
EMBEDDED SYSTEMS
PROGRAMMING 2014-15

Design Patterns

DEFINITION

Describes the key elements of the problem and the
solution in an abstract way

Applicable outside the realm of software design,
but of course software design is what we will
consider in this course

Design pattern: solution to a recurring problem

DESIGN PATTERNS

Design patterns capture solutions that

have been developed over time, so

they are not obvious, and

often they are a bit harder than first-thought or ad-
hoc solutions, but

they have proved good many times, hence

they will (probably) pay off in the long term

ELEMENTS OF A DESIGN
PATTERN

Name: makes the pattern recognizable

Problem description (with context)

Solution: describes the key elements to solve the
problem, and the relations between them. DPs for
OO software design may talk about classes and such

Consequences: pros, cons and tradeoffs of applying
the pattern

DESIGN PATTERNS FOR OO
SOFTWARE: CLASSIFICATION

Behavioral patterns: discuss algorithms and
communication paths to manage the information flow
within a system

Structural patterns: show how to compose a large
structure out of simpler ones

Creational patterns: aim at making a design
independent of how its objects are created,
composed and represented

WHAT WE WILL SEE

Behavioral patterns: Delegation, Target-Action,
Command, Mediator, Observer

Structural patterns: Model-View-Controller,
Composite, Façade, Proxy

Creational patterns: Builder, Singleton

NOTATION (1/2)

Class

Method()

Variable BaseClass

SubClass

Class

Inheritance

for(...)
{
 /* ... */
}

Pseudocode

AbstClass

Method()

Variable

Abstract class

Drawing

NOTATION (2/2)

“Is part of”
“Is an aggregation of”

Shape

“Uses”
“Keeps a reference to”

Server Receiver

“Creates”
“Instantiates”

Calc Matrix

BEHAVIORAL  
DESIGN PATTERNS

DELEGATION

Problem: how to modify complex objects 
without subclassing them

Solution:
custom code for the new behavior is put inside a
separate object (the delegate);
from time to time, the complex object calls the
methods of the delegate to run its code

DELEGATION: STRUCTURE

Invoker

Delegate

Execute()

ConcreteDelegate

Execute()

state

Delegator

Execute() Action();

DELEGATION: EXAMPLE (1/2)

applicationDidEnterBackground: is part of
the protocol for the so-called application delegate,
which manages the application lifecycle in iOS

applicationDidEnterBackground: is invoked
immediately after the application is moved to the
background

UIApplication
instance

HelloWithButton
instance

applicationDidEnterBackground:

DELEGATION: EXAMPLE (2/2)

In iOS, delegate methods are typically grouped into
Objective-C protocols, which specify the methods
that must be implemented by the delegate

@protocol GeometricObject
- (double) Distance; // Required method
// ...
@optional
- (double) Area; // Optional method (Obj-C 2.0)
@end

@interface Poiint: NSObject <GeometricObject>
//... No need to declare Distance
@end

@implementation Poiint
- (double) Distance { /*... Implementation goes here*/}
//...
@end

TARGET-ACTION

Problem: how to notify an application when the user
interacts with a UI object

Solution: the UI object sends a message (the action)
to another, previously-specified object (the
target).  
The target can then perform the appropriate action

TARGET-ACTION: STRUCTURE

Invoker Target

Action()

state

Receiver

Execute() DoSomething();

TARGET-ACTION: EXAMPLE

In iOS, the UIControlEventTouchUpInside event is
generated every time a button (UIButton class) is pressed.
The event can be used to invoke an action method in the
view controller (UIViewController class)

The connection between the button and the view controller
can be performed in the IDE or in the source code

Im
ag

e
fr

om
 t

he
 iO

S
D

ev
el

op
er

 L
ib

ra
ry

COMMAND

Problem: how to issue requests to objects without
knowing

1. the details of the operation being requested,

2. the receiver of the request

Solution: turn the request itself into an object. An
abstract Command class declares the interface 
for executing operations

COMMAND: STRUCTURE

Client

Invoker Command

Execute()

ConcreteCommand

Execute()

state

receiver->Action();

Receiver

Action() receiver

MEDIATOR

Problem: how to manage the proliferating
connections inside a set of objects, connections that
arise from distributed behavior

Solution: centralize communication in a separate
mediator object. Now the objects communicate
through the mediator

Consequence: many-to-many interactions are
replaced with one-to many interactions

MEDIATOR: STRUCTURE

Mediator

ConcreteMediator

Colleague

ConcreteColleague1 ConcreteColleague2

mediator

OBSERVER

Problem: how to maintain consistency between
related objects

Solution: store information of common interest in a
new subject object. Objects that need to maintain
consistency should register with the subject as
observers to be notified of any change

Consequences: difficult to evaluate the implications of
a state change

OBSERVER: STRUCTURE

Subject

Attach(Observer)
Detach(Observer)
Notify()

