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Abstract. Privacy is a fundamental right that could be threatened by
Information Retrieval (IR) models when applied and trained on sen-
sitive data and personal user information. Although mechanisms have
been proposed to protect user privacy, the effectiveness of the privacy
protections is typically assessed by studying the relations between per-
formance and parameters of the mechanisms, such as the privacy budget
in Differential Privacy (DP). This often causes a disconnection between
formal privacy and the privacy experienced by the user, the actual pri-
vacy. In this paper, we present the Query Inference for Privacy and Util-
ity (QuIPU) framework, a novel evaluation paradigm to assess actual
privacy based on the risk that an “honest-but-curious” IR system can in-
fer the original query from the obfuscated queries received. QuIPU rep-
resents the first attempt at measuring actual privacy for IR tasks beyond
the comparison of formal privacy parameters. Our analysis shows that
formal privacy parameters do not imply actual privacy, causing scenar-
ios where, for the same privacy parameter values, two systems provide
different utility, but also different actual privacy. Therefore, there is a
necessity for a proper way of assessing the risk, represented by QuIPU.

Keywords: Evaluation Measures · Differential Privacy · Information
Retrieval · Information Security · Privacy Risks.

1 Introduction

Privacy is an essential right guaranteed by Article 12 of the Fundamental Dec-
laration of Human Rights, which states, “No one shall be subjected to arbitrary
interference with his privacy [. . . ]”. Natural Language Processing (NLP) mod-
els and Information Retrieval (IR) systems are developed using large textual
datasets, including queries, documents, reviews, and online posts, frequently con-
taining sensitive and personal user information. Including personal information
in these texts, such as user profiles, personal opinions and information needs,
could raise significant privacy concerns for individuals interacting with such sys-
tems. The privacy threats may compromise user safety following text analysis if
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not adequately addressed. Specifically, from the examination of browser search
history and retrieved documents, malicious actors can unveil sensitive details,
such as an individual’s salary or medical conditions [4, 15]. Heuristics strate-
gies [3, 26] have been studied for providing privacy for IR tasks. At the same
time, progress in the field of NLP has shown the potentialities of Differential
Privacy (DP) [21] in releasing privacy-preserving text for different purposes,
spanning from text classification [25], authorship anonymization [6], and query
obfuscation [22]. In the IR field, DP has emerged as the leading framework for
safely obfuscating user queries.

Obfuscating a query means that the real information need of a user is pro-
tected in such a way that the obfuscated queries produced can still retrieve rele-
vant documents yet not (fully) disclose that information need. For example, the
query “how cancer grows” may be transformed into the obfuscated alternatives
“how myeloma grows”, “how disease spreads”, “how melanoma evolves”. Fo-
cusing on the mechanisms’ privacy parameters represents a naïve way to eval-
uate privacy. To this end, several attempts to assess the privacy provided have
been proposed by adapting information security measures based on entropy [43,
11], and syntactic and semantic similarities [31, 55] between original and ob-
fuscated texts. However, all these measures fall short in assessing the actual
privacy achieved by the mechanism [18, 35, 23]. Indeed, in the previous exam-
ple, an adversarial system could easily infer the actual user information need
from the obfuscated queries “how myeloma grows”, “how disease spreads”,
“how melanoma evolves”, i.e. the user is looking for information about tumours,
by using available query logs on its side and generate potential guesses of the
original query. Yet, some value of the privacy budget would lead to generating
such obfuscated queries, giving formal and proven guarantees of privacy, and
most of the state-of-the-art measures would consider those queries as properly
obfuscated. Moreover, since such queries are still semantically similar to the orig-
inal, they would probably deliver good retrieval performance, giving a somewhat
false impression of a very effective yet properly private approach. By only study-
ing the impact of the formal mechanism parameters, there is no assurance of the
risk [19] the user faces by submitting the obfuscated queries.

