
EMBEDDED SYSTEMS
PROGRAMMING 2014-15

Android NDK

WHAT IS THE NDK?

The Android NDK is a set of cross-compilers, scripts
and libraries that allows to embed native code into
Android applications

Native code is compiled from C/C++ sources

Requires Android 1.5 (API level 3) or later

NATIVE CODE: WHY? (1/2)

Reason #1: you already have a native-code library,  
and wish to make it accessible to Java code without
rewriting it

NATIVE CODE: WHY? (2/2)

Reason#2: native code might be faster than bytecode

From Google’s documentation:

Bytecode recompiled by a fast JIT compiler;
overheads in passing parameters

...you should understand that the NDK will not benefit most apps. As a developer,
you need to balance its benefits against its drawbacks. Notably, using native code
on Android generally does not result in a noticeable performance improvement, but
it always increases your app complexity. In general, you should only use the NDK if
it is essential to your app—never because you simply prefer to program in C/C++

NDK: WHAT IS INCLUDED

Cross-compilers for ARMv5TE, ARMv7-A, x86 and
MIPS architectures

Native libraries (with corresponding header files) that
are “stable”, i.e., guaranteed to be supported in the
future.  
Among the libraries: libc, libm, libz, OpenGL ES libs, ...

A custom build system to ease the specification of
how your C/C++ code should be compiled & linked

Documentation and examples (of course)

APPROACHES TO NATIVE
CODE

With the Android NDK there are currently two
approaches to native code development

JNI: the application is mostly written in Java. The (few)
methods written in C/C++ are accessed via the Java
Native Interface

Native activity: entire activities are implemented in
C/C++.  
Supported in Android 2.3 (API Level 9) or later

JNI (1/5)

The Java Native Interface (JNI) is a standard Java
programming interface that allows to

call native code from Java

invoke Java methods from code written in other
languages (e.g., C/C++ or assembly)

map Java data types to/from native data types

Android adds some small extra conventions to JNI

JNI (2/5)

Native methods are declared in Java by prepending
the native keyword

Libraries providing the bytecode are loaded with the
System.loadLibrary method

Calling native code from Java

 class foo
 {
 native double bar(int i, String s);

 static
 {
 System.loadLibrary("my_lib");
 }

 ...
 }

JNI (3/5)

The C/C++ name of a native method is concatenated by
the following components:

the prefix Java_,

the mangled fully-qualified class name,

an underscore (“_”) separator,

the mangled method name,

for overloaded native methods, two underscores (“__”)  
followed by the mangled argument signature

Assigning names to C/C++ methods

JNI (4/5)

C/C++ parameters to a native method are different from the
parameters declared in Java

The first C/C++ parameter is a pointer to the JNI interface

The second parameter is a reference to the object for nonstatic
methods, and a reference to the Java class for static methods

The remaining parameters correspond to regular Java
parameters

The return value in C/C++ is the same as in Java, modulo the
mapping of C/C++ data types to Java data types

Parameters of C/C++ methods

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/design.html

JNI (5/5)

JNI provides a rich set of functions, accessible via the
JNI interface, to manipulate strings and arrays

Mapping of data types

Java type C/C++ Type Description

boolean jboolean 8 bit, unsigned

char jchar 16 bit, unsigned

int jint 32 bit, signed

String jstring Different encodings

...

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/functions.html

JNI: EXAMPLE

 package pkg;

 class foo
 {
 native double bar(int i, String s);

 static
 {
 System.loadLibrary("my_lib");
 }

 ...
 }

 jdouble Java_pkg_foo_bar(JNIEnv *env, // ptr to JNI interface
 jobject obj, // "this" pointer
 jint i, // first "real" parameter
 jstring s) // second "real" parameter
 {
 ... /* Method implementation */
 }

Java:
declaration

C:
implementation

NDK: ANDROID.MK

Purpose: making native sources known to the NDK
build system

Syntax derived from GNU Make

Easier to use than GNU Make: for instance, it is not
necessary to list header files since such dependencies
are resolved automatically

Sources can be grouped into modules (i.e., libraries)

Android.mk from the hello-jni sample project

LOCAL_PATH: where source files are located

LOCAL_MODULE: name of the module

LOCAL_SRC_FILES: source files needed to build the module

ANDROID.MK: EXAMPLE

 LOCAL_PATH := $(call my-dir)

 include $(CLEAR_VARS)

 LOCAL_MODULE := hello-jni
 LOCAL_SRC_FILES := hello-jni.c

 include $(BUILD_SHARED_LIBRARY)

NDK: APPLICATION.MK

Purpose #1: list the modules which are needed by an
application

Purpose #2: describe how the application should be
compiled, e.g. by specifying the target hardware
architecture, options for the compiler and linker, etc.

Optional

APPLICATION.MK: EXAMPLE

Application.mk from the bitmap-plasma
sample project

APP_ABI: specifies one or more architectures to
compile for. The default is armeabi (ARMv5TE)

APP_PLATFORM: target API level

 # The ARMv7 is significantly faster
 # due to the use of the hardware FPU
 APP_ABI := armeabi armeabi-v7a

 APP_PLATFORM := android-8

NDK: NDK-BUILD

The ndk-build shell script parses .mk files and manages
required modules automatically

<ndk>/ndk-build  
Build required native-code modules. The generated modules
are automatically copied to the proper location in the
application’s project directory

<ndk>/ndk-build NDK_DEBUG=1  
Build modules and include debug symbols

<ndk>/ndk-build clean  
Clean all generated modules

HOW TO USE THE TOOLS

1.Place native sources under <prj>/jni/...

