and a vehicle-assisted batch veri�cation system is adopted. Here,
AoI is used as a quantitative indicator of security, but the scenario considers
sybil attacks and not eavesdropping.

In [29], the transmission system considers various scattered packets with
some network coding connecting them, so that the receiver can decode the
message after receiving k packets out of n, but with the additional objective of
preventing an eavesdropper from decoding that number of packets �rst. The
focus of their analysis is therefore to exploit a proper inter-dependence among
the packets, whereas in our analysis we take a more general stance where all
packets are independent in content (and possibly, independently eavesdropped
as well).

Physical layer security techniques to achieve protection against an eaves-
dropper, also considering AoI in the analysis, are introduced in [30], where a
framework for covert full-duplex communication in block Rayleigh fading chan-
nels is proposed, with a requirement on information freshness. This means
that arti�cial noise is transmitted to confuse the eavesdropper and the trans-
mit probability of the informative signal containing status updates is adjusted
to maximize the error probability of detection at the eavesdropper, yet subject
to a constraint of minimum average AoI. While the model is unlike ours, one
can see some resemblance to our analysis, in that the goal of contrasting the
eavesdropper should not prevent the transmitter from sending informative sta-
tus updates every now and then. However, in our approach, there is no injection
of additional noise and the average AoI is minimized rather than just being a
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constraint.
On this same line, [31] also considers AoI minimization in a covert communi-

cation between a transmitter and its legitimate receivers when an eavesdropper
is present in the area. The scenario is still from a physical layer perspective,
i.e., focusing on the uncertainty about the physical locations of the eavesdrop-
per and using successive interference cancellation for non-orthogonal medium
access. The optimization also considers how to regulate the transmit power of
the legitimate communication, to ensure negligible probability of interception
by the eavesdropper, in addition to whether to transmit or not. This leads
to a completely di�erent analysis from ours, where once again AoI enters the
model just through a constraint, however, considered here as applied to all the
legitimate receivers.

In [14], the approach is more similar to ours, since that paper also deals with
the optimization of status update scheduling against an eavesdropper. However,
it makes di�erent assumptions from our scenario: in particular, the eavesdrop-
per is subject to energy harvesting constraints and the transmitter is aware of
the speci�c AoI value achieved by the eavesdropper at all times, which allows
for a stateful policy to be derived as the solution of a Markov decision process.
In the present paper instead, we assume that the transmitter is only aware of
the probability that the eavesdropper captures a packet, but not whether it
succeeds on a per-packet basis. A further di�erence is that the authors of [14]
consider a speci�c tradeo� between the two objectives, i.e., they minimize AoI
of the legitimate communication but consider AoI of the eavesdropper as a con-
straint, i.e., it must stay below the pre-de�ned threshold. Clearly, this imposes
a threshold behavior in the stateful policy. Conversely, we also consider these
di�erent objectives but the mediation between them is made tunable through a
parameter.

The closest contribution we can �nd to our proposed approach is [15], where
authors study the problem of maintaining information freshness under passive
eavesdropping attacks. They consider a scenario where a source sends its latest
status to an intended receiver while protecting the message from being over-
heard by an eavesdropper, and de�ne two AoI-based metrics to characterize
the secrecy performance of the considered system. Also akin to our analysis,
they obtain similar performance curves, on which they �nd the optimal data in-
jection rate. However, some notable di�erences make our analysis simpler and
more general. First of all, they consider a discrete time axis and assume stateful
scheduling, which allows for an optimization of the transmission rate [7, 18]. In
our approach, we tune the arrival rate λ of the queue a priori and, since λ is a
continuous variable, our linear optimization is without any discretization e�ect.
Moreover, they consider a tradeo� between the AoI performance at the intended
receiver and at the eavesdropper, based on their di�erence. Instead, we inves-
tigate this from a wider perspective based on Bergson's theory of social welfare
[17] that allows us to weigh the importance of contrasting the eavesdropper
versus obtaining fresh information at the receiver.

Combining con�icting objectives into a single function according to Berg-
son's approach predates but is actually similar to the better known contribu-

5



BA

E

eavesdropper

transmitter receiver
β

λ

Figure 1: Queuing system with a transmitter (A), a legitimate receiver (B), and an eaves-
dropper (E).

tion of Nash bargaining [32]. Our speci�c choice corresponds to a product (that
can be changed into a linear combination through logarithmic transformations)
where exponential coe�cients are tunable. The underlying point is that neither
of the objectives can dominate over the other in a Pareto sense, but focusing on
their product identi�es a speci�c point on the Pareto frontier.

3. System Model

We consider a system as depicted in Figure 3, where Alice (A) is a transmit-
ter sending status updates to her receiver, Bob (B). Alice can tune the genera-
tion rate of update packets and the service procedure is according to an FCFS
M/M/1 queue. Within this scenario, we also include Eve (E), an eavesdropper
that may capture data packets sent by Alice to Bob.

