EMBEDDED SYSTEMS

PROGRAMMING 2014-15

Language Basics

BUUSIA ‘WIN3SN |, S9YISIIOISILISUNY|
J9p|3 a3 [93anug 4931314 Aq ,|9qeg JO JaMO1 By,

ABOUT THE LANGUAGES

s C (1972)

¢ Designed “to replace assembly language™ and still being efficient
¢ Standard: ISO/IEC 9899:201 | (latest version, december 201 I)

o C++ (1983)

¢ Designed to add object orientation to C while still allowing low-level
(sometimes nasty) operations. 99.9% compatible with C.

¢ Standard: ISO/IEC 14882:201 1 (latest version, september 201 1)

¢ Java (1993)

¢ Designed to be easier and less error-inducing than C++

¢ Standard: none, interested parties decide the way to follow via the JCP

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://en.wikipedia.org/wiki/ISO/IEC_14882

PARADIGMS

The aforementioned languages can be considered

“ imperative
The program is composed by a series of statements
that dictate what should be done

¢ structured
Control structures (loops, etc.) are available

¢ procedural
Control structures called “subroutines’ are available

¢ for C++ and Java: object-oriented

OBJECT ORIENTATION

¢ Several modern programming languages embrace
the object-oriented (OO) paradigm

¢ Data and code must/can be encapsulated
into special structures called objects

¢ Encourages associations with real-world entities,
which should make programming easier

¢ Favors code modularity

¢ More about OO programming in a few lessons

FORMATTING

¢ The following rules apply to all 3 languages
(C, C++, Java)

¢ White spaces separate names and keywords

¢¢ I

¢ Statements are terminated by a *;

COMMENTS

¢ The following rules apply to all 3 languages
(C, C++, Java)

¢ Anything from “/ /" to the end of a line is a comment

¢ Anything enclosed between*/*" and“* /" is a
comment

COMMENTS: JAVA

¢ |n Java,a comment starting with two asterisks is a
documentation comment

{
/** Sample documentation comment */ ;

e

& A documentation comment describes the declaration
that follows it

¢ Many IDEs are able to handle and/or extract
documentation comments

&

&

&

The following rules apply to all 3 languages
(C, C++, Java)

A name includes letters, numbers and * .
The first character must be a letter

No white spaces allowed inside a name

Names are case sensitive

VARIABLES

¢ The following rules apply to all 3 languages

(C, C++, Java)

¢ The languages are statically-typed: all variables must be
declared before use

¢ A declaration contains the data type and the name of the
variable

¢ A default value may be optionally specified

VARIABLES: INITIALIZATION

¢ Java:if no value is provided, variables are initialized to
zero by default

o C, C++:if no value is provided, variables assume a
random value

PRIMITIVE DATA TYPES (1/2)

¢ The following data types are common to all 3 languages
(C, C++, Java)

e S rem
32-bit computer

¢ short: | 6-bit signed two's complement integer
¢ int: 32-bit sighed two's complement integer

¢ float: 32-bit IEEE 754 floating point
¢ double: 64-bit IEEE 754 floating point

PRIMITIVE DATA TYPES (2/2)

¢ The following data types are common to all 3
languages (C, C++, Java)

¢ Enumerated type (enum): a set of named values.
Use enum types to represent a fixed set of constants
known at compile time

http://en.wikipedia.org/wiki/Value_(computer_science)

PRIMITIVE DATA TYPES: JAVA

¢ byte: 8-bit sighed two’s complement integer
¢ boolean: only two values, i.e. true and false

¢ char: | 6-bit Unicode character

¢ All the integer types are always signed

PRIMITIVE DATA TYPES: C, C++

¢ bool:only two values,i.e. true and false
s char: 8-bit character

¢ void: generic identifier, does not imply type

¢ Integer data types can be unsigned

¢ Pointers to data (more on this later)

PRIMITIVE DATA TYPES:

FlaslR iR

¢ All 3 languages:

short n = 0x1234; ,
int 1 = -100000;
double p1i = 3.14;

enum g = {alpha, beta{ gamma } ; |

¢ Java:

boolean result = true;

char capitalC = 'C'; |
i IR A——

EXAMPLES (2/2)
& Cand C++:

bool result = true;

unsigned short 7 = 60000;

int * p; // pointer to integer

ARRAYS

¢ The following rules apply to all 3 languages
(C, C++, Java)

¢ An array is a container that holds a fixed number L
of values of the same data type

¢ L is established when the array is created

¢ The i-th element of an array A is identified by A[1],
with i ranging from O (zero) to L-|

ARRAYS: EXAMPLES

¢ Definition of an array of integers in Java:

int[] A = new 1int[10]; {
B

int[] B = {3,4,7,6,2}; // 1=5 |

¢ Definition of an array of integers in C and C++;

int A[10]; {

int B[] = {3,4,7,6,2}; // L=5

SILUNEN

¢ Java: Unicode character strings are a primitive data
type handled through the String class.
Once created,a String object cannot be changed.

¢ C++: no strings, but the standard string class
emulates them via null-terminated arrays of char

¢ C:no strings, no libraries,
only null-terminated arrays of char

STRINGS: EXAMPLES

¢ Java
String Greetings = "Hello";!
e —— 7 ————
e C++
string Greetings = "Hello";
string Greetings ("Hello"); /* as above */i
e ——— o N S ——
e C

char Greetings[] = "Hello"; /* 6 bytes */I
e ——— —— —— — ——

CONSTANTS

® To declare a variable as constant

¢ Java: prepend the £inal keyword

e C,C++:prepend the const keyword

OPERATORS

o Common to all 3 languages (C, C++, Java)

¢ Assignment: =

B AithpeticdE e/ S e
® Bitwise: & | ~ * << >>
Relatiopalii==gnl="rac=@t S=u <" >

s Conditional: && ||

OPERATORS: JAVA

¢ The + operator is a concatenation operator when

at least one of its operands is a string
(more about strings later)

OPERATORS: EXAMPLES

¢ The following expressions are equivalent

1++;

FUNCTIONS

¢ Function: piece of code that can be invoked to
perform a specific task

&

|dentified by a function name

¢ Can receive one or more input parameters

&

Can return at most one output parameter

&

Java: no functions, only methods (e.g., functions inside
a class)

DECLARATION

B AR A0

¢ Declaration: only the name and parameters (i.e., the
function prototype) are specified

¢ Definition: code for the function (i.e., the function
implementation) is provided

¢ Declaration and definition can be provided together
or kept separate

® Mutatis mutandis, the same can be said also for
variables, methods, classes...

® Declarations in C and C++

void f (void);
float generate random number (void) ;

void close file(int file id);

int sum(int a, int b);

int sum(short a, short b); // Functions with the same name can
// coexist as long as they have a

x
// different prototype ("overloading") ;
S —— — - —— —

RETURN

¢ C, C++, Java:
used to specify the return value of a function
or a method

® Terminates the execution of the function/method

HEADER FILES (1/2)

& C, C++: contain declaration of variables and classes,
prototypes of library functions, ...
Use the .h extensions.
Can be included (and therefore shared) by many
source files.

¢ #include directive

EXAMPLE: C++

® sum.h: contains the declaration of function sum

#ifndef SUM H // To avoid multiple declarations
#define SUM H

int sum(int a, int b); ‘
#endif '

@

sum.cpp: contains the definition of function sum

#include "sum.h"

/

int sum(int a, int b) i
{

return a+b;

¢ program.cpp: uses function sum

#include "sum.h"

{

result = sum(quantityl, quantity?2); i

TP —— B——

HEADER FILES (2/2)

¢ Java: no header files. Identifiers are automatically
& extracted from source files,

