
EMBEDDED SYSTEMS
PROGRAMMING 2014-15

Application Basics

APPLICATIONS

Application components (e.g., UI elements) are
objects instantiated from the platform’s frameworks

Applications are event driven  
(⇒there are callbacks, delegates, notifications...)

Many use design patterns 
(e.g., delegation, model-view-controller, ...)

APPLICATIONS AND IDES

Integrated Development Environments (IDEs) simplify
application development by

automatically setting up a default application
environment,

automatically creating skeleton code every time a
new application component is added,

allowing the programmer to design the UI in a
graphical way

Nonetheless, a lot of details must be managed by hand

APPLICATION RESOURCES

Resources: non-code files that are part of an
application

Images, sounds, videos

The application icon

The application preferences

And more

EMBEDDED APPS (1/2)

Mobile apps behave differently from PC applications

Only one app is visible at a time to interact with
the user. The operating system manages the switch
from one application to another

The visible app has no windows

Apps not interacting with the user are scheduled
differently

EMBEDDED APPS (2/2)

The operating system may decide to terminate apps
not interacting with the user so as to free up
resources

The lifecycle of apps is optimized for the
embedded setting

No page file

ANDROID: USER VS. SYSTEM

System apps do not use special APIs: they have to
go through the same public APIs available to user-
developed applications

Android can be told to make your application
replace a standard application. For instance, a user-
programmed keyboard may replace the system-
provided keyboard

This open, modular design is unique to Android

ANDROID: ADDING USER APPS

Adding applications is done through 
Android APK (.apk) packages.  
An APK package is a binary archive containing
compiled Dalvik code, non-compiled resources such
as images, and other informations for installing the
application

Every APK should be digitally signed. However, it is
not mandatory that the signature is validated by a CA

ANDROID: APP TYPES

Applications: take over the whole screen.  
Example: Android’s standard web browser

Widgets: take a small, fixed portion of the home
screen. Example: Android’s standard clock. 
(Note: UI widgets are a different thing!)

APPLICATION ISOLATION

Each application runs in its own Linux process with
its own user ID.  
The Linux OS ensures that applications cannot access
privileged OS components or hamper one another’s
memory and data

Each application runs in its own copy of the VM.  
Malfunctions cannot propagate from one application
to another

Applications communicate through content providers

APP COMPONENTS

Activity: a single screen with a user interface

Service: performs (in the background) long-running
operations (e.g., music playback). No user interface

Content provider: encapsulates data that needs to be
shared between applications. No user interface

Broadcast receiver: responds to system-wide broadcast
events (e.g., “battery low!”). No user interface

Four classes are available, one for each type of component

ABOUT COMPONENTS

An application is a mixture of components, each with
a distinct lifecycle

Any application can ask Android to start another
application’s component (e.g., the “take a shot”
activity of the camera application)

No “first” component, no application entry point
(although a “main activity” exists)

INTENTS

Activities, services and broadcast receivers are
activated by intents

Intent: asynchronous message that requests an
action

An intent may request a specific component or just
a type of component: in the latter case, it is the
system’s task to bind the intent to an available
component that performs the required action

ACTIVITIES VS. APPLICATIONS

Activity: a single, focused thing that the user can
do

Example: an activity to edit a text-only note

Application: contains activities (and other
components)

Example: a notepad application has an activity to edit
a note and another activity to manage a list of notes

ACTIVITY LIFECYCLE (1/2)

An activity passes through the following states.

Active (aka running): visible, receiving user input

Paused: partially visible, not receiving user input (e.g.,
an alert dialog is above it)

Stopped: not visible

Destroyed: removed from memory by Android

Callback methods allow an activity to perform actions
on state transitions

ACTIVITY LIFECYCLE (2/2)

Im
ag

e
fr

om
 d

ev
el

op
er

.a
nd

ro
id

.c
om

State transitions are
a consequence of
user or system

decisions.

An activity cannot
avoid state

transitions: it can
only manage them

by undertaking
appropriate actions

http://developer.android.com/reference/android/app/Activity.html

CALLBACK METHODS

onCreate()  
Called when the activity is first created

onStart()  
Called when the activity is becoming visible to the user

onResume()  
Called when the activity will start interacting with the user

onPause()  
Called when the system is about to start resuming a previous activity

onStop()  
Called when the activity is no longer visible to the user

onRestart()  
Called after the activity has been stopped, prior to it being started again

onDestroy()  
Last method to be called before the activity is destroyed

APPLICATION TERMINATION

Any activity that is not running may be terminated by
Android at any time to free up resources