In the absence of Eve, Alice's objective would be to minimize Bob's AoI, to
keep the information available to him as fresh as possible. If the presence of
Eve is known, Alice may adjust the generation rate of status updates to cause
the data captured by Eve to be stale. We will quantify this through Eve's AoI.
Therefore, Alice seeks a tradeo� between two objectives, i.e., minimizing Bob's
AoI while at the same time maximizing AoI at Eve's side.

A typical real-world scenario that could be cast into our system is rep-
resented, for instance, by an open communication environment, which makes
wireless transmissions more vulnerable than wired communications to malicious
attacks [16, 33]. In particular, an eavesdropper can manage to intercept data
whenever Alice and Bob cannot establish a secure communication channel.

The connection between Alice and Bob is expressed by an M/M/1 queue
with FCFS discipline, that is, Alice generates packets according to a Poisson
process of rate λ and the service time of Bob's queue is exponentially distributed
with unit rate, providing an o�ered load ρ = λ. It is not restrictive to normalize
Bob's service capacity, otherwise, all the results can be rescaled by the service
rate. The channel between Alice and Bob is taken as error-free so that every

6



𝛿B(𝑡)
𝛿E(𝑡)

𝑡𝑡1

𝑦1 𝑦3

𝑣3

𝑦4 𝑦5

𝑣5

𝑡3 𝑡4 𝑡5𝑡2

𝑦2

Figure 2: A possible realization of the instantaneous AoI process for Bob (in blue) and Eve (in
red). Packet arrival instants from the source, Alice, are marked by circles, white for ξj = 0,
red for ξj = 1, i.e. the packet j is eavesdropped by Eve.

update packet sent by Alice is correctly received by Bob. However, note that
our framework can accommodate losses by adjusting the o�ered load ρ.

We consider that each update packet generated by Alice at a random time
tj might be eavesdropped by Eve. This happens according to a binary random
variable ξj ∈ {0, 1} that follows an i.i.d. statistics, i.e., ξj can be either 1,
implying that packet j is eavesdropped with probability β ∈ [0, 1], or 0 with
probability 1−β. Consequently, we refer to β as the eavesdropping probability,
and it follows that the average fraction of packets captured by Eve is also equal
to β. Moreover, packet arrivals at Eve's queue follow a Poisson process with rate
βλ. Akin to Bob, Eve queues her packets in a FCFS M/M/1 queue with service
rate µ. The load factor in the channel between Alice and Eve is η = βλ/µ.

This con�guration results in distinguishing between Bob's and Eve's AoI.
The former denotes the instantaneous freshness of data legitimately exchanged,
and is de�ned from (1) as

δB(t) = t− σB(t) , σB(t) = max{tj : tj + yj < t} , (3)

where yj is the service time of the j-th packet at Bob, while the latter is written
as

δE(t) = t− σE(t) , σE(t) = max{tj : tj + υj < t, ξj = 1} , (4)

with σE(t) being the instant of reception of a packet that is also captured and
processed by Eve, with υj the service time at Eve. The instantaneous AoI at
Bob and Eve is shown in Fig. 2.
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3.1. Con�dentiality Aware Objective Function

In our �rst scenario, Alice is the only intelligent agent, since she can choose
her transmission rate λ, while Eve and Bob are passive entities. Alice is aware
of Eve's presence and knows the value of β. The presence of an eavesdropper
who captures a fraction of the transmitted packets implies that Alice wants the
information available to Eve to be as old as possible, in addition to minimizing
Bob's AoI. Therefore, Alice has two competing objectives described by the utility
functions

u1(λ) =
1

∆̃B(λ)
, u2(λ) = ∆̃E(λ), (5)

where to avoid troubles with in�nity, we upper bound the average AoI value,
i.e.,

∆̃B(λ) = min{∆B(λ),M} , ∆̃E(λ) = min{∆E(λ),M} , (6)

with M being a properly large value, and ∆B(λ) = E[δB(t)] and ∆E(λ) =
E[δE(t)] representing the expected AoI of Bob's and Eve's, respectively. So, in
the analyzed scenario the average AoI is probabilistically upper bounded by M ,
whose value should be chosen to obtain a low probability P[∆B(λ) > M ] for
either λ close to 0 or 1, and a low probability P[∆E(λ) > M ] for λ close to 0 or
µ. We took the expressions of the utilities in (5) in agreement with the utility
functions being generally taken as quantities to maximize [34]. However, as will
be clear later, this choice is entirely modular, as the tradeo� between the two
objectives can be tuned by a speci�c parameter, and it does not quantitatively
a�ect the result.