¢ read from dynamic libraries

PACKAGES AND NAMESPACES

¢ Java: Package. C++: Namespace

¢ Purpose: grouping names into contexts so as to avoid
naming collisions

¢ You must use the fully qualified name of an element in
a package/namespace, unless you previously declared
that the package/namespace is being used

EXAMPLE: JAVA

package foo;

public class Global
{

public static int bar; // more on static later

} -)]

In another source file:

import foo; // import the package

++foo.Global .bar; // fully qualified name

++Global .bar; // short name)

¢ Code not explicitly declared within a package goes
into the unnamed package

EXAMPLE: C++

namespace foo J

{

int bar; // Inside a namespace, but not inside a class

In another source file:

using namespace foo; // import the namespace i
++foo: :bar; // fully qualified name i
++bar; // short name i

¢ Code not explicitly declared within a namespace goes
into the global namespace

ENTRY POINT OF A

_PROGRAM

¢ Java:“main (..) " method of the entry class (can be
specified if the program is inside a JAR)

o C,C++:"main(...) " function

¢ The“.” in“main (...) ” indicates the program’s parameters

¢ Syntax for parameters is fixed

“HELLO WORLD!”: JAVA

¢ Hello.java

class Hello

{
public static void main (String[] args)
! System.out.printf ("Hello World!\n");
}
) |

“HELLO WORLD!”: C

¢ Hello.c

#include <stdio.h>

int main (1nt argc, const char *argv][])

{

printf ("Hello World!\n");

return 0; |

“HELLO WORLD!": C++

¢ Hello.cpp

#include <stdio.h>

int main (1nt argc, const char *argv][])

{

printf ("Hello World!\n");

return 0; |

“HELLO WORLD!”: TRUE C++

¢ Hello2.cpp

#include <iostream>

int main(int argc, const char *argv][])

{

std: :cout << "Hello World!" << std::endl;

return 0;
l

CONDITIONAL EXECUTION

¢ Common to all three languages

¢ 1f(..) {..} else {..} construct:
the boolean condition inside (...) is calculated;

if it evaluates to true, then the code inside the former
pair of curly braces is executed, otherwise the code
inside the latter pair

® The else {} partis optional:if it is not specified and
the condition evaluates to false, no code is executed

EVALUATION RULE

¢ Beware of the evaluation rule for subclauses!

if ((c<10) || ((a==1) && (a<c++))) {..} |

® Short-circuit evaluation: subclauses are evaluated
from left to right and the evaluation stops as soon as

the boolean value of the whole clause is univocally
determined

¢ Can be an issue if some subclauses perform
assignments or have other side effects

SWITCH(...)...CASE

¢ Common to all three languages

¢ The (non-boolean) expression following switch is
evaluated, then the case clause associated with the
value is executed

® No case for the value: no code is executed

¢ default keyword (optional): used to label a block of
statements to be executed if no case matches

switch (n)

{

case O:

/* Code to execute when n

break;

case 1:
case 4:
case 9:

/* Code to execute when n

break;

case 3:
case b:
case 7/:

/* Code to execute when n

break;

default:

/* Code to execute in all

for instance,
break;

}

R ———

when n=2

is zero */

is a perfect square */

is a small prime number */

the remaining cases,
or n=8 or... */

Adapted from Wikipedia

LOOPS (1/3)

¢ Common to all three languages

¢ for(..) loop

for(var 1nit; exit condition; var 1ncr) |

{
//code

J - o]

¢ The loop is executed as long as the condition is true
(possibly forever)

LOOPS (2/3)

¢ Common to all three languages

¢® while(...) loop
while (ex1t condition) ,

{
//code ‘
} -]

¢ The loop is executed as long as the condition is true
(possibly forever, possibly zero times)

LOOPS (3/3)

¢ Common to all three languages

¢ do..while(...) loop

do |
{
/ /code

J
while (ex1t condition); |

¢ The loop is executed as long as the condition is true
(possibly forever, at least one time)

