UNIVERSITA
DEGLI STUDI
DI PADOVA

Debugging with Eclipse

Ing. Sebastian Daberdaku

25/03/2014

Overview

* What is debugging?

* Debugging support in Eclipse

What is debugging? (1)

* Debugging allows you to run a program
interactively while watching the source code and
the variables during the execution.

* By breakpoints in the source code you specify
where the execution of the program should stop. To
stop the execution only if a field is read or
modified, you can specify watchpoints .

What is debugging? (2)

* Breakpoints and watchpoints can be summarized as
stop points.

* Once the program is stopped you can investigate
variables, change their content, etc.

Debugging support in Eclipse

* Eclipse allows you to start a Java program in Debug
mode.

* Eclipse has a special Debug perspective which gives
you a preconfigured set of views. In this perspective
you control the execution process of your program
and can investigate the state of the variables.

-

Eclipse Debug perspective

= Debug - de.vogella. debug.first/srcfdefvogella/debug/first/Main. java - Eclipse

M=)

File Edit Refactor Run Source Mavigate Search Project Window Help

T~ e EBd B0 @S P PR e E S

L

" [%5 pebug 52 13] 3 il = = O |69 variables 52
i
=1 [T Main {13 [Java Application] Mame
= de vogella, debug. first.Main at localhost; 20358 @ args

=-of® Thread [main] {Suspended (breakpoint at line 9 in Main))
= Main.main{5tring[1) line: 2
Bl CHiProgram Files)Javaljre6ibinjavaw. exe (06,07.2009 11:30:57)

»U

[0

Convert. java 41+ de.vogella, jdt.packa m Main. java &4 m Cournter.java

packayge de.vogella.debug. first:

public class Main |

l,."ﬂ'*
* args
&
public static void wain(String[] args) {
2l Counter counter = new Couhter():

counter.count () ;
System. out.println("We hawe counted " + counter.getBResult()):

El console &2 | Tasks
Main (1} [Java Application] C:\Program Files)Javaljreéibintjavaw, exe (06,07,.2009 11:30:57)

v’(:jc:]v

9g Breakpoints

=8

Writable Smark Insert

B a5 e >
&g~ -0

Yalue
Skring[0] {id=1a)

2]
o= Qutline &2 2R s e w ==
de.vogella.debug. first
= G} Main
et main{String[]) : woid
= % bl &8 fE-9- 70

9:1

Setting Breakpoints (1)

* To set breakpoints in your source code right-click in the small left margin in your
source code editor and select Toggle Breakpoint. Alternatively you can double-
click on this position.

[J] Comvert,java [J] FirstPdf,jawva 41F de.vogella, jdt. packa [J] Main.java &3 |J] Counter.java

package de.vogella.debug.firstc:

public class Main |

fﬁﬁ

* Args

"

public static void wain(3tring[] args) |

ot ar soninmtasrr = ooy CDuntEI();
@ Toggle Breakpoint

e havwe counted " 4+ counter.getBesulti()):

&dd Bookmark. ..
&dd Task. .,

v Shiow Quick, Diff CrrH-Shift+0
Shiow Line Mumbers
Folding 3

Preferences. ..

Setting Breakpoints (2)

* For example in the following screenshot we set a breakpoint on the line
Counter counter = new Counter();.

J] Counter,java Main.java &3

package de.vogella.debug.first;

public class Main {

IEE:
* args
%/ N
public static void main(String[] args) {
@ Counter counter = new Counter();
counter.count();
System.out.println({"We have counted " + counter.getResult())};

Starting the Debugger 1

To debug vyour
application,
select a Java file
which can Dbe
executed, right-
click on it and
select:

“Debug As” -
“Java Application”

[% Package Explorer

52 Tg Hierarchy

cRe de.vogella.debug.first

=B src

=4 de.vogella.debug.first
+ L_j Counter, 1ava

+

Open

Open With

Open Type Hierarchy
Show In

= Copy
= Copy Qualified Name

- Paste

X Delete

Build Path
Source
Refactor

g2y Import...
&2y Export...