Finally, note that setting an upper bound to the AoI at Eve, so that ∆E

saturates to M , implies the existence of a minimum service rate value, below
which ∆E never falls below M . To make our analysis meaningful, it is therefore
necessary to choose the value of M opportunely, or, equivalently, to verify the
performance of the system only for values of µ above the minimum service rate.
Thus, we write the following theorem.

Theorem 1. For a given M , the minimal service rate µ0 that guarantees ∆E(λ) <
M for some λ ∈ [0, 1] is

µ0 =
∆0

M
, (7)

where ∆0 = 3.484 is the minimal average AoI for a unitary service rate obtained
when λ = ρ0 = 0.531, as proved in [3].

Proof. Following the results obtained in [3], the load factor that minimizes
the average AoI is computed seeking for the only solution in the interval [0, 1]
of the 4th degree equation η4 − 2η3 + η2 − 2η− 1 = 0, that is η = ρ0, which, for
a generic service rate µ at Eve, gives ∆E = ∆0/µ. So, in order for our analysis
to be meaningful (i.e., ∆E is not saturated to M for every choice of λ and β),
the minimal average AoI must be below M , so the service rate µ must be such
that

min
λ

∆E(λ) =
∆0

µ
< M (8)
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is satis�ed. Therefore, the minimal service rate µ0 is given by (7).

From Alice's perspective, it is bene�cial to increase either of utilities u1

and u2, or both. However, these are contrasting objectives since Alice cannot
prevent Eve's eavesdropping, therefore a packet that is meant to refresh the
status at Bob's may also lower Eve's AoI if captured. To combine the two
competing utilities of (5), we reformulate the problem de�ning a new objective
function that sets a precise value on the Pareto frontier created by u1 and u2,
i.e., the set of values for which u1 cannot be increased without lowering u2, or
vice versa. This choice is made following Bergson's approach [17], where an
ultimate objective function f is chosen as a weighted product between the two
utilities u1 and u2, i.e., a modi�ed Nash bargaining solution [32]

f(λ) = [u1(λ)]
a+1u2(λ) =

∆̃E(λ)

[∆̃B(λ)]a+1
, (9)

with a ∈ (0,+∞) being a parameter that controls the trade-o� between u1 and
u2. In the choice of the exponent of u1, we must assume that this objective
cannot be eliminated; otherwise, we would reach a trivial allocation where Alice
never updates. This would consistently obtain a very high ∆E(λ) but would also
have ∆B(λ) to grow inde�nitely, which goes against the motivation of the setup
in the �rst place. Thus, the objective of delivering fresh data to Bob cannot be
avoided and the exponent in the trade-o� must be greater than or equal to 1.
Hence, we write it as a + 1, where the larger a, the more important u1 versus
u2 in the trade-o�. Moreover, a → +∞ corresponds to ignoring the presence
of Eve, while a → 0+ means that the threat of the eavesdropping receives the
highest importance, and Alice just wants to minimize the ratio ∆B(λ)/∆E(λ)
instead of ∆B(λ) itself. The speci�c choice of a governs the selection of the
optimal point in the Pareto frontier.

3.2. Optimal O�ered Load

The full expressions for ∆B(λ) and ∆E(λ), considering a unitary service rate
for Bob and a service rate indicated by µ for Eve, are computed from (2) as

∆B(λ) =

{
1 + 1

λ + λ2

1−λ whenλ < 1 ,

+∞ otherwise ,
(10)

for the legitimate channel between Alice and Bob, and

∆E(λ) =

{
1
µ + 1

βλ + β2λ2

µ2(µ−βλ) whenβλ < µ ,

+∞ otherwise ,
(11)
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for the eavesdropper channel between Alice and Eve. The optimal transmission
rate λ maximizing the objective f(λ), when ∆B(λ),∆E(λ) < M , is

λ⋆ = argmax
λ

f(λ) = argmax
λ

∆E(λ)

[∆B(λ)]a+1

= argmax
λ

1
µ + 1

βλ + β2λ2

µ2(µ−βλ)(
1 + 1

λ + λ2

1−λ

)a+1

= argmax
λ

(β3 λ3 − β2 λ2 + µ3)λa (1− λ)a+1

β µ2 (µ− β λ) (λ3 − λ2 + 1)
a+1 .

