Francesco L. De Faveri

Guglielmo Faggioli Nicola Ferro

Beyond the Parameters:

Measuring Actual Privacy in Obfuscated Texts

IIR 2024

14th Italian Information Retrieval Workshop September 5-6, 2024 - Udine, Friuli Venezia Giulia, Italy

IR & Privacy

 $oldsymbol{arepsilon}$ - Differential Privacy Based

Heuristic Based

E.g. Using the CMP mechanism with ε = 12.5: "do goldfish grow" \rightarrow "do xlvi grow", "host frangieh expands", "do goldfish grow"

$\boldsymbol{\varepsilon}$ - Differential Privacy obfuscation

Considering any pair neighbouring datasets^{*}, *D* and *D'*, a **privacy budget** $\varepsilon \in \mathbb{R}^{\dagger}$, a mechanism is ε - Differentially Private if it holds:

$$\Pr\left[\mathcal{M}(D) \in S\right] \le e^{\varepsilon} \cdot \Pr\left[\mathcal{M}(D') \in S\right] \quad \forall S \subset \operatorname{Im}(\mathcal{M})$$

Applied to **textual data**:

- <u>Embedding Perturbation</u>: CMP (2020), Mahalanobis (2020), Vickrey (2021)
- <u>Sampling</u>: CusText (2023), SanText (2021), TEM (2023)

*Datasets that differs for at most one record.

Heuristic based obfuscation

Arampatzis et al. (2013)

Obfuscate original query terms with **synonyms**, **hypernyms**, and **holonyms** from Wordnet.

E.g.: "Cat" -> **"Feline**"

"Cancer" -> "**Disease**"

Fröbe et al. (2021)

Generates **keyword** queries using a small local corpus to *obfuscate the original information need of the user*. E.g.:

"A user wants health advice while <u>hiding a potential</u> <u>disease</u>." submits to the IRS queries like "**lower heart rate**", "**forearm pain**", "**symptoms heart attack**".

What is the privacy?

PrivacyFormal PrivacyPrivacy provided by thedefinition of the mechanism.(e.g. the ε in Differential Privacy)reality.

How to measure privacy? Privacy **Formal Privacy Actual Privacy** The amount of privacy that is Privacy provided by the definition of the mechanism. provided by the mechanism in (e.g. the ε in Differential Privacy) reality.

Strategies to measure actual Privacy

Technique	Measure	PROs	CONs
Translation Based	BLEU	- Effective short n-grams comparison - Computationally efficient	- No semantic similarity - Long distance dependences
	ROUGE	- n-gram comparison - Computationally efficient	- No semantic similarity - Long distance dependences
	METEOR	- Synonyms and stemming - Paraphrasing	- Heuristic-based - Computational expensive
Lexical Based	Jaccard Index	- Lexical similarity - Computationally efficient	- No semantic similarity - No synonyms or paraphrasing
	N_w and S_w	- Lexical similarity - Measure of mechanism failure	- No semantic similarity - Easy to deceive
Contextual Based	BERTScore	- Semantic similarity - Long distance dependences	- Pre-trained model dependent - Computational expensive
	Transformers Sentence Embeddings Similarity	- Semantic similarity - Long distance dependences	- Pre-trained model dependent - Computational expensive

Adversarial Risk of Breaking Privacy

Future directions

- Are the current measure enough to evaluate privacy?
- Do we need "human assessment" to evaluate privacy (e.g. Privacy relevance judgments)?
- How can we understand if the measure is a good proxy for the probability of success for a class of attacks?

Beyond the Parameters:

Measuring Actual Privacy in Obfuscated Texts

Thanks for the attention! Question Time

Francesco L. De Faveri¹ Guglielmo Faggioli¹ Nicola Ferro¹

1: Department of Information Engineering, University of Padova, Padova, Italy

DIPARTIMENTO DI INGEGNERIA

Backup Slides

Beyond the Parameters:

Measuring Actual Privacy in Obfuscated Texts

Francesco L. De Faveri¹ Guglielmo Faggioli¹ Nicola Ferro¹

1: Department of Information Engineering, University of Padova, Padova, Italy

Backup 1 - DIfferential Privacy Mechanisms

Strategy	Mechansim	Params	Description
	СМР	-	The noise is sampled from an n - dimensional Laplace distribution of scale $\frac{1}{\varepsilon}$.
Embedding	Mhl	λ	The noise is sampled from an n - dimensional Normal distribution defined by the λ regular- ized Mahalanobis norm of the term embed- ding.
	Vickrey	t,λ	The noise is sampled as defined by the parent mechanism (CMP or Mhl) and the obfuscation term is set based on a free parameter t .
	CusText	K	Sampling of a new term is bounded to K possible terms picked using the scores computed using the distances among word embeddings.
Sampling	SanText	-	Sampling of a new term is computed with a score based on the distances among embed- dings, with terms closer to the obfuscation having a higher probability.
	TEM	β	Noise sampled from an n - dimensional Gumbel distribution is added to the scores, and the final obfuscation term is sampled accordingly to the maximum noisy score.