References
Declarations

&7 Refresh

Assign Working Sets...

Run As
Debug As
Profile As
Validate
Team

_,

F3

F4
Alt+Shift-+w

Ctri+C

Ctri+Y
Delete

Alt+Shift+5
Alt+Shift+T

FS

o = = 0O [J) convert.java |J) FirstPdf.java

package de.vogella.debuc

public class Main {

/x%

* param args
» public static void r
Counter counter
N counter.count ().

System. out.print

»] 1 Debug on Server Alt+Shift+D, R
Y 7 2Javadpplication Al+Shift+D, 1

> Debug Configurations...

rer

Starting the Debugger (2)

* After you have started the application once via the context
menu, you can use the created launch configuration again
via the Debug button in the Eclipse toolbar.

File Edit Source MNavigate Search Project Git Run Window Help

PO O

* If you have not defined any breakpoints, this will run your
program as normal. To debug the program you need to
define breakpoints.

Starting the Debugger (3)

 If you start the debugger, Eclipse asks you if you want to switch to the

Debug perspective once a stop point is reached. Answer Yes in the
corresponding dialog.

@ Confirm Perspective Switch

5—a This kind of launch is configured to open the Debug perspective whenit
@ suspends.

This Debug perspective is designed to support application debugging. It

incorporates views for displaying the debug stack, variables and breakpoint
managemenit.

Do you want to open this perspective now?

| Remember my decision

No Yes

» Afterwards Eclipse opens this perspective, which looks similar to the
following screenshot.

~ Debug - de.vogella. debug. first/src/defvogellafdebugffirstiMain. java - Eclipse

mE¥]

File Edit Refactor Run Source Mavigate Search Project Window Help

S iB I Be i BH-0-Q ®C S P ET DG

B 20 B(se

i
caaa o — - O - . i _ - O ™
. ffrDeI:uug &3 e [) == | 5 B || 0= variables 3 g Breakpnlnts} =t [B
- =] Main 1) [Java Application] Mame Yalue
@ args String[0] (id=1&)

= ﬁ' de.vogella.debug.first.Main at localhost; 2038
=5 Thread [main] (Suspended (breakpaoint at ne 9 in Main))
= Main.main{String[) line: 9
gl CHiProgram Files)Javaijresibinljavaw, exe (06,07,2009 11:30:57)

=

=

-~

m Convert,java (-B de.vogella.jdt.packa (m Main.java &

package de.wvogella.debug.first:

public class Main |

= l,."*ﬂ'
* @param args
G
= public =static void main (3tring[] args)
Counter counter = new Counter (] ;
counter.count () ;

]

m Counker.java 1 P20

= B

{

Jystem. out.println("We have counted " + counter.getBesult());

=
EE Outline 23
de.vogella debug. First

= Gk_ Main
ef rraing Skring[Th ¢ woid

BB o W[y~ =0

=

' -y
Bl console 332 = Tasksw

I

HECELEE-a

Main 1) [Java Application] C:\Program Files! Javaljresibintjavaw. exe (06.07,2009 11:30:57)

Writahle

Srnart Insetk

Controlling the program execution (1)

* Eclipse provides buttons in the toolbar for controlling the
execution of the program you are debugging. Typically it is
easier to use the corresponding keys to control this
execution.

* You can use the F5, F6, F7 and F8 key to step through your
coding.

* The following picture displays the buttons and their related
keyboard shortcuts.

1 O T T

Fa Stop F& F& F7

Controlling the program execution (2)

Key

F5

F6

F7

F8

Description

Executes the currently selected line and goes to the next line in
your program. If the selected line is a method call the debugger
steps into the associated code.

F6 steps over the call, i.e. it executes a method without stepping
into it in the debugger.