In this paper, we introduce the Query Inference for Privacy and Utility
(QuIPU) framework, a novel evaluation paradigm developed to evaluate the
trade-offs between the actual privacy against potential information leakage in an
obfuscation protocol represented by the inference of the original query committed
by a malicious IR system and the utility gained by a user. QuIPU is based on the
family of attacks known as Membership Inference Attack (MIA) [45], adapted to
a query obfuscation protocol, namely Query Inference Attack (QuIA), and used
against the obfuscated queries submitted to the system. It considers the potential
risk that the original query is successfully inferred by a IR system after analyz-
ing the alternative queries received and obfuscated using different configurations,
i.e., using different formal privacy parameters, of an obfuscation mechanism. The
measure considers the privacy-utility trade-off beyond the configuration param-
eters of the obfuscated mechanisms by computing a modified version of Area
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Fig. 1. Overview of the query obfuscation protocol in the presence of an “honest-but-
curious” IR system. On the safe user side, the obfuscation mechanism takes in input the
user query and produces N obfuscated queries. Such obfuscated queries are submitted
to the honest IR System to retrieve documents. Then, if curious, the IR system might
use the obfuscated queries to infer the original information need.

Under the Curve (AUC) of the risk vs. utility curve obtained. Therefore, the
main contributions of this paper are: i) improving the privacy analysis paradigm
by distinguishing between traditional and actual privacy guarantees within the
query obfuscation process, thus studying a more comprehensive definition of
privacy; ii) establishing a connection between MIAs in machine learning and
its application to IR; and iii) a novel measure to assess privacy by evaluating
the risk of information inference from the outputs of an obfuscation mechanism,
providing insights into the formal privacy parameters.

The paper is organised as follows: Section 2 explains the context of the query
obfuscation protocol; Section 3 introduces the formal definition of the QuIPU
framework and the steps performed to evaluate the textual privacy provided by
a mechanism. Moreover, Section 4 reports the results and discussion to investi-
gate privacy from the formal privacy parameters to actual evaluation using the
QuIPU framework. Finally, Section 5 presents the related works concerning pri-
vacy evaluation, and Section 6 draws the conclusion, outlining future directions.

2 Query Obfuscation Background

Privacy has been widely studied by the NLP and IR community [1, 57, 56, 32].
The scenario discussed in this study assumes that the users are willingly paying
part of the utility during the document retrieval phase to defend the privacy of
their search activity. The system is considered non-cooperative, as it does not ac-
tively contribute to protecting user privacy, e.g., it does not provide any private
API to mask the information need of the user. Figure 1 illustrates the general
query obfuscation protocol, focus of this work and commonly used in IR [22,
17]. The process considers two distinct environments: on the user (safe) side,
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Table 1. ε-DP obfuscation mechanisms organised considering the obfuscation strategy.

Obfuscation
Strategy Mechansim Description

Sampling

CusText [10] Sampling of a new term is bounded to K possible terms picked using the scores
computed using the distances among word embeddings.

SanText [54] Sampling of a new term is computed with a score based on the distances among
embeddings, with terms closer to the obfuscation having a higher probability.

TEM [7] Noise sampled from an n - dimensional Gumbel distribution is added to the scores,
and the final obfuscation term is sampled accordingly to the maximum noisy score.

WBB [17] Based on the word type, e.g., Nouns or Verbs, the mechanism finds the top-(k + n)
similar terms, excludes the first k, and samples the private word in the residuals n.

Embedding
Perturbation

CMP [24] The noise is sampled from an n - dimensional Laplace distribution of scale 1
ε
.

Mhl [52] The noise is sampled from an n - dimensional Normal distribution defined by the λ
regularized Mahalanobis norm of the term embedding.

Vickrey [53]
(CMP/Mhl)

The noise is sampled as defined by the parent mechanism (CMP or Mhl) and the
obfuscation term is set based on a free parameter t.

the original query is generated by the user and privatized using an obfuscation
mechanism, i.e., an algorithm that, given an original sensitive query q, generates
N non-sensitive obfuscated queries that (theoretically) prevent the unveiling of
the original information need. These obfuscated queries are sent to the IR system
without explicitly disclosing their information need, after the initial obfuscation
process. During such operation, the user configures the mechanism parameters
and privacy guarantees considering the amount of utility is lost on the down-
stream tasks [34, 12, 28]. On the (unsafe) IR system side, relevant documents
are retrieved by the “honest” system considering the obfuscated queries received.
The documents are then returned to the users for the post-processing described
above. In order to prevent a “curious” IR system from discovering the real user
query, the obfuscation methods employed are divided into two families of mech-
anisms, either based on heuristics or DP strategies, explained in the following
paragraphs and in Table 1.