(12)

One can solve (12) by computing the derivative of f(λ). Notably, when β → 0+,
the derivative f ′(λ) approaches

f ′(λ) → g(λ)(λ − λ2)a

λβ (λ3 − λ2 + 1)
a+2 , (13)

where g(λ) is the 4-th degree polynomial

g(λ) = (a+ 2)(λ4 − 2λ3 + λ2)− (2a+ 1)λ+ a. (14)

Therefore, when β → 0+, the optimal load factor at the limit is obtained as
the only real solution of g(λ) = 0 in the interval (0, 1). The function g(λ)
is continuous in the interval (0, 1) and takes values of opposite sign at the
boundaries

g(0) = a > 0, (15)

g(1) = −(a+ 1) < 0. (16)

According to the Bolzano theorem, a real value λ̃ ∈ (0, 1) such that g(λ̃) = 0
must exist. Moreover, the �rst order derivative of g(λ) is

g′(λ) = 2λ(a+ 2)(λ− 1)(2λ− 1)− 2a− 1 , (17)

which is negative for every λ ∈ (0, 1). Consequently, the solution λ̃ is unique
and can be found numerically. For example, in the case of a = 1, we have

3(λ2 − 2)(λ2 + 1) + 1 = 0 , (18)

and the solution is found at λ ≈ 0.389.
When ∆E > M and ∆B < M , then

λ⋆ = argmax
λ

M

∆B(λ)a+1
= argmin

λ
∆B = 0.531 , (19)

where the last step follows from the results in [3]. In the opposite case, in which
∆E < M and ∆B > M , we have

λ⋆ = argmax
λ

∆E(λ)

Ma+1
= argmax

λ
∆E(λ) = 0 . (20)
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Note that it may be convenient for Alice to saturate the value of ∆̃E, i.e., obtain
the highest possible value ∆̃E = M , while keeping ∆B < M , when possible, as
better explained by the following theorems. We remark that the value of ∆̃E

can be saturated by choosing a high or low enough transmission rate only when
Eve's queuing system is M/M/1 with FCFS policy, and there is no preemption
or packet dropping.

Theorem 2. Given the system parameters M and a, for every µ > µ0 as de-
rived in Theorem 1, there exist two values of η such that ∆̃E = M . We indicate
with η− ∈ [0, ρ0) and η+ ∈ (ρ0, 1] these two values, and we have that

∆̃E(λ) = M ⇐⇒ η ∈ [0, η−] ∪ [η+,+∞) . (21)

To each value of η− and η+ are associated two functions, respectively,

λ−(β) =
µη−

β
, λ+(β) =

µη+

β
, (22)

such that, for a given β,(
λ = λ−(β)

)
∨
(
λ = λ+(β)

)
⇒ ∆̃E(λ) = M , (23)

Proof. We can equivalently express ∆E(λ) as a function of η instead of λ, and
we have that ∆E(η) is a convex function of η in the interval [0, 1], with minimum
for η = ρ0 and ∆E(η) → ∞ at the boundaries. Moreover, µ < µ0 guarantees
that ∆E(η) < M for some η ∈ (0, 1). Thus, η− ∈ [0, ρ0) and η+ ∈ (ρ0, 1] always
exist. Moreover, given η− and η+, the transmission rates λ−(β) and λ+(β)
that guarantees ∆E = M are obtained from η− = βλ−/µ and η+ = βλ+/µ,
respectively.

Furthermore, we observe that there are certain conditions on β and µ for
which the optimal transmission rate is ρ0 (i.e. Bob's optimal transmission rate
in the absence of Eve) that allows for the lowest value ∆0 for his average AoI.
These conditions are summarized in the following theorem.

Theorem 3. Given M , the optimal transmission rate is λ⋆ = ρ0 when any of
the following conditions is met:

a) (β = µ) ∧ (µ ≤ 1) ,

b) β ≤ β− = µη−/ρ0 ,

c) (β ≥ β+ = µη+/ρ0) ∧ (µ ≤ ρ0) ,

where a) yields to ∆̃E(λ
⋆) = ∆̃B(λ

⋆) = ∆0, while when b) or c) hold we
have ∆̃E(λ

⋆) = M (i.e., Eve's AoI saturates to the highest possible value) and
∆̃B(λ

⋆) = ∆0 (i.e., the lowest possible value for Bob's AoI).

Proof. Concerning condition a), from (12), considering µ = β, we obtain

λ⋆ = argmax
λ

1

β

1

∆B(λ)a
= argmin

λ
∆B(λ) = ρ0 , (24)
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Figure 3: Objective f(λ), as a function of the transmission rate λ, for di�erent values of
eavesdropping probability β, with weight a = 1 and M = 20. The black line connects the
maximizing points λ⋆. The dashed black line reports λ = 0.389.

and η = βλ⋆/µ = λ⋆ = ρ0, which implies ∆̃E(λ
⋆) = ∆̃B(λ

⋆) = ∆0. Instead,
for condition b) we have that for any value of µ there exists a low enough
value β− of the eavesdropping probability below which Alice acts as Eve is not
present. This value can be found solving λ− = µη−/β = ρ0, for β that gives
β− = µη−/ρ0. Similarly, for c) we �nd β+ from λ+ = µη+/β = ρ0.