F7 steps out to the caller of the currently executed method. This
finishes the execution of the current method and returns to the
caller of this method.

F8 tells the Eclipse debugger to resume the execution of the
program code until is reaches the next breakpoint or watchpoint.

Controlling the program execution (3)

* The call stack shows the parts of the program which are
currently executed and how they relate to each other. The
current stack is displayed in the Debug view .

ﬁ Debug 22 (e

= [7] Main (13 [Java Application]
= de,vogella. debog. Firsk, Main at localbhost: 1412
=l Thread [main] (Suspended)
= Main.main(String[T) line: 10
B CHProgram Files!lavaljresibintjavaw, exe (03.07,2009 09:57:46)

Breakpoints view and deactivating breakpoints (1)

 The Breakpoints view allows you to delete and deactivate stop points,
i.e. breakpoints and watchpoints and to modify their properties.

* To deactivate a breakpoint, remove the corresponding checkbox in the
Breakpoints view . To delete it you can use the corresponding buttons in
the view toolbar. These options are depicted in the following
screenshot.

% Breakpoints &2 X % = oa BB S

~ MyModelAddon [entry] - init(IEclipseContext) T
& "X PlaygroundPart [access and modification] - texkt2

]

Deactivated Click to delete one or
all breakpoints
| Hit count: @® Suspend thread () Suspend VM B Entry [| Exit

| Conditional

Breakpoints view and deactivating breakpoints (2)

* If you want to deactivate all your breakpoints you can press
the Skip all breakpoints button. If you press it again, your
breakpoints are reactivated. This button is highlighted in the

following screenshot.

(9= Yariables | %e Breakpoints &2 | & Expressions 958 |\?:3*\ 1 B | e T T O
|Skj|:| all Breakpu:uintsL_L - =

E; ruiklina 57

lickmrufi mhRimmflzmznar 1 Trarmkmuirm Fha calackinm |=|

Evaluating variables in the debugger (1)

 The Variables view displays fields and local variables
from the current executing stack. Please note you need
to run the debugger to see the variables in this view .

()= Variables &5 “ Breakpoints

Mame YWalue
< args String[0] (id=1&)
= 2 counter Counter (id=20)

E resulk 0

Evaluating variables in the debugger (2)

* Use the drop-down menu to display static variables.

)= variables 7 g Breakpoints =k =
Mame Yalue Layout
S String| ZF show Constants | Jdawva M

=l ¢ counter Counk |_I

% Show Static Variables
£ show Gualfied Names
v Show Mull Array Entries
I3 show References
Java Preferences. ..

= resulk]

de.vogella.debug. first. Counterf@557c94

* Via the drop-down menu of the Variables view you can customize the
displayed columns. For example, you can show the actual type of each
variable declaration. For this select Layout - Select Columns... - Type.

=
W, ® = Wertical Wiew Orientation | Layout »
=14 ¢ 5 Horizontal Wiew Crientation lava b
|
CC [variables Wiew Only I
0

v [| Show Columns
Select Columns. ..

Changing variable assignments in the debugger

* The Variables view allows you to change the values assigned
to your variable at runtime.

td= Vvariables 22 | ®s Breakpoints

Mame Value
® args éEtI’iI"I 0] (id=15
@ sum / 40

Change value here

40

Controlling the display of the variables with Detail
Formatter (1)

By default the Variables view uses |9=variables &3 g Breakpoints

the toSt(in%() method to determine |, _
how to display the variable. g
SR et Al Chrl
2l ri+
* You can define a Detail Formatter in S > Copy Yariables Ctrl+C
which you can use Java code to Fird i
define how a variable is displayed. ® o

s, Change Yalue. ..

de.vogel. [5] Al References. ..

