
EMBEDDED SYSTEMS
PROGRAMMING 2014-15

Multitasking

PARALLELISM

Bit-level parallelism: increasing the word size

Instruction-level parallelism: adding more functional
units that can operate in parallel

Task parallelism: adding multiple processors/cores to
execute multiple programs concurrently

“Law of diminishing returns” applies

PROCESSES AND THREADS

Process (aka task): an instance of computer program
currently being run by the operating system.  
Different processes do not share resources

Thread: a unit of processing handled by the operating
system scheduler.  
A process may contain multiple threads sharing the
resources of the process (memory address space, file
handlers, etc.)

MULTITASKING (1/3)

(More appropriately: multithreading)

Is the ability of handling multiple streams of
execution (SEs) concurrently.  
The number of SEs may be higher than the number of
execution units (EUs)

Multiple EUs available: parallelism

Only one EU available: illusion of parallelism

MULTITASKING (2/3)

Cooperative multitasking  
SEs voluntarily release EUs.  
If SEs do not cooperate, the system malfunctions.  
Old versions of Mac OS and Windows worked this way

Preemptive multitasking  
SEs are forcibly removed from EUs when the OS decides it is
time to do so.  
SEs reliably receives a slice of execution time proportional to
their importance  

CONCURRENT PROGRAMMING

Programming with multiple streams of execution
(processes, threads)

SEs can communicate with one another: this fact may
cause interference

Machine-level instructions in different SEs are
interleaved in an unpredictable, non-deterministic way.
If an order is required, it must be imposed explicitly

CONCURRENCY ISSUES (1/2)

Thread interference: race condition  
Multiple SEs manipulate common data (e.g., increment
a common variable) assuming a particular interleaving
of operations which is not always true

Memory consistency errors  
A SE reads data being concurrently manipulated by
another SE before the manipulation is over: retrieved
data are inconsistent

Solution: locking

LOCKING

Several forms, depending on circumstances

Access to the shared resource is serialized (mutual
exclusion) via a binary semaphore (aka mutex)  
for both read and write operations

Read access is always allowed, only write access is
serialized

(Read and/or write) access is allowed to k≥2 streams
via a counting semaphore

CONCURRENCY ISSUES (2/2)

Mutual exclusion, locking, and synchronization in general,
introduce contention

Starvation  
A SE is unable to gain regular access to the resources 
it needs, therefore it cannot make progress.  
Livelock: starvation caused by SEs being too busy
synchronizing with each other to perform actual work

Deadlock  
Two SE are waiting for the other to finish,  
and thus neither ever does

THREAD SAFENESS

A piece of code is said to be thread safe if it can be
safely invoked by multiple, simultaneous threads

Thread-safe code is guaranteed to be free from race
conditions and memory consistency issues

Thread-safe code is usually — but not necessarily —
designed to limit contention

MULTITASKING (3/3)

Android, iOS, Windows Phone: modern OSs 
with full support for preemptive multitasking

Multiple SEs can execute concurrently...  
...but, in general, multiple apps can not

LIMITATIONS

Android, iOS, Windows Phone:
the one app in the foreground executes without need
to ask permissions,
apps in the background must take explicit action

LIMITATIONS: WHY? (1/2)

Every application uses up resources (memory,
energy if the app is running) that are limited in
embedded systems

If resources are needed
the foreground app cannot be affected 
because the user would immediately notice,
all other apps are expendable

LIMITATIONS: WHY? (2/2)

Windows Mobile introduced the idea of politely
ask background apps to close so as to reclaim
resources

Some apps needed more resources just to close
themselves, causing a complete system lock-up

Solution: “close” has been replaced by “kill”

HARD TIMES
FOR EMBEDDED DEVELOPERS

The user doesn’t care if apps in  
the background have limitations

Recall the UI model
The user knows nothing about paused/stopped/killed...
He sees all apps as “running” (available)

It is the developer’s task to manually maintain the illusion
of multitasking if the application needs it  
(e.g., to load a web page in the background, to play music...)

The platforms help the developer via suitable APIs

© Nokia

http://www.youtube.com/watch?v=RjWBOhdw4ro

ANDROID: PROCESSES, THREADS

When the first component of an app starts, the  
OS creates a new process (a Linux process) with  
a single thread of execution: Java’s main thread

By default, all components of the app will run in this
very thread; execution requests are put in a queue

The main thread is also the user interface thread 
(“UI thread”) in Android

MORE PROCESSES

Different components of an app can run in separate
processes

Components of different apps can run in the same
process, provided such apps are signed with the same
certificate

In the manifest, set the android:process and
android:multiprocess attributes of the app
components appropriately

MORE THREADS

Long operations in the main thread (e.g., retrieving
data from a database or a network server) will block
the whole UI

Do not block the main thread:  
spawn additional threads (aka “worker threads”)

Use Java facilities (Thread class, etc.)