4. Numerical Results

In this section, we present quantitative evaluations to express the conse-
quences of what has been derived in Section 3 for a scenario involving the
interplay of Alice, Bob, and Eve.

We assume that the only active agent is Alice, who also knows the eaves-
dropping probability β. At �rst, we study the case where the service rates of
Bob and Eve are the same, with both unitary values. Then, we consider the
case where Eve's normalized service rate µ is di�erent from that of Bob, and we
analyze both situations of µ < 1 and µ > 1.
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4.1. Equal service rate

We discuss how the optimal transmission probability λ⋆, obtained maximiz-
ing the objective function f(λ) in (12), is in�uenced by Eve's probability of data
capture β and the trade-o� parameter a when µ = 1.

If Eve does not intercept any packet, i.e., β = 0, we expect λ⋆ = 0.531,
which is the AoI minimizing value for the transmission probability with nor-
malized service capacity [3]. When each packet is independently eavesdropped
with probability β > 0, and µ = 1, we expect that the optimal transmission
probability decreases, therefore λ⋆ ≤ 0.531 for any value of β. For this reason,
in the results that follow, the areas corresponding to λ⋆ > 0.531 are shaded.

Figure 3 shows the objective function f(λ), as a function of λ for di�erent
values of β when a = 1. The black line connects the maximum point of each
curve, reached when λ = λ⋆, while the dashed black line reports the value
λ̃ = 0.389. First of all, the curves are bell-shaped with a very pronounced
maximum when β is small. When β rises, the curves get �atter; in fact, when
β tends to 1, ∆B and ∆E get closer, and Alice has narrower margins to trade
between these objectives. When λ = 1, all the curves go to zero. As the black
line in Figure 3 shows, the value of λ⋆ tends to 0.531 as β increases, and decreases
with β, tending towards the vertical asymptote at λ < 0.531, displayed as the
black dashed line in the �gure, whose numerical value is the solution of (17).
However, when β is very low, λ⋆ = ρ0, as anticipated in point b) of Theorem
3. For the speci�c case of this �gure where a = 1, µ = 1, the asymptotic value
shown by the vertical dashed line is λ̃ = 0.389.

Interestingly, the lower β, the lower λ⋆, which, at �rst glance, may seem
counterintuitive, yet this behavior has the following explanation. If β tends
to 1 the eavesdropper intercepts almost every packet transmitted by Alice, so
the only sensible objective for Alice is to keep ∆B low, which is achieved by
choosing λ = 0.531. If β decreases, the second objective takes over, and Alice
transmits less frequently, choosing λ < 0.531, to prevent Eve from intercepting.
However, when β ≤ β−, Bob saturates Eve's AoI choosing λ⋆ = ρ0, as pointed
out in Theorem 3. In particular, for µ = 1 we have η− = 0.0531, so β− = 0.1.
Above all, if ∆B is low and ∆E high, Alice should wait before transmitting a
new packet because the e�ect can be to reset both ∆B and ∆E. As a side note,
in our analysis, Alice only chooses the transmission rate λ, and she does not
perform a real-time optimization based on the instantaneous values of the ∆B

and ∆E. Yet, it is expected that in a stateful optimization [7, 15] (left for future
research) this phenomenon will be seen with even more clarity.

Fig. 4 shows the optimal transmission probability λ⋆ as a function of β,
for di�erent values of a. One can see that the optimal value λ⋆ moves toward
λ−(β) = η−/β when a tends to zero, for every value of β, provided it is less
than 1. In other words, if the main objective for Alice is to have a large ratio
of Eve's AoI versus Bob's, and Eve is rarely capable of eavesdropping data, the
best strategy for Alice is also to update more rarely and, thus, saturate Eve's
average AoI. Conversely, when the value of a rises, λ⋆ tends to 0.531 for every
β. When β = 1, λ⋆ = 0.531 for all a > 0.
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Figure 4: Optimal transmission probability λ⋆, as a function of capture probability β, for
equal service rates µ = 1, di�erent values of weight a and M = 20.
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Figure 5: Objective function f(λ) evaluated at the optimal transmission rate λ⋆, as a function
of weight a, for equal service rates µ = 1, di�erent eavesdropping probabilities β and M = 20.
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Figure 6: Optimal transmission rate λ⋆, as a function of the capture probability β, for di�erent
values of weight a, with service rate at Eve µ = 2 and M = 20.