* For example the tOString() method in <) Al Instances... Ckr+-ShifE+M
the Counter class may show T
meaningless information, e.g.

de.vogella.combug.first.Counter@58 ., iav Open Declared Type

7c¢94. To make this output more
readable you can right-click on the
corresponding variable and select
the New Detail Formater entry from
the context menu. . Inspect Ckel+Shift+I

Open Declared Type Hierarchy

Instance Breakpoinks, .,
3:?"':"' Watkch

Controlling the display of the variables with Detail
Formatter (2)

e Afterwards you can use a method of this class to determine
the output. In this example the getResult() method of this
class is used. This setup is depicted in the following

screenshot.
= Edit Detail Formatter @

CQualified type name:

de.vogella.debug.First, Counker

Cetail formatter code snippet {Ctrl+5pace For code assist):

IgetResult [

Enable this detail Farmatter

Advanced Debugging

The following section shows more options you have
for debugging.

Breakpoint properties (1)

e After setting a breakpoint you can select the properties of the
breakpoint, via right-click - “Breakpoint Properties”. Via the breakpoint
properties you can define a condition that restricts the activation of this
breakpoint.

* You can for example specify that a breakpoint should only become
active after it has reached 12 or more times via the Hit Count property.

* You can also create a conditional expression. The execution of the
program only stops at the breakpoint, if the condition evaluates to true.
This mechanism can also be used for additional logging, as the code that
specifies the condition is executed every time the program execution
reaches that point.

Breakpoint properties (2)

[J] Counter.java £3
1 package de.vogella.debug.first;

2
3 public class Counter {
4 private int result = 0;
2
6= public int getResult() {
7 return result;
8 }
9
10= public void count() {
11 for (int i = 0; i < 1008; i++) {

Toggle Breakpoint

Toggle Breakpoint Enablement
Go to Annotation

Add Bookmark...
Add Task...

show Quick Diff
ShowLine Numbers
Folding

Preferences...

Breakpoint Properties... Ctrl+Double Click

Breakpoint properties (3

Properties for de.vogella.debug.first.Counter [line:12] - counk()

e Line Breakpoint

Breakpoint Properties

Type: de.vogella.debug.first.Counter
Filtering

Line Number: 12

Member: count()

& Enabled
[] Hit count: @® suspend thread () Suspend VM
[& Conditional @ Suspend when'true’ () Suspend whenvalue changes

<Choose a previously entered condition> =

Vif (i<se) {
return false;

}
System.out.println(i + " iteration");
return true;|

@ Cancel . OK

Watchpoint (1)

* A watchpoint is a breakpoint set on a field. The debugger
will stop whenever that field is read or changed.

* You can set a watchpoint by double-clicking on the left
margin, next to the field declaration. In the properties of a
watchpoint you can configure if the execution should stop
during read access (Field Access) or during write access
(Field Modification) or both.

Watchpoint (2)

9] X

package de.vogella.debug.first:

public class Counter |
@ private int result=0;
public int getResult () |

-~

EX]

«~ Properties for de.vogella.debug.first.Counter - result
| Watchpoint
B int P ki
reaBpD"1 iSRS Type: de.vogela debua.first, Counter
Filkering
Field: result
Enabled
[Hit Courk:
Suspend on;
Field Access
Field Modification
Suspend Policy: |Suspend Thread v
|fah'l
B

Ik

] [Cancel

Exception breakpoints

* You can set breakpoints which are triggered when
exceptions in your Java source code are thrown. To define
an exception breakpoint click on the Add Java Exception
Breakpoint button icon in the Breakpoints view toolbar.

9= Yariables | ®o Breakpoints 3 4 w | [FHEF S| N ¥ =0

1 (] -

S Main [line: 2] - main3kring[1) |.ﬂ.|:||:| Java Exception Breakpn:uintl

* You can configure if the debugger should stop at caught or
uncaught exceptions.

Method breakpoint (1)

* A method breakpoint is defined by double-clicking
in the left margin of the editor next to the method
header.

* You can configure if you want to stop the program
before entering or after leaving the method.

