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Overview

* What is debugging?

* Debugging support in Eclipse



What is debugging? (1)

* Debugging allows you to run a program
interactively while watching the source code and
the variables during the execution.

* By breakpoints in the source code you specify
where the execution of the program should stop. To
stop the execution only if a field is read or
modified, you can specify watchpoints .



What is debugging? (2)

* Breakpoints and watchpoints can be summarized as
stop points.

* Once the program is stopped you can investigate
variables, change their content, etc.



Debugging support in Eclipse

* Eclipse allows you to start a Java program in Debug
mode.

* Eclipse has a special Debug perspective which gives
you a preconfigured set of views. In this perspective
you control the execution process of your program
and can investigate the state of the variables.
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Eclipse Debug perspective
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Setting Breakpoints (1)

* To set breakpoints in your source code right-click in the small left margin in your
source code editor and select Toggle Breakpoint. Alternatively you can double-
click on this position.
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Setting Breakpoints (2)

* For example in the following screenshot we set a breakpoint on the line
Counter counter = new Counter();.

J] Counter,java Main.java &3

package de.vogella.debug.first;

public class Main {

IEE:
* args
%/ N
public static void main(String[] args) {
@ Counter counter = new Counter();
counter.count();
System.out.println({"We have counted " + counter.getResult())};



Starting the Debugger 1
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Starting the Debugger (2)

* After you have started the application once via the context
menu, you can use the created launch configuration again
via the Debug button in the Eclipse toolbar.

File Edit Source MNavigate Search Project Git Run Window Help

PO O

* If you have not defined any breakpoints, this will run your
program as normal. To debug the program you need to
define breakpoints.



Starting the Debugger (3)

 If you start the debugger, Eclipse asks you if you want to switch to the

Debug perspective once a stop point is reached. Answer Yes in the
corresponding dialog.

@ Confirm Perspective Switch

5—a This kind of launch is configured to open the Debug perspective whenit
@ suspends.

This Debug perspective is designed to support application debugging. It

incorporates views for displaying the debug stack, variables and breakpoint
managemenit.

Do you want to open this perspective now?

| Remember my decision

No Yes

» Afterwards Eclipse opens this perspective, which looks similar to the
following screenshot.
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Controlling the program execution (1)

* Eclipse provides buttons in the toolbar for controlling the
execution of the program you are debugging. Typically it is
easier to use the corresponding keys to control this
execution.

* You can use the F5, F6, F7 and F8 key to step through your
coding.

* The following picture displays the buttons and their related
keyboard shortcuts.
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Controlling the program execution (2)

Key

F5

F6

F7

F8

Description

Executes the currently selected line and goes to the next line in
your program. If the selected line is a method call the debugger
steps into the associated code.

F6 steps over the call, i.e. it executes a method without stepping
into it in the debugger.

F7 steps out to the caller of the currently executed method. This
finishes the execution of the current method and returns to the
caller of this method.

F8 tells the Eclipse debugger to resume the execution of the
program code until is reaches the next breakpoint or watchpoint.



Controlling the program execution (3)

* The call stack shows the parts of the program which are
currently executed and how they relate to each other. The
current stack is displayed in the Debug view .

ﬁ Debug 22 (e
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Breakpoints view and deactivating breakpoints (1)

 The Breakpoints view allows you to delete and deactivate stop points,
i.e. breakpoints and watchpoints and to modify their properties.

* To deactivate a breakpoint, remove the corresponding checkbox in the
Breakpoints view . To delete it you can use the corresponding buttons in
the view toolbar. These options are depicted in the following
screenshot.
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Breakpoints view and deactivating breakpoints (2)

* If you want to deactivate all your breakpoints you can press
the Skip all breakpoints button. If you press it again, your
breakpoints are reactivated. This button is highlighted in the

following screenshot.
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Evaluating variables in the debugger (1)

 The Variables view displays fields and local variables
from the current executing stack. Please note you need
to run the debugger to see the variables in this view .
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Evaluating variables in the debugger (2)

* Use the drop-down menu to display static variables.
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* Via the drop-down menu of the Variables view you can customize the
displayed columns. For example, you can show the actual type of each
variable declaration. For this select Layout - Select Columns... - Type.
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Changing variable assignments in the debugger

* The Variables view allows you to change the values assigned
to your variable at runtime.
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Controlling the display of the variables with Detail
Formatter (1)
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Controlling the display of the variables with Detail
Formatter (2)

e Afterwards you can use a method of this class to determine
the output. In this example the getResult() method of this
class is used. This setup is depicted in the following

screenshot.
= Edit Detail Formatter @
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Advanced Debugging

The following section shows more options you have
for debugging.



Breakpoint properties (1)

e After setting a breakpoint you can select the properties of the
breakpoint, via right-click - “Breakpoint Properties”. Via the breakpoint
properties you can define a condition that restricts the activation of this
breakpoint.

* You can for example specify that a breakpoint should only become
active after it has reached 12 or more times via the Hit Count property.

* You can also create a conditional expression. The execution of the
program only stops at the breakpoint, if the condition evaluates to true.
This mechanism can also be used for additional logging, as the code that
specifies the condition is executed every time the program execution
reaches that point.