Heuristics Obfuscation. To protect privacy in IR tasks, non-formal obfuscation
methods were proposed [3, 26]. Arampatzis et al. [3] employed the WordNet [37]
database to replace original terms within the query using synonyms, hypernyms,
and holonyms. The obfuscation was performed based on a hierarchical degree,
i.e., the level parameter, aligned with the desired obfuscation the user aims to
achieve. Such an approach was further extended by Fröbe et al. [26]. More in
detail, the obfuscation approach retrieves locally the top-k documents from a
local corpus. Then, using a sliding window, the sequences of n terms within such
documents are taken as candidate obfuscation queries, removing those queries
that contain synonyms and holonyms. To decide which query to submit to the
IR system, the top-k documents retrieved on the local corpus are considered as
pseudo-relevant regarding the nDCG achieved.

Differential Privacy (DP) Obfuscation. Dwork et al. [21] introduced the ε-DP
framework to formalize the privacy guarantees when releasing data. Given a pri-
vacy budget ε ∈ R+, and any pair of neighbouring datasets D,D′, i.e., datasets
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that differ for only one entry, an obfuscation mechanism M is DP if it holds the
inequality Pr [M(D) ∈ S] ≤ eε · Pr [M(D′) ∈ S] ∀S ⊂ Im(M). DP introduces
calibrated noise levels during output computation using the privacy budget ε,
which controls the balance between data privacy and utility. The adoption of
the DP framework for metric spaces, and therefore for NLP tasks, has been pro-
posed in [8]. Metric-DP extends the traditional DP definition by ensuring that
the probability of obfuscating two distinct points x, x′ is proportional to the dis-
tance d(x, x′) between them. The DP formal framework has enabled the privacy
research community to propose different strategies based on noisy sampling [10,
54, 7, 17] and perturbed word embeddings [24, 52, 53], cf. Table 1.

3 The QuIPU framework

In this Section, we define the Query Inference for Privacy and Utility (QuIPU)
framework: we report the threat model for an obfuscation protocol and the
settings of QuIA. Finally, we report the risk evaluation of the attack.

3.1 Overview of the Threat Model

In this scenario, the adversary is represented by the IR system, which aims to
understand the original user information need. In the query obfuscation proto-
col, the sweet spot for inferring the original queries is represented by the ones
the system receives. The mechanism parameters, e.g., the ε privacy budget pa-
rameter of the DP obfuscation mechanisms, do not guarantee with absolute
certainty that the original text is changed (or changed enough). Therefore, such
queries may cause a leakage of the real information need. In addition, for the
same parameters, different obfuscation strategies may produce texts with dif-
ferent obfuscation degrees. For instance, the effect of the parameter ε depends
on the specific mechanism used [33, 20]. As a result, two DP mechanisms (one
embedding-perturbation based and the other sampling-based) both parametrized
with ε = 15 and could lead to a situation where one method achieves an actual
obfuscation while the other achieves only formal obfuscation. Therefore, the IR
system aims to extract as much information as possible from the received queries,
previously obfuscated on the user side, using this knowledge to infer the real text.

Consequently, the threat of a successful query inference stems not only from
the obfuscation failure of the mechanism but also from the additional knowledge
about the queries possessed by the adversary. The IR system might exploit its
queries from the logs [30, 9, 46]: by producing a classification on the information
needs carried by the obfuscated queries received and the information in its logs,
it aims to improve the chances of a correct guess of the original user query. Note
that if the original query is not an extremely long tail one [2], it is reasonable
to assume that the original information need has been previously submitted to
the IR system, and thus, the attack can succeed with high probability.