Fig. 5 shows the objective function f(λ) evaluated at the optimal transmis-
sion rate λ⋆, as a function of a, for di�erent values of β. Since β− = 0.1, all the
curves for β < β− are identical to that for β = 0.1 (the blue curve), that is

β ≤ β− ⇒ f(λ⋆) = f(ρ0) =
∆0

Ma+1
. (25)

4.2. Higher eavesdropper service rate

When the service rate µ at Eve's queue is higher than Bob's service rate, i.e.,
µ > 1, then as β tends to 1, there is no value of λ ∈ [λ+, 1] such that ∆̃E = M .
This happens because Eve's queue is always faster than Bob's, and therefore,
even when β is high, the latter cannot make ∆E saturate while at the same time
keeping his queue stable.

Figure 6 shows the optimal transmission rate λ⋆, as a function of the capture
probability β, for di�erent values of a, with service rate at Eve µ = 2 and
M = 20. We see that, for β = 1, the curves do not converge to the point
(1, 0.531) and are more �at than those in Figure 4. Moreover, the optimal
transmission rate λ⋆ is strictly below ρ0 for every β > β− = 0.098. When
β ≤ β−, we have that λ⋆ = ρ0, as proved in Theorem 1. Finally, when β is
low, then λ⋆ is equal to λ−, depicted by the blue dashed curve. Also λ⋆ moves
toward the λ−(β) curve when a goes to zero, for every β > β−.
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Figure 7: Optimal transmission rate λ⋆, as a function of capture probability β, for di�erent
values of weight a, with service rate at Eve µ = 0.7 and M = 20.

4.3. Lower eavesdropper service rate

We analyze the case when Eve's service rate µ is lower than Bob's service
rate, i.e., µ < 1. Since in Theorem 3, the condition c) is valid only when µ < ρ0,
we distinguish between two operational cases, µ = 0.7 and µ = 0.4.

Figures 7 and 8 show the value of λ⋆, as a function of the eavesdropping
probability β, for di�erent values of a, M = 20, and when Eve's service rate is,
respectively, µ = 0.7 and µ = 0.4. As proved in Theorem 3, and as already shown
for µ ≥ 1, we have that for β < β− the optimal transmission rate is λ⋆ = ρ0.
The values of β− for µ = 0.7 and µ = 0.4 are, respectively, 0.102 and 0.108. In
both �gures, we can see that the optimal transmission rate coincides with ρ0 also
when β = µ, as proved in Theorem 3, and in this case ∆̃E(λ

⋆) = ∆̃B(λ
⋆) = ∆0.

When µ = 0.7, from Figure 7 we see that as a tends to zero, the value of
λ⋆ tends to λ−(β) for β ∈ (β−, µ), and to λ+(β) for β ∈ (µ, 1]. We note a
similar behavior when µ = 0.4. In fact, from Figure 8, we note that λ⋆ tends
to λ−(β) for β ∈ (β−, µ), and to λ+(β) for β ∈ (µ, β+), with β+ = 0.6563. For
β ≥ β+ the optimal transmission rate is λ⋆ = ρ0. Thus, when Eve's service

3We remark that µ = 0.4 is the only case among the analyzed ones, where β+ ≤ 1. In fact,
a su�cient condition to obtain β+ ≤ 1 is µ ≤ ρ0.
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Figure 8: Optimal transmission rate λ⋆, as a function of capture probability β, for di�erent
values of weight a, with service rate at Eve µ = 0.4 and M = 20.
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Figure 9: Optimal transmission rate λ⋆, for di�erent values of the eavesdropping probability
β and Eve's service rate µ, for a = 0.1 and M = 20. The dashed line represents β = µ.

rate is lower than ρ0, Bob's can saturate Eve's average AoI and obtain the best
possible average AoI for his queue, when the eavesdropping probability is either
su�ciently low or su�ciently high, i.e., β ∈ [0, β−] ∪ [β+, 1].

4.4. Comparison

Finally, we compare the optimal transmission rate obtained with di�erent
values of the eavesdropping probability β and Eve's service rate µ ∈ [0.1, 1.2].
Figure 9 shows λ⋆, for di�erent values of β and µ, when a = 0.1 and M =
20. The dashed line represents β = µ. We can see that for µ < 0.2 Bob
chooses to transmit with λ⋆ = ρ0 for any β. This is due to the notably low
service rate of Eve. Consequently, Eve does not pose any substantial threat
to Alice and Bob. In response, Alice tends to overlook her presence and opts
to transmit with the optimal λ in the absence of Eve. When µ increases, Bob
chooses λ⋆ = ρ0 only for β = µ, or for su�ciently high or low eavesdropping
probability, i.e., β ≤ β− ∧ β ≥ β+. Indeed, when β = µ, the o�ered load at
Bob and Eve is equivalent. Consequently, Alice ignores Eve and transmits at
rate ρ0. This pattern also holds for extremely low β, where Eve's presence holds
little concern for Alice, as well as for exceedingly high β, where Eve eavesdrops
numerous packets. In such a scenario, Alice �nds herself unable to mitigate this
e�ect, leading her to focus solely on optimizing Bob's AoI. Lower values for the
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Figure 10: Ratio between Bob's average AoI ∆B(λ
⋆) and ∆0, for di�erent values of the

eavesdropping probability β and Eve's service rate µ, for a = 0.1 and M = 20. The dashed
line represents β = µ.

transmission rate are chosen by Bob when µ < β, while higher values are chosen
when µ > β.