ConcreteSubject

GetState()
SetState()

subjectState

Observer

Update()

ConcreteObserver

observerState

Update()

for all o in observers
 o->Update();

return subjectState;

observerState =
 subject->GetState();

observers

subject

STRUCTURAL  
DESIGN PATTERNS

MODEL-VIEW-CONTROLLER

Problem: how to design an application that reads, modifies,
writes and visualizes data

Solution: divide the application’s classes into 
three functional areas

Model: contains the application’s data
View: manages the UI, hence it displays data among
other things
Controller: coordinates the application by interacting
with both the model and the view: it processes data
from the model according to user input received from
the view, and it displays data by sending appropriate
commands to the view

M-V-C: STRUCTURE

The model decides how data can be accessed

The model knows nothing about the user interface:  
no direct communication with the view

Ideally, the model can be reused in several applications

Im
ag

e
fr

om
 t

he
 iO

S
D

ev
el

op
er

 L
ib

ra
ry

http://developer.apple.com/library/ios/%23documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html

IOS: M-V-C AND DELEGATION

M-V-C is compulsory in iOS; see also the “Controller
Object” page in the iOS Developer Library

http://developer.apple.com/library/ios/%23documentation/General/Conceptual/DevPedia-CocoaCore/ControllerObject.html

COMPOSITE

Problem: how to compose simple objects to
represent part-whole hierarchies, with the possibility
of accessing different levels of the hierarchy in a
uniform fashion

Solution: compose objects into tree structures. The
root of the tree is an abstract class that define an
interface for accessing and managing children. The
interface is implemented by the internal nodes of the
tree

COMPOSITE: STRUCTURE

Client Component

Operation()
Add(Component)
Remove(Component)
GetChild(int)

Composite

Operation()
Add(Component)
Remove(Component)
GetChild(int)

Leaf

Operation()
for all g in children
 g.Operation();

children

COMPOSITE: CONSEQUENCES

The design may be overly general

Difficult to define necessary, common methods in the
abstract class, where nothing is known about the
children

Each children can have only one parent

Issue: traversing the composite structure. Simplified if
references from children to parents are maintained

Possible issue: child ordering

FAÇADE

Problem: how to provide a unified interface to a set
of facilities

Solution: introduce a façade object that provides a
single, higher-level interface to the underlying facilities

FAÇADE: STRUCTURE

Façade

Class1

Class2 ConcreteClass3

Class_n

Class3

PROXY

Problem: how make a complex object appear as
instantiated and available, while its expensive
allocation is actually deferred to the moment when
the object is accessed

Solution: provide a stand-in (proxy) for the real
object. The proxy takes care of instantiating the real
object when needed

Consequences: a level of indirection is introduced

PROXY: STRUCTURE

Client

Proxy

Request()
...

...
RealSubject->Request();
...

Subject

Request()
...

RealSubject

Request()
...

CREATIONAL  
DESIGN PATTERNS

BUILDER

Problem: how to create several (the number is
unknown a priori) representations of an object

Solution: separate the construction of the object from
its representations. Create many builder objects that
operate under the guidance of a single director
object

BUILDER: STRUCTURE

Director

Construct()

Builder

BuildPart()

ConcreteBuilder

BuildPart()
GetResult()

for all objects in structure
 builder->BuildPart();

builder

Product

SINGLETON

Problem: how to ensure that a class has exactly one
instance and that the instance is easily accessible

Solution: make the class itself responsible for
keeping track of its sole instance. The class also
provides a documented way to access the instance

Consequences: it is easy to allow a fixed, greater-than-
one number of instances

SINGLETON: STRUCTURE

Singleton

static Instance()
SingletonOperation()
GetSingletonData()

static uniqueInstance
singletonData

return uniqueInstance;

MORE ON DESIGN PATTERNS

Classic book: “Design Patterns: Elements of Reusable
Object-Oriented Software” by E. Gamma et al.
Addison-Wesley, 1994. ISBN-10: 0201633612

Android:“Android UI Design Patterns”.  
https://developer.android.com/design/patterns/ does
not talk about DPs

Apple platforms: “Design Patterns”, “App Design
Basics”, “Basic Programming Concepts for Cocoa”

https://www.youtube.com/watch?v=M1ZBjlCRfz0
https://developer.android.com/design/patterns/
https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/DesignPatterns.html
http://developer.apple.com/library/ios/%23documentation/iphone/conceptual/iphoneosprogrammingguide/AppDesignBasics/AppDesignBasics.html
https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/

LAST MODIFIED: MARCH 23, 2015

COPYRIGHT HOLDER: CARLO FANTOZZI (FANTOZZI@DEI.UNIPD.IT)
LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 3.0

mailto:fantozzi@dei.unipd.it
http://creativecommons.org/licenses/by-sa/3.0/