Finally, an important remark must be made regarding the use of crypto-
graphic primitives in the protocol of the scenario we are analysing. Eavesdrop-
pers or man-in-the-middle adversaries do not significantly threaten the user or
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the system. Cryptography can be employed while exchanging queries and docu-
ments between the client, i.e., the user, and server, i.e., the IR system, ensuring
confidentiality among the internal parties of the protocol and security against
external auditors. However, confidentiality does not imply privacy: if the IR sys-
tem aims to disclose the user’s original query, cryptography techniques alone are
insufficient to safeguard privacy concerning an internal adversary.

3.2 Query Inference Attack (QuIA)

Algorithm 1: The Query Inference Attack (QuIA).
Data: Qobf (obf. queries q′i), Qlogs (query log qi), T (transformer encoder).
Result: Ranked list of query logs R.

1 Encoding T (Qobf) = {T (q′i) ∈ Rn} and T (Qlogs) = {T (qi) ∈ Rn};
2 Define q̂ as the centroid of the vectors in T (Qobf);
3 Compute S = [cos (q̂, T (qi)) , T (qi) ∈ T (Qlogs)];
4 Define L = [(si, qi) , si ∈ S, qi ∈ Qlogs];
5 Sort L in descending order considering the similarity score si;
6 return L;

The class of attacks known as Membership Inference Attack (MIA) was in-
troduced by Shokri et al. [45] to investigate the information leakage stemming
from the output of machine learning models. The attack is defined under the
assumption that the attacker sees a data record but has no information about
either the model parameters or the actual model architecture, i.e., a so-called
black-box scenario. The attack is deemed successful when the attacker is able to
correctly guess if the data record belongs to the model’s training dataset or not.

In an obfuscation protocol, the Query Inference Attack (QuIA) uses the re-
ceived obfuscated queries and the query logs to generate a ranked list of queries
from the logs based on the similarity with the information need. Similarly to
the black-box of the MIA scenario, the assumption is that the IR system does
not know the obfuscation mechanism used on the user side and the privacy pa-
rameters of the obfuscation mechanism. Algorithm 1 reports the pseudo-code
of the attack: the system receives the set of obfuscated queries Qobf and knows
its query logs Qlogs. Firstly, it uses a Transformer [49] encoder T to obtain the
embeddings of the queries in the sets1. Once the texts in Qobf are encoded,
it calculates the centroid q̂ of the vectors in T (Qobf), to capture the average
contextual similarities among the obfuscated queries received. The system com-
putes the cosine similarity between the embeddings of the queries from the logs
T (qi) ∈ T (Qlogs) and the query q̂ to understand which queries from the logs
most closely represents the average information need carried by the obfuscated
1 Remark on the notation: with T (Qobf) , T (Qlogs) we indicate the sets of text em-

beddings, and with T (q′i), T (qi) the singular vector embedding of the queries.
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queries and saves it into the list S. The algorithm finally generates a ranked list
L of the queries in the logs qi ∈ Qlogs by sorting the pairs of (si, qi) in descending
order based on the similarities si ∈ S. If the obfuscation was ineffective, then
most likely, the higher a query from the logs is ranked in L, the more likely it
corresponds to the original user information need.