Method breakpoint

public wvoid counti) {
for {(int 1 = 0; 1 < 100; i++) |
result += i +1;

BX]

H
.
= Properties for de.vogella.debug.first.Counter - count{)
tyvpe Filter tesd] Method Breakpoint
E int P i
_real_q:aln BEELE Tvpe: de.vogella,debug,first, Counter
Filtering
Method: count()
Enabled
[THit Count:
[T]Enable Candition (Ctrl+5Space for code assist)
I'i'_ Proj
SWN
Suspend on:
Method Enkry
[ImMethod Exit
Suspend Policy: | Suspend Thread v
(k'l
B

Ok

] [Cancel

Breakpoints for loading classes (1)

* A class load breakpoint stops when the class is
loaded.

* To set a class load breakpoint, right-click on a class
in the Outline view and choose the Toggle Class
Load Breakpoint option.

 Alternative you can double-click in the left border
of the Java editor beside the class definition.

Breakpoints for loading classes

= Debug - SixSigmaRCP/srefsixsigmarcp/ApplicationWorkbenchAdvisor. java - Eclipse E]@
File Edit Pydev Run Source Refactor Mavigate Search Projeck ‘Window Help
=k < D KElsp - = = S - - S T " £ F
Lir~ :Q:bd}':@@:{» Fﬁp”:ﬁ:ﬁ‘ o @ P Eﬂ}auﬁLugy
- =R R & PR G- P
%5 Debug 2 = B ||t9= variables | ®a Breakpoints 3 = O
2w~ T ENEEEIRIEE
211':; Exception: caught and uncaught
[#]™# RurtimeException: caught and uncaught
@ DBReader [line: 60] - read()
@ PrintHandler [line: 136] - createReport{IReguirementList)
@ RequirementsReader [line: 17] - readRequirements{GenericReade
@ RequirementsReader [line: 36] - convertReq{Result3et)
£ >
14| ApplicationdckionBar 1] Application'orkbench &2 P33+ = O || 5= outline &2 o] wW @ w ¥ =08
1 package sixsidmarcp; L i sixsigmarcp
Z #-“= import declarations
F®import java.io.IOException:[] = GJ idpplicationyorkbenchadyisor 1857 Oonen Tvos Hi n
Z5 @ . initialize!'WorkbenchiConFigur REn ypel erarchy
Zf public class ApplicaticonWorkbenchidvisor e @ .« createworkbenchwindowfd Open Call Hisrarchy
27 © .. getInitiahWindowPerspective] =DoW In
28 f4 private final static Logger logger @ . prestartopdy ;o void = Copy
29 /¢ Logger.getLogger (LpplicationWorkher @ a preShutdown() : boolean . .
a0 5= Copy Qualified Mame
a 31 public void initialize(IVorkbenchConfi : Paste
3z super.initialize (configurer): # Delete
33 configurer.setiavelndRestore (false
34 H R
£ > £ Source
- : Refactor
El cansole i3 2| Tasks ® @ |]
android References

Declarations

{=} Toggle Class Load Breakpaint

F4
Chrl+-alk-+H
Alt+Shift-+iw

Chrl+C

Ctri4-v

Deleke

Alt+5Shift+5
Ale+5hift+T

Step Filter

* You can define that certain packages should be skipped in
debugging. This is for example useful if you use a framework

for testing but don't want to step into the test framework
classes.

* These packages can be configured via the Window -
Preferences - Java - Debug - Step Filtering menu path.

Hit Count

* For every breakpoint you can specify a hit count in
its properties. The application is stopped once the
breakpoint has been reached the number of times
defined in the hit count.

Drop to frame (1)

* Eclipse allows you to select any level (frame) in the call stack
during debugging and set the JVM to restart from that point.

* This allows you to rerun a part of your program. Be aware that
variables which have been modified by code that already run will
remain modified.