The onStop() and onDestroy() methods are not
guaranteed to be called: only onPause() is

Morale: save your state  
every time your activity is paused

ORIENTATION CHANGE

Any change between portrait and landscape mode 
will cause an activity to be

paused, then

stopped, then

destroyed,

then a new instance of the activity will be created

Once again: save your state  
every time your activity is paused

BACK STACK

Android’s Activity Manager arranges activities in a
stack (the back stack) according to the order in
which they were opened

Im
ag

e
fr

om
 d

ev
el

op
er

.a
nd

ro
id

.c
om

Stopped activity

http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html

TASKS

Task: set of related activities 
(i.e., the first activity in the task called all the others)

A task is moved to the background as a whole -- and
all its activities stopped -- if the user starts a new,
unrelated task (e.g., by tapping the “Home” button
and launching a new application)

Different instances of the same activity can be
present in different tasks

THE MANIFEST FILE

The manifest (AndroidManifest.xml) of an application

declares the components of the app

declares hardware and software features (e.g., API
level, additional API libraries) required by the app

lists any user permissions required by the app

THE FIRST ANDROID APP

The application shows a button and a string of text

When the button is pressed, the text changes

APPLICATION CLASSES

View: base class for user interface components 
(both widgets and layouts)

ViewGroup: base class for layouts and views
containers. Extends View

Activity: base class for activities

LinearLayout: arranges its children in a single row
(default) or column. Extends ViewGroup

Button, TextView: UI widgets. Extend View

HELLOWITHBUTTON.JAVA (1/2)

 package it.unipd.dei.esp1112.hellowithbutton;

 import android.os.Bundle;
 import android.app.Activity;
 import android.view.View;
 import android.widget.Button;
 import android.widget.TextView;
 import android.widget.LinearLayout;

 public class HelloWithButton extends Activity
 {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 // Create the TextView
 final TextView tv = new TextView(this);
 tv.setText("Press the button, please");

 // Create the Button
 Button bu = new Button(this);
 bu.setText("Press me");

 ...

HELLOWITHBUTTON.JAVA (2/2)

 ...

 // Set the action to be performed when the button is pressed
 bu.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 // Perform action on click
 tv.setText("Good job!");
 }
 });

 // Create the layout
 LinearLayout mylayout = new LinearLayout(this);

 // Add the UI elements to the layout
 mylayout.addView(bu);
 mylayout.addView(tv);

 // Display the layout
 setContentView(mylayout);
 }
 }

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="it.unipd.dei.esp1112.hellowithbutton"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="8" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".HelloWithButton"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 </application>
</manifest>

Automatically generated from properties that the
programmer specifies via Eclipse

ANDROIDMANIFEST.XML

http://schemas.android.com/apk/res/android

 <resources>

 <string name="app_name">HelloWithButton (Froyo)</string>
 <string name="hello_world">Hello world!</string>
 <string name="menu_settings">Settings</string>
 <string name="title_activity_hello_with_button">Hello World! (With Button)</string>

 </resources>

Automatically generated by Eclipse 
when the app project is created

STRINGS.XML

<USES-SDK>: ATTRIBUTES

android:minSdkVersion (integer)  
Minimum API Level required for the app to run.  
If not properly set, the app will crash at runtime as soon as it
accesses an unsupported API

android:targetSdkVersion (integer)  
API level against whom the app has been tested. The app is still
able to run on lower API levels, down to minSdkVersion.  
If not set, it is assumed equal to minSdkVersion.

android:maxSdkVersion (integer)  
Maximum API Level on which the app can run.  
Declaring this attribute is not recommended: new versions of
Android are designed to be backward-compatible

<USES-SDK>: EXAMPLE

targetSdkVersion=8,
Android 4.2.2 (API Level 17)

targetSdkVersion=17,
Android 4.2.2 (API Level 17)

API LEVEL

The API Level is an integer that identifies the set of APIs supported
by a given version of Android

Examples:

Android 2.2 ↔ API Level 8

Android 2.3 ↔ API Level 9

Android 2.3.3, 2.3.4, ... ↔ API Level 10

Android 4.0.3, 4.0.4 ↔ API Level 15

To sum things up, each Android release is identified by a Platform
Version (e.g., 2.2), an API Level (e.g., 8) and a Version Code (e.g.,
“Froyo”)

LAST MODIFIED: MARCH 5, 2015

COPYRIGHT HOLDER: CARLO FANTOZZI (FANTOZZI@DEI.UNIPD.IT)
LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 3.0

mailto:fantozzi@dei.unipd.it
http://creativecommons.org/licenses/by-sa/3.0/