3.3 QuIPU Risk Modelling

Privacy is strictly linked with the definition of risk [40], i.e., the possibility that
an action or event generates consequences that have an impact on what users
value, in this scenario, disclosing sensitive information. The higher the risk, the
lower the privacy. For example, DP obfuscation mechanisms offer the possibility
that privacy and utility can be balanced by tuning the privacy budget ε. However,
the framework does not provide any assurance against inference attacks [48]. To
overcome this limitation, we need a formal definition of the risk against inference
in the obfuscation protocol. After the QuIA algorithm has returned the ranked
list L, the IR system is tasked to guess the original query. This inference is
based on the computed ranking, which considers the similarities between the
obfuscated queries received (potentially leaking information) and the system’s
query logs (auxiliary knowledge for a correct guess of the original user query).
At this point, the IR system strategy to guess the correct query is sequential:
knowing that the first query is the most similar to the average information need
carried by the obfuscated queries, it represents the best choice for the guess. If
the first query in the logs L is the correct query, the attack is successful, and
there is a 100% risk of correct inference. On the other hand, if the first one is not
the correct guess, the adversary tries with the second query in the list, and so
on, until the original query is guessed, decreasing the risk of success. Therefore,
the risk rt of successful QuIA in t guesses can be defined as the probability that
the IR system correctly guesses q̄ as the original query q, seeing the sets Qobf
and Qlogs, i.e., rt = P [{q̄ = q} ∩ {t ≤ k} |Qobf,Qlogs], with k the maximum
number of guessing attempts the IR system is willing to take. The upper bound
for the value of k is determined by the size of the set Qlogs. However, determining
the precise threshold t and assessing the risk the user faces is impossible without
access to the IR system’s internal data and kind of attack. Therefore, we propose
to model the malicious IR system with three kinds of attackers, representing
relevant use cases: i) the “ lazy” attacker, i.e., the one that looks only at the top
position of the ranked list L and makes only one guess; ii) the “active” attacker,
i.e., an adversary that selects the top-k queries and checks only with them if the
guess is correct; and iii) the “motivated ” attacker, i.e., the one that tries all the
queries until the original one has been found. To model the probability of the risk
a user faces against each of such attackers, we propose to use proxy indicators
computed on where the original query appears in the ranked list L: Precision at
1 (P@1) for the lazy attacker, Recall at k (R@k) for the active attacker, and
Reciprocal Rank (RR) for the motivated attacker.

Drawing inspiration from the usual ROC AUC, Figure 2 illustrates the eval-
uation plane that links the risk r of a successful QuIA and the utility u measure
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considering a set of queries Qobf(pi) – an effectiveness measure such as nDCG
in the IR case – obfuscated by a certain formal parameter pi – the ε parame-
ter in case of DP. In the risk-utility plane, the Risk-Utility Boundary line, i.e.,
the diagonal, describes two regions where the risk-utility trend f(r, u) can be:
i) above the line indicates that the utility u exceeds the associated risk r, and
ii) below the line, where u is less than r. Therefore, we can define the QuIPU
score, Equation 1, considering the different pairs (r, u) estimated by submitting
to the IR system the set of obfuscated queries Qobf(pi).

QuIPU = 2(R+ +R−) = 2

∫
R+

f (r, u) dν + 2

∫
R−

f (r, u) dν (1)

where dν represents an infinitesimal variation on the Risk-Utility Boundary line,
and the factor 2 is introduced to map the score from

[
− 1

2 ,
1
2

]
to [−1, 1] interval.

The integrals are calculated with respect to the diagonal of the plane, such that
regions where the curve lies below this diagonal, i.e., R−, are assigned negative
values, indicating that the risk r is greater than the utility u. Conversely, positive
values are computed for regions where the utility u exceeds the risk r, i.e., R+.
In Figure 2, four critical points are defined:

100%

100%

0%
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100% Risk
0% Utility

Ri
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tili
ty
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un
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ry

No Privacy Point:
100% Risk
100% Utility

Optimal Point:
0% Risk

100% Utility
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Fig. 2. Risk r vs. Utility u model to evaluate actual privacy. The four labels describe the
plane’s critical points, and the red dashed line shows the Boundary tracing two areas,
R+ and R−, where the QuIPU score is positive or negative. The curve f shows the r
vs. u trend when the system receives the queries Qobf(pi) masked with a parameter pi.

– No Utility Point: This point shows when the risk and utility are both re-
duced to 0. It corresponds to the situation where the obfuscation mechanism
fully modifies the original query, completely stopping a QuIA. However, the
user completely renounces the effectiveness of the task, i.e., the submitted
queries failed to retrieve any relevant documents from the IR system.

– No Privacy Point: This point illustrates the effect of not using the obfus-
cation protocol. The queries are not obfuscated, meaning the original query
is fully exposed to the IR system, resulting in 100% risk, i.e., the attacker
has all the information to infer correctly. Yet, utility is fully achieved, as the
system can use the original query to retrieve all the relevant documents.
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– Optimal Point: The optimal point is the best we can theoretically obtain.
The obfuscation mechanism provides complete protection against Query In-
ference attacks, i.e., 0% of risk, while maintaining maximum utility. The
user’s information need are entirely met during the retrieval without expos-
ing any information related to the original query.