A similar observation arises looking at Figure 10, which shows the ratio
between Bob's average AoI, i.e., ∆B(λ

⋆)/∆0, for di�erent values of the eaves-
dropping probability β and Eve's service rate µ, when a = 0.1 and M = 20. A
high value of the ratio means that the performance achieved by Bob in terms
of average AoI is degraded by the presence of Eve. We see that, when Bob
chooses λ⋆ = ρ0, the ratio is 1, while when λ⋆ di�ers from the optimal one in
the absence of Eve the ratio value increases and, therefore, the performance is
worse. Finally, from Figure 10 we note that the average AoI at the legitimate
receiver is degraded with respect to the case where no eavesdropper is present,
and the impact of this is strongest when the service rate of Eve is approaching
the eavesdropping probability (from the left).

5. Conclusions

We have analyzed a scenario of status updates between a transmitter and
a legitimate receiver, considering the presence of an eavesdropper that is some-
times able to intercept data packets. For this purpose, we leveraged existing
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analytical results for queuing systems [3, 20], where AoI is computed as a func-
tion of the data injection rate by the transmitter.

We assume that the transmitter is aware of the eavesdropper and wants
to set an e�cient injection rate that simultaneously achieves low AoI at the
intended receiver but keeps the eavesdropper information stale. To analyze this
problem, we propose to combine both objectives according to a Bergson social
welfare framework [17], and have solved the problem of �nding the optimal
transmission probability as a function of the probability of data capture by the
eavesdropper.

The main conclusion is that the additional objective of leaking only stale
information to the eavesdropper can be achieved with a proper remodulation
of the data injection rate by the transmitter [14]. Speci�cally, when the pri-
mary objective of the transmitter is to thwart the eavesdropper, the transmis-
sion probability approaches zero, even for minimal probabilities of data capture
by the eavesdropper. Furthermore, in scenarios where the service rate at the
eavesdropper matches the eavesdropping probability, or when the eavesdropping
probability is extremely high or low, the transmitter opts to ignore the eaves-
dropper's presence. This decision results in achieving an optimal transmission
rate equivalent to the one in the absence of Eve. Moreover, the performance in
terms of AoI at the legitimate receiver is degraded most with respect to the nom-
inal case when the eavesdropper service rate is slightly below the eavesdropping
probability.

The present framework can be used as an adjustable approach for di�erent
cases of interest in practical contexts. For instance, it can be open to game
theoretic extensions [25], where the strategic behavior of the transmitter and/or
the eavesdropper can be analyzed.

Acknowledgment

This work was supported by the European Union under the Italian National
Recovery and Resilience Plan (NRRP) of NextGenerationEU, partnership on
�Telecommunications of the Future� (PE0000001 - program �RESTART�).

References

[1] L. Crosara, N. Laurenti, L. Badia, It is rude to ask a sensor its age of
information: Status updates against an eavesdropping node, in: Proc. IEEE
BalkanCom, 2023.

[2] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, S. Ulukus, Age
of information: An introduction and survey, IEEE J. Sel. Areas Commun.
39 (5) (2021) 1183�1210.

[3] S. Kaul, R. Yates, M. Gruteser, Real-time status: How often should one
update?, in: Proc. IEEE Infocom, 2012.

21



[4] S. Kaul, M. Gruteser, V. Rai, J. Kenney, Minimizing age of information in
vehicular networks, in: Proc. IEEE SAHCN, 2011, pp. 350�358.

[5] Y. Wang, S. Wu, L. Yang, J. Jiao, Q. Zhang, To preempt or not: Timely
status update in the presence of non-trivial propagation delay, in: Proc.
IEEE VTC Fall, 2020.

[6] A. Zancanaro, A. Munari, G. Cisotto, L. Badia, Impact of transmission
delays over age of information under �nite horizon scheduling, in: Proc.
IEEE CAMAD), 2023.

[7] A. Munari, L. Badia, The role of feedback in AoI optimization under limited
transmission opportunities, in: Proc. IEEE Globecom, 2022.

[8] L. Crosara, L. Badia, Cost and correlation in strategic wireless sensing
driven by age of information, in: Proc. Eur. Wirel., 2022.

[9] J. P. Champati, R. R. Avula, T. J. Oechtering, J. Gross, Minimum achiev-
able peak age of information under service preemptions and request delay,
IEEE J. Sel. Areas Commun. 39 (5) (2021) 1365�1379.