LOOPS: EXAMPLES

¢ C,C++ Java

for (1=0; 1<10; 1i++) { A[1]=10-1; } }

1 = 0;
while (i<10) { B[1i]=10-1i; i++; }

1 = 0;

do { C[i]=10-i; i++; } while(i<10); |

¢ At the end of the program,A=B=C

¢ Common to all three languages

¢ Terminates the execution of one of the following:

ShET Cila)r L dase
for (..) loop
while (...) loop

do..while (..) loop

BREAK: EXAMPLE

¢ A fourth way to initialize an array

1 = 0;
while (1!=0)
{

D[1]=10-1;
it++;

1f (1 >= 10) break;

¢ C and C++: transfers execution to a specific
source position, identified by a label

while (1)

{ |

/* Do something */

if (condition) goto foo;

/* Do something else */

}

foo: 1

++v; // First line executed after the goto)

¢ goto gained a bad name; it is seldom used nowadays

¢ Java: although reserved as a keyword, goto is not
used and has no function

GOTO CONSIDERED HARMFUL

“For a number of years I have been familiar |
with the observation that the quality of
programmers is a decreasing function of the
density of ‘go to’ statements they produce |...]
The ‘go to’ statement should be abolished from
all higher level programming languages”
Edsger W. Dijkstra

Communications of the ACM
March 1968

http://dx.doi.org/10.1145/362929.362947

POINTERS (1/3)

¢ C and C++ only. No pointers in Java!

¢ A pointer is a data type that do not contain data:
it contains the address of data stored elsewhere

p IS a pointer to a

POINTERS (2/3)

¢ Definition of a pointer

. P
1nt} P
¢ Assignment of an address to a pointer via the
reference operator &

¢ Access to pointed data via the dereference
operator *
b = *p; // b=a
*

p = 10; // a=10

POINTERS (3/3)

¢ The size of a pointer is equal to the size of addresses
on the host machine (nowadays, 32 or 64 bits)

¢ A pointer may be NULL
(i.e., it does not point to anything valid)

¢ |If a pointer is not NULL, there is no way to tell
whether it points to valid data or not

VOID POINTERS (1/2)

¢ void pointers point to a value that has no type
(and thus also no specified length)

¢ void pointers can point to any kind of data
but cannot be directly dereferenced

void f(vold* data, int data type)
{ |
char * pc;
int * pij;
1f (data type == 1) {
pc =(char*)data; // cast to char

// use data as char

}

else 1f (data type == 2){
pi = (int*)data; // cast to int
// use data as 1int

} |

VOID POINTERS (2/2)

¢ C allows implicit conversion from void* to other
pointer types

¢ C++ does not
(an example of incompatibility between C and C++)

void f(vold* data, int data type)
{ |
char * pc;
int * pij;
1f (data type == 1) {
pc = data; // OK in C, not OK in C++
// use data as char
}
else 1f (data type == 2){
pi = data; // OK in C, not OK in C++
// use data as int

) |

POINTER ARITHMETIC

¢ Cand C++ only

¢ Arithmetic operators can be applied to pointers

¢ When calculating a pointer arithmetic expression, the
integer operands are multiplied by the size of the
object being pointed to

int * p; /
int * g = p-1; // if sizeof (int)=4, g=p-4
p++; //p=p+4

2 —_—

e ———

MALLOC, FREE

¢ C: dynamic memory must be allocated with the malloc
stdlib function, and must be explicitly released with free

¢ C++:dynamic memory can be managed with the library
functions malloc and free, or with the new and delete

language operators

#include <stdlib.h>)

unsigned char *color; // A color in RGB format

color = (unsigned char *)malloc (3

) ;
color[0] = color[l] = color[2] 0;

|

free(color); .
e ——— — —— — 4———4

LAST MODIFIED: MARCH 12,2015

COPYRIGHT HOLDER: CARLO FANTOZZ| (FANTOZZI@DELUNIPD.IT)
LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 3.0

mailto:fantozzi@dei.unipd.it
http://creativecommons.org/licenses/by-sa/3.0/