– Trash Point: This is the opposite of the optimal point. The mechanism
neither obfuscates the query nor these queries can retrieve any relevant doc-
uments. This case can happen if we change the “honest-but-curious” assump-
tion to a “fully-dishonest” scenario, a.e., a phishing IR system [39, 42].

4 Experimental Evaluation

We outline here the experimental setup and compare the results observed for
the traditional and actual privacy analysis using the QuIPU framework. Further
analyses, the data used, and the source code are publicly available2.

4.1 Experimental Setup

User side. We test the QuIPU framework on three different TREC collec-
tions: Deep Learning (DL’19) [14] and Deep Learning (DL’20) [13], based on
the MS MARCO [41] passages corpus, containing 43 and 54 queries respec-
tively, and the Robust ’04 (Robust ’04) [50] which relies on disks 4 and 5 of
the TIPSTER corpus and contains 249 queries. As obfuscation mechanisms,
we consider those described in Section 2, using their implementation provided
by the pyPANTERA framework [16]. As privacy budget ε, we followed the
parametrization reported in the original papers, which is also the one used
by the pyPANTERA framework and other recent experiments [22]. In detail,
we select ε ∈ {1, 5, 10, 12.5, 15, 17.5, 20, 25, 30, 50}. The heuristics obfuscation
mechanisms, i.e., AEA [3] and FEA [26], have been parametrized using differ-
ent synonyms levels {3, 4, 5}, and sliding windows sizes {12, 14, 16}, respectively.
We generated 50 obfuscation variants for each query and mechanism configura-
tion. Finally, the IR system used as re-ranker in the post-retrieval phase of the
protocol is the neural dense model Contriever [29], as proposed in [22, 17].

IR system side. On the one hand, the honest aspect of the IR system, i.e., the
part that performs the document retrieval task, is showcased by the Contriever
model; on the other hand the curious part of the system uses as encoder model
distilbert-base-uncased [44].We use two different models for the two tasks
to obtain unbiased results, in line with [22, 17]. To simulate a realistic scenario
for the curious IR to perform the QuIA, we use as query logs the AOL collection
available in the ir_datasets catalog3. We sampled 750k queries, to which we
added the original queries as explained in Section 3.

2 https://github.com/Kekkodf/QuIPU_Framework
3 https://ir-datasets.com/aol-ia.html
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Fig. 3. nDCG@10 (Utility) when varying privacy formal parameters (PrivacyParame-
ters) of the obfuscation mechanisms: some mechanisms, such as TEM, achieve imme-
diately high performance, with unclear consequences on actual privacy.

4.2 Privacy from the Formal Parameters Analysis

The traditional privacy analysis evaluates the utility as a function of the formal
privacy parameters, e.g., ε. Figure 3 reports the results of the nDCG@10 vs the
formal privacy parameters on the three different collections analysed. Note that
the x-axis, representing the PrivacyParameter, considers both the values for the
ε parameter of the DP mechanisms and the parameters of the heuristics [3, 26].
From this traditional perspective, it emerges that with lower values of the privacy
parameters, mechanisms based on a DP strategy, like TEM or SanText, achieve
higher effectiveness for low values of the privacy parameter ε. On the other
hand, obfuscation mechanisms based on the embedding obfuscation strategies
perform with high effectiveness only if the formal parameter is high. Finally,
the Heuristics show high nDCG@10 for AEA and the worst results for the FEA
mechanism. These results show a misleading sense of privacy: high-performance
results do not imply the actual privacy of the texts, i.e., the submitted queries
are the original ones. To address this issue, we analyse the impact of obfuscation
on denying a correct inference of the original query.