2.Create <prj>/jni/Android.mk

3.Optional: create <prj>/jni/Application.mk

4.Build native code by running the ndk-build script

6. Finish building the application using the SDK tools in
the usual way

 pcte: ~ cd <prj>

 pcte: ~ <ndk>/ndk-build

NDK: A FULL EXAMPLE

Modify the “Hello World! (With Button) app

When the button is pressed, the text still changes, but  
the new text is provided by a C++ function

APPLICATION FILES

HelloWithButton.java  
Main activity, contains the Java code of the application

jni/HelloWB_JNI.cpp  
Contains the C++ code of the application.  
The “native function” returns a string that embodies a
random number

jni/Android.mk

AndroidManifest.xml

HELLOWITHBUTTON.JAVA (1/2)

package it.unipd.dei.esp1213.hellowithbutton;

import android.os.Bundle;
import android.app.Activity;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;
import android.widget.LinearLayout;

public class HelloWithButton extends Activity
{
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 // Create the TextView
 final TextView tv = new TextView(this);
 tv.setText("Press the button, please");

 // Create the Button
 Button bu = new Button(this);
 bu.setText("Press me");

 // Set the action to be performed when the button is pressed
 bu.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 // Perform action on click
 tv.setText(stringFromJNI());
 }
 });

 // Create the layout
 LinearLayout mylayout = new LinearLayout(this);

 // Add the UI elements to the layout
 mylayout.addView(bu);
 mylayout.addView(tv);

 // Display the layout
 setContentView(mylayout);
 }
...

HELLOWITHBUTTON.JAVA (2/2)

...

 // Declaration of the native stringFromJNI() method.
 // The method is implemented by the 'hello-jni' native library,
 // which is packaged with this application
 public native String stringFromJNI();

 // Declaration of another native method that is not implemented
 // anywhere; trying to call it will result in a
 // java.lang.UnsatisfiedLinkError exception.
 // This is simply to show that you can declare as many native
 // methods in your Java code as you want: their implementation
 // is searched in the currently loaded native libraries only
 // the first time you call them
 public native String unimplementedStringFromJNI();

 // Loads the 'hello-jni' library on application startup.
 // The library has already been unpacked into
 // /data/data/com.example.hellojni/lib/libhello-jni.so at
 // installation time by the package manager.
 static
 {
 System.loadLibrary("HelloWB_JNI");
 }

}

HELLOWB_JNI.CPP

 #include <jni.h>
 #include <stdlib.h> // required for rand()
 #include <stdio.h> // required for snprintf()

 // For JNI to locate your native functions automatically,
 // they have to match the expected function signatures.
 // C++ function names get mangled by the compiler
 // (to support overloading and other things) unless
 // extern "C" is specified
 extern "C" {

 /* This is a trivial native method that returns a new VM string
 * containing a pseudorandom double.
 */
 jstring
 Java_it_unipd_dei_esp1213_hellowithbutton_HelloWithButton_stringFromJNI(
 JNIEnv* env,
 jobject thiz)
 {
 char buf[64]; // local buffer
 double r;

 // Produce a pseudorandom double and place it into a C++ string
 r = (double)rand() / (double)RAND_MAX;
 snprintf(buf, 64, "Good: %f", r);

 // Convert the C++ string into something that can be shared with Java
 // This is C++: notice we use "env->..." instead of "(*env)->..."
 return env->NewStringUTF(buf);
 }

 } // end extern

ANDROID.MK

 LOCAL_PATH := $(call my-dir)

 include $(CLEAR_VARS)

 LOCAL_MODULE := HelloWB_JNI
 LOCAL_SRC_FILES := HelloWB_JNI.cpp

 include $(BUILD_SHARED_LIBRARY)

The invocation of ndk-build produces a library 
called (on *nix systems) HelloWB_JNI.so

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="it.unipd.dei.esp1213.hellowithbutton"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="8" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name="it.unipd.dei.esp1213.hellowithbutton.HelloWithButton"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 </application>
</manifest>

Automatically generated from properties that the
programmer specifies via Eclipse

ANDROIDMANIFEST.XML

http://schemas.android.com/apk/res/android

FINAL RESULT

When the button is pressed,  
a random number appears

EMULATOR

The ADT includes emulators 
for non-ARM architectures

Some architectures are supported 
only in some API levels

NATIVE ACTIVITIES

In Android 2.3 (API level 9) and later it is possible to write
entire activities in C/C++

Lifecycle callbacks (onCreate(), onPause(), ...) are
implemented in C/C++ as well

Most of the features included in Android libraries still need
to be accessed through JNI

For more info: read docs/NATIVE-ACTIVITY.html
included in the NDK documentation

CAVEATS

The JNI does not check for programming errors such
as passing NULL pointers or illegal argument types

Memory resources allocated by native code are not
managed by a garbage collector and should be
explicitly released

The NDK only provides system headers for a very
limited subset set of native Android APIs and libraries

REFERENCES

NDK page on developer.android.com

JNI specification

Android Tools Project site

developerWorks tutorial: “Reuse existing C code  
with the Android NDK”

http://developer.android.com/tools/sdk/ndk/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://tools.android.com/
http://www.ibm.com/developerworks/opensource/tutorials/os-androidndk/

LAST MODIFIED: MARCH 19, 2015

COPYRIGHT HOLDER: CARLO FANTOZZI (FANTOZZI@DEI.UNIPD.IT)
LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 3.0

mailto:fantozzi@dei.unipd.it
http://creativecommons.org/licenses/by-sa/3.0/