* To use this feature, select a level in your stack and press the Drop
to Frame button in the toolbar of the Debug view .

Note: Fields and external data may not be affected by the reset. For
example if you write a entry to the database and afterward drop to a
previous frame, this entry is still in the database.

* The following screenshot depicts such a reset. If you restart your for
loop, the field result is not set to its initial value and therefore the loop
is not executed as without resetting the execution to a previous point.

Drop to frame (2)

-,

%% Debug 2 % O | A -ﬁ|-__cp|| _ﬁ"” & 7 7 O||®= Variables i3
a [T Main [Java Application] Drop To Frame Mame
4 & dewvogella.debug.first.Main at localhost:51447 o this
a4 g Thread [main] (Suspended) m result
|= Counter.count() line: 12 | o

= Main.main(5tring[]) line: 10
gl ChProgram Files\Java\jrel\bin'javaw.exe (Dec 16, 2011 11:06:10 AM)

S Brea kpoints-]

Value

Counter (id=19)
44

a

[J] Counterjava &2 [J] Main.java 1

package de.vogella.debug.first;

public class Counter {
private int result = @;

= public int getResult() {
return result;

¥

= public void count() {
for (int 1 = 8; 1 < 100; i++) {
result += 1 + 1;

¥

Remote debugging (1)

* Eclipse allows you to debug applications which runs on another
Java virtual machine or even on another machine.

* To enable remote debugging you need to start your Java
application with certain flags, as demonstrated in the following
code example.

java -Xdebug -Xnoagent \
-Djava.compiler=NONE \
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005

* In you Eclipse IDE you can enter the hostname and port to
connect for debugging via the Run - Debug Configuration...
menu.

Remote debugging (2)

 Here you can create a new debug configuration of the
Remote Java Application type. This configuration allows you
to enter the hostname and port for the connection.

Mame: |Remote example

& Connect . % Source| & Common
Project:

com.vogella.website.generator.code

Connection Type:

Standard (Sockekt Attach)

Note:
Connection Properties: Remote debugging requires that
you have the source code of the
application which is debugged
Allow termination of remote VM available in your Edipse IDE.

Host: [localhost]

Port: |8000

Exercise:
Create a Project for debugging

Some references:

* Java Debugging with Eclipse - Tutorial
http://www.vogella.com/tutorials/EclipseDebugging/article.html

» Effective Java Debugging with Eclipse
http://eclipsesource.com/blogs/2013/01/08/effective-java-debugging-with-eclipse/

* Top 10 Java Debugging Tips with Eclipse

http://javapapers.com/core-java/top-10-java-debugging-tips-with-eclipse/

* Using the Eclipse Debugger for Beginning Programmers
http://agile.csc.ncsu.edu/SEMaterials/tutorials/eclipse-debugger/

e Again! - 10 Tips on Java Debugging with Eclipse
https://blog.codecentric.de/en/2013/04/again-10-tips-on-java-debugging-with-eclipse/

* Eclipse And Java: Free Video Tutorials

http://eclipsetutorial.sourceforge.net/debugger.html

* Debugging Android applications - Tutorial
http://www.vogella.com/tutorials/AndroidDebugging/article.html

* Using DDMS
http://developer.android.com/tools/debugging/ddms.html

http://www.vogella.com/tutorials/EclipseDebugging/article.html
http://eclipsesource.com/blogs/2013/01/08/effective-java-debugging-with-eclipse/
http://javapapers.com/core-java/top-10-java-debugging-tips-with-eclipse/
http://agile.csc.ncsu.edu/SEMaterials/tutorials/eclipse-debugger/
https://blog.codecentric.de/en/2013/04/again-10-tips-on-java-debugging-with-eclipse/
http://eclipsetutorial.sourceforge.net/debugger.html
http://www.vogella.com/tutorials/AndroidDebugging/article.html
http://developer.android.com/tools/debugging/ddms.html