4.3 Privacy Analysis using the QuIPU Framework

In this section, we report the evaluation of the actual privacy the obfuscation
mechanisms provide to the original user query. Figure 4 show the different Risk
r vs. Utility u evaluation planes on the MSMARCO Deep Learning’19 collection
obtained for the different malicious IR system attacker nature that can per-
form the QuIA, i.e., “ lazy” (Figure 4(a)), “active” (Figure 4(b)) and “motivated ”
(Figure 4(c)). The plots show that the utility of the DP mechanisms, i.e., the
nDCG@10, remains stable after an initial increase from the “No Utility Point”,



Measuring Actual Privacy of Obfuscated Queries in Information Retrieval 11

Mechanism
CMP
Mahalanobis

VickreyCMP
VickreyMhl

CusText
SanText

TEM
WBB

AEA
FEA

0.00 0.25 0.50 0.75 1.00
RiskP@1

0.0

0.2

0.4

0.6

0.8

1.0
Ut

ilit
y n

D
CG

@
10 Bou

nd
ary

(a) Lazy Attacker

0.00 0.25 0.50 0.75 1.00
RiskR@10

0.0

0.2

0.4

0.6

0.8

1.0

Bou
nd

ary

(b) Active Attacker

0.00 0.25 0.50 0.75 1.00
RiskMRR

0.0

0.2

0.4

0.6

0.8

1.0

Bou
nd

ary

(c) Motivated Attacker

Fig. 4. Resulting Risk estimated vs. Utility (i.e., retrieval nDCG@10) achieved sending
the Qobf of the MSMARCO Deep Learning’19 collection. The risk is estimated as
explained in Section 3, showing RiskP@1, RiskR@10, and RiskMRR for the different
adversaries. The utility UtilitynDCG@10 shows the nDCG@10 achieved when retrieving
the documents after the reranking phase.

see Figure 2. On the other hand, the risk in all three scenarios increases, im-
plying a high probability of discovering the real user information need from the
obfuscated queries submitted. This confirms our hypothesis: although some pri-
vacy configurations give formal and theoretically proven guarantees of privacy,
such obfuscated queries are vulnerable against the QuIA, even considering the
“Lazy” attacker (Figure 4(a)), under the false impression of effective obfuscation.
Conversely, the heuristics AEA and FEA mechanisms achieve the same utility
and risk on all the privacy configurations. The former is always allocated around
the Risk vs. Utility Boundary line, implying a risk, thus a probability of correct
inference of the original query, equal to the utility achieved. The latter is more
prone to defending user privacy against the inference of the original information
need, but renouncing more than 60% of nDCG@10.

Table 2 reports the QuIPU scores obtained analysing the Risk vs. Utility on
each set of obfuscated queries of the collections. The results show three distinct
patterns that can be traced back to the three different obfuscation strategies.
The Sampling-based mechanisms show weaker defences against the three attack-
ers, and especially against the “active” one, i.e., QuIPU score more negative. In
contrast, the Embedding Perturbation mechanisms are designed to protect user
information from attackers, yielding higher QuIPU scores even against a “moti-
vated ” attacker. This suggests that, when using as DP obfuscation mechanisms,
if the user wants to achieve strong actual privacy guarantees against the QuIA,
it should select an obfuscation relying on changing the word embeddings of the
queries. Finally, the heuristics strategies obtain a null QuIPU score due to the
stable risk and utility achieved. FEA reaches a slightly positive QuIPU score
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Table 2. QuIPU Score computed organizing the results by obfuscation strategy. com-
puted using the Equation 1, measured in terms of u = nDCG@10, and the risk r of
a successful Query Inference considering different adversary models. Positive values
correspond to a better Utility-Privacy trade-off, cf. Section 3.

Obfuscation
Strategy Mechanism Lazy Attacker Active Attacker Motivated Attacker

DL’19 DL’20 Robust DL’19 DL’20 Robust DL’19 DL’20 Robust

Sampling

CusText 0.041 0.109 0.034 -0.014 0.010 -0.084 0.020 0.074 0.028
SanText -0.247 -0.222 0.046 -0.277 -0.252 -0.237 -0.255 -0.231 0.043
TEM -0.264 -0.274 0.028 -0.264 -0.274 -0.329 -0.264 -0.274 0.027
WBB -0.005 -0.002 0.001 -0.001 -0.022 -0.011 -0.006 -0.010 0.001

Embedding
Perturbation

CMP 0.299 0.372 0.175 0.257 0.323 0.001 0.283 0.353 0.170
Mahalanobis 0.280 0.381 0.202 0.258 0.363 0.090 0.272 0.371 0.200
VickreyCMP 0.341 0.430 0.194 0.310 0.411 0.103 0.334 0.424 0.193
VickreyMhl 0.342 0.426 0.199 0.318 0.410 0.119 0.335 0.421 0.199

Heuristics AEA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
FEA 0.001 0.001 0.001 0.000 0.001 0.002 0.000 0.001 0.001

against the three attackers, implying that it is impractical for an attacker to
guess the original query even if “motivated ” to do so.