[10] A. Munari, Modern random access: an age of information perspective on
irregular repetition slotted ALOHA, IEEE Trans. Commun. 69 (6) (2021)
3572�3585.

[11] L. Badia, A. Zanella, M. Zorzi, A game of ages for slot-
ted ALOHA with capture, IEEE Trans. Mobile Comput. (2024).
doi:10.1109/TMC.2023.3298716.

[12] M. Costa, M. Codreanu, A. Ephremides, On the age of information in
status update systems with packet management, IEEE Trans. Inf. Theory
62 (4) (2016) 1897�1910.

[13] R. D. Yates, S. Kaul, Real-time status updating: Multiple sources, in:
Proc. IEEE ISIT, 2012, pp. 2666�2670.

[14] F. Yuan, S. Tang, D. Liu, AoI-based transmission scheduling for cyber-
physical systems over fading channel against eavesdropping, IEEE Internet
Things J. (2023). doi:10.1109/JIOT.2023.3307351.

[15] H. Chen, Q. Wang, P. Mohapatra, N. Pappas, Secure status updates under
eavesdropping: Age of information-based physical layer security metrics,
arXiv (2020).
URL https://arxiv.org/abs/2002.07340

[16] Y. Zou, J. Zhu, X. Wang, L. Hanzo, A survey on wireless security: Technical
challenges, recent advances, and future trends, Proc. IEEE 104 (9) (2016)
1727�1765.

[17] A. Bergson, A reformulation of certain aspects of welfare economics, Quart.
J. Econ. 52 (2) (1938) 310�334.

22



[18] M. Moltafet, M. Leinonen, M. Codreanu, Average AoI in multi-source sys-
tems with source-aware packet management, IEEE Trans. Commun. 69 (2)
(2020) 1121�1133.

[19] L. Crosara, L. Badia, A stochastic model for age-of-information e�ciency
in ARQ systems with energy harvesting, in: Proc. Eur. Wirel., 2021.

[20] R. D. Yates, S. K. Kaul, The age of information: Real-time status updating
by multiple sources, IEEE Trans. Inf. Theory 65 (3) (2018) 1807�1827.

[21] R. Talak, E. H. Modiano, Age-delay tradeo�s in queueing systems, IEEE
Trans. Inf. Theory 67 (3) (2020) 1743�1758.

[22] A. Garnaev, W. Zhang, J. Zhong, R. D. Yates, Maintaining information
freshness under jamming, in: Proc. IEEE Infocom Wkshps, 2019.

[23] S. Banerjee, S. Ulukus, Age of information in the presence of an adversary,
in: Proc. IEEE Infocom Wkshps, 2022.

[24] Y. Xiao, Y. Sun, A dynamic jamming game for real-time status updates,
in: Proc. IEEE Infocom Wkshps, 2018, pp. 354�360.

[25] L. Crosara, N. Laurenti, L. Badia, Strategic status updates in an eaves-
dropping game, in: Proc. European Wireless, 2023.

[26] A. Garnaev, W. Trappe, The eavesdropping and jamming dilemma in
multi-channel communications, in: Proc. IEEE ICC, 2013, pp. 2160�2164.

[27] X. Wang, L. Liu, L. Zhu, T. Tang, Joint security and QoS provisioning
in train-centric CBTC systems under sybil attacks, IEEE Access 7 (2019)
91169�91182.

[28] T. Jing, H. Yu, X. Wang, Q. Gao, Joint timeliness and security provisioning
for enhancement of dependability in Internet of Vehicle system, Int. J.
Distrib. Sens. Netw. 18 (6) (Jun. 2022).

[29] A. Asheralieva, D. Niyato, Optimizing age of information and security of
the next-generation Internet of everything systems, IEEE Internet Things
J. 9 (20) (2022) 20331�20351.

[30] Y. Wang, S. Yan, W. Yang, Y. Cai, Covert communications with con-
strained age of information, IEEE Wireless Commun. Letters 10 (2) (2020)
368�372.

[31] S. S. Hosseini, P. Azmi, N. Mokari, Minimizing average age of information
in reliable covert communication on time-varying channels, IEEE Trans.
Veh. Technol. (2023). doi:10.1109/TVT.2023.3303674.

[32] J. F. Nash, Jr, The bargaining problem, Econometrica 18 (2) (1950) 155�
162.

23



[33] Y. Zhu, L. Wang, K.-K. Wong, R. W. Heath, Secure communications in
millimeter wave ad hoc networks, IEEE Trans. Wireless Commun. 16 (5)
(2017) 3205�3217.

[34] L. Badia, M. Zorzi, On utility-based radio resource management with and
without service guarantees, in: Proc. ACM MSWiM, 2004, pp. 244�251.

24