Breakpoint properties (2)

[J] Counter.java £3
1 package de.vogella.debug.first;

2
3 public class Counter {
4 private int result = 0;
2
6= public int getResult() {
7 return result;
8 }
9
10= public void count() {
11 for (int i = 0; i < 1008; i++) {

Toggle Breakpoint

Toggle Breakpoint Enablement
Go to Annotation

Add Bookmark...
Add Task...

show Quick Diff
ShowLine Numbers
Folding

Preferences...

Breakpoint Properties... Ctrl+Double Click



Breakpoint properties (3

Properties for de.vogella.debug.first.Counter [line:12] - counk()

e Line Breakpoint

Breakpoint Properties

Type: de.vogella.debug.first.Counter
Filtering

Line Number: 12

Member: count()

& Enabled
[] Hit count: @® suspend thread () Suspend VM
[& Conditional @ Suspend when'true’ () Suspend whenvalue changes

<Choose a previously entered condition> =

Vif (i<se) {
return false;

}
System.out.println(i + " iteration");
return true;|

@ Cancel . OK




Watchpoint (1)

* A watchpoint is a breakpoint set on a field. The debugger
will stop whenever that field is read or changed.

* You can set a watchpoint by double-clicking on the left
margin, next to the field declaration. In the properties of a
watchpoint you can configure if the execution should stop
during read access (Field Access) or during write access
(Field Modification) or both.



Watchpoint (2)

9] X

package de.vogella.debug.first:

public class Counter |
@ private int result=0;
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Exception breakpoints

* You can set breakpoints which are triggered when
exceptions in your Java source code are thrown. To define
an exception breakpoint click on the Add Java Exception
Breakpoint button icon in the Breakpoints view toolbar.
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* You can configure if the debugger should stop at caught or
uncaught exceptions.



Method breakpoint (1)

* A method breakpoint is defined by double-clicking
in the left margin of the editor next to the method
header.

* You can configure if you want to stop the program
before entering or after leaving the method.



Method breakpoint

public wvoid counti) {
for {(int 1 = 0; 1 < 100; i++) |
result += i +1;
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Breakpoints for loading classes (1)

* A class load breakpoint stops when the class is
loaded.

* To set a class load breakpoint, right-click on a class
in the Outline view and choose the Toggle Class
Load Breakpoint option.

 Alternative you can double-click in the left border
of the Java editor beside the class definition.



Breakpoints for loading classes
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Step Filter

* You can define that certain packages should be skipped in
debugging. This is for example useful if you use a framework

for testing but don't want to step into the test framework
classes.

* These packages can be configured via the Window -
Preferences - Java - Debug - Step Filtering menu path.



Hit Count

* For every breakpoint you can specify a hit count in
its properties. The application is stopped once the
breakpoint has been reached the number of times
defined in the hit count.



Drop to frame (1)

* Eclipse allows you to select any level (frame) in the call stack
during debugging and set the JVM to restart from that point.

* This allows you to rerun a part of your program. Be aware that
variables which have been modified by code that already run will
remain modified.

* To use this feature, select a level in your stack and press the Drop
to Frame button in the toolbar of the Debug view .

Note: Fields and external data may not be affected by the reset. For
example if you write a entry to the database and afterward drop to a
previous frame, this entry is still in the database.

* The following screenshot depicts such a reset. If you restart your for
loop, the field result is not set to its initial value and therefore the loop
is not executed as without resetting the execution to a previous point.



Drop to frame (2)
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Remote debugging (1)

* Eclipse allows you to debug applications which runs on another
Java virtual machine or even on another machine.

* To enable remote debugging you need to start your Java
application with certain flags, as demonstrated in the following
code example.

java -Xdebug -Xnoagent \
-Djava.compiler=NONE \
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005

* In you Eclipse IDE you can enter the hostname and port to
connect for debugging via the Run - Debug Configuration...
menu.



Remote debugging (2)

 Here you can create a new debug configuration of the
Remote Java Application type. This configuration allows you
to enter the hostname and port for the connection.

Mame: |Remote example

& Connect . % Source| & Common
Project:

com.vogella.website.generator.code

Connection Type:

Standard (Sockekt Attach)

Note:
Connection Properties: Remote debugging requires that
you have the source code of the
application which is debugged
Allow termination of remote VM available in your Edipse IDE.

Host: [localhost]

Port: |8000



Exercise:
Create a Project for debugging



Some references:

* Java Debugging with Eclipse - Tutorial
http://www.vogella.com/tutorials/EclipseDebugging/article.html

» Effective Java Debugging with Eclipse
http://eclipsesource.com/blogs/2013/01/08/effective-java-debugging-with-eclipse/

* Top 10 Java Debugging Tips with Eclipse

http://javapapers.com/core-java/top-10-java-debugging-tips-with-eclipse/

* Using the Eclipse Debugger for Beginning Programmers
http://agile.csc.ncsu.edu/SEMaterials/tutorials/eclipse-debugger/

e Again! - 10 Tips on Java Debugging with Eclipse
https://blog.codecentric.de/en/2013/04/again-10-tips-on-java-debugging-with-eclipse/

* Eclipse And Java: Free Video Tutorials

http://eclipsetutorial.sourceforge.net/debugger.html

* Debugging Android applications - Tutorial
http://www.vogella.com/tutorials/AndroidDebugging/article.html

* Using DDMS
http://developer.android.com/tools/debugging/ddms.html
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