5 Related Works

Different works have been proposed to organize available privacy measures [51,
47]. Wagner and Eckhoff [51] systematically classified over eighty privacy met-
rics, offering a comprehensive framework for assessing privacy across different
domains, e.g., communication, databases, and social networks. The survey un-
derscores the significance of identifying the specific aspect of privacy that a
metric aims to quantify, suggesting nine guiding questions for selecting the ap-
propriate privacy measures. Specifically, the authors underlined the importance
of considering the adversary’s knowledge and capability when evaluating privacy.
In addition, Sousa and Kern [47] described how different mechanisms developed
for NLP tasks provide privacy for textual data and which can be the threats in
such scenarios. Moreover, Habernal [27] stressed the importance of not relying
strictly on formal analysis of DP and its application on NLP tasks, but to push
research towards a concrete measurement of the privacy provided to texts.

Traditional methods for evaluating privacy primarily focus on calculating the
failure rates of obfuscation mechanisms [11] or assessing the similarities between
original and obfuscated texts [36, 22]. On the one hand, uncertainty measures
such as Nw and Sw [24, 52] estimate the probability that a term w remains
unchanged after obfuscation and the minimum cardinality of the set of words
to which the mechanism maps w, respectively. However, such measures do not
capture if the mechanism changes the original term with a closely related one.
On the other hand, the similarity between the original and obfuscated texts is
commonly estimated using metrics like the Jaccard index or cosine similarity
between sentence embeddings computed by a Transformer model, drawing in-
spiration by the use of BERTScores used to evaluate the quality of generated
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texts [55]. Meisenbacher et al. [36] proposed the α-PUC score to compute an α
weighted mean between uncertainty, similarity measures, and utility preserved.
However, none of the above measures offer insights into the actual privacy af-
forded to the texts, nor do they assess the adversarial potential to infer the
original meaning of the obfuscated text. Blanco-Justicia et al. [5] criticize the re-
liance on formal privacy analysis solely based on the privacy budget ε parameter.
They argue that DP mechanisms employing configurations where ε > 1 lack a
comprehensive analysis of actual privacy guarantees, raising concerns about the
sufficiency of privacy protection in practice4. In addition, Damie et al. [15] in-
troduced a novel indicator to assess the risk of successful query recovery attacks
within searchable encryption protocols. The study revealed that, even without
additional background knowledge, an adversary could reconstruct the original
queries with a success rate of 85%, encouraging analysis of privacy measures
employed considering real adversarial scenarios of application.

To the best of our knowledge, this study represents an initial attempt to
bridge the gap between the evaluation based on formal parameters and actual
privacy analysis, proposing a novel effort to assess the risk of inferring the original
query from the set of obfuscations produced to protect user privacy against a
malicious IR system.

6 Conclusion and Future Work

Assessing the privacy guarantees provided to users during IR tasks remains an
open challenge. Relying solely on a formal privacy analysis considering the mech-
anism parameters is insufficient for concretely evaluating the privacy of obfus-
cation mechanisms. In this study, we introduced the QuIPU framework, a new
benchmark designed to assess actual privacy provided to queries in an obfusca-
tion protocol. We empirically evaluated the risk that an “honest-but-curious” IR
system can accurately infer the original query from the obfuscated ones received
using its queries from the logs. Our findings demonstrate that strong formal
privacy guarantees do not necessarily imply actual privacy protection. In future
work, we plan to explore additional proxy measures, e.g., the Rank-biased pre-
cision [38], to investigate their correlation with the QuIPU score. In addition,
we intend to explore the capabilities of Large Language Models in determining
whether or not a query has been sufficiently obfuscated, adopting such models
as defensive mechanisms against a successful QuIA.
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