Use additional classes provided by Android

THREADS AND UI TOOLKIT

Do not access the Android UI toolkit  
from outside the main thread (i.e., from worker threads):  
the Android UI toolkit is not thread safe

Activity.runOnUiThread(Runnable)  
Posts the Runnable to the event queue of the main thread

View.post(Runnable)  
View.postDelayed(Runnable, long)  
The Runnable is added to the message queue of the object,
and executed later (after at least the specified delay, in the case
of postDelayed(…)) in the main thread

UI TOOLKIT: EXAMPLE

When a button is tapped, the following code
downloads an image from a separate thread and
displays it in an ImageView

 public void onClick(View v)
 {
 new Thread(new Runnable() {
 public void run()
 {
 final Bitmap bitmap = loadImageFromNetwork("http://example.com/image.png");
 mImageView.post(new Runnable() {
 public void run()
 {
 mImageView.setImageBitmap(bitmap);
 }
 });
 }
 }).start();
 }

C
od

e:
 G

oo
gl

e

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

HANDLER CLASS

Receives messages and runs code to handle the
messages (handleMessage() method)

An new instance of Handler can be connected to an
existing thread or can run in a new thread

Connect an instance of Handler to the main thread
to safely manage messages that imply changes to the UI

ASYNCTASK CLASS

Allows to perform background operations and publish results
on the main thread while hiding Threads and Handlers

Must be subclassed to be used

Override the doInBackground(…) method to provide the
code to be executed (compulsory)

Override the onPostExecute(Result result)
method, which receives the results from the background
execution, to process them in the main thread

ASYNCTASK: EXAMPLE

Downloading an image with the AsyncTask class

C
od

e:
 G

oo
gl

e

 public void onClick(View v)
 {
 new DownloadImageTask().execute("http://example.com/image.png");
 }

 private class DownloadImageTask extends AsyncTask<String, Void, Bitmap>
 {
 // What to do; guaranteed to run in a worker thread
 protected Bitmap doInBackground(String... urls)
 {
 return loadImageFromNetwork(urls[0]);
 }

 // Processing of the result; guaranteed to run in the main thread
 protected void onPostExecute(Bitmap result)
 {
 mImageView.setImageBitmap(result);
 }
 }

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

KILLING PROCESSES (1/2)

The OS tries to maintain processes for as long as
possible, but might be forced to shut some of them
down when resources are low

App components running in the process are
destroyed as well

When deciding which processes to kill, the OS weighs
their relative importance to the user.  
Therefore, the choice depends on the state of the
components running in the process

KILLING PROCESSES (2/2)

The OS maintains a 5-level “importance hierarchy”
based on the components running in processes

Each process is assigned to the level of the most
“important” component that runs in it

A process’ level might be increased because other
processes are dependent on it

Less important processes are killed first

PROCESS HIERARCHY (1/3)

Foreground process (maximum importance)  
A process that is required for what the user is currently doing

It hosts an activity that the user is interacting with

It hosts a service that is bound to the activity that the user is
interacting with

It hosts a service that has called startForeground()

It hosts a service that is executing one of its lifecycle callbacks

It hosts a broadcast receiver that is executing its
onReceive() method

PROCESS HIERARCHY (2/3)

Visible process  
A process that does not have any foreground
components, but still can affect what the user sees on
screen

It hosts an activity that is not in the foreground,  
but is still visible to the user (e.g., its onPause()
method has been called; it started a modal dialog)

It hosts a service that is bound to a visible activity

PROCESS HIERARCHY (3/3)

Service process 
A process that is running a service that does not fall into either
of the two previous hierarchy levels

Background process  
A process holding an activity that is not currently visible to the
user.  
Processes in this hierarchy level are kept in an LRU list, so that
the process with the activity that was most recently seen by the
user is the last to be killed

Empty process (minimum importance)  
A process that does not hold any active application
components

ANDROID: SUMMARY

Processes in the foreground (belonging to how many
apps?) are scheduled regularly

Other processes are scheduled too 
but may be stopped or killed at any time  
without further notice

Consequence: activities in the background cannot be
trusted to complete any job

KILLING THREADS

Runtime configuration changes (e.g., screen rotation)
kill worker threads even if they belong to a high-
priority process

Two possible solutions

1. properly shut down and restart threads

2. ask the OS not to kill the threads 
 by retaining the activity and/or its fragments

ACTIVITY LIFECYCLE

Im
ag

e
fr

om
 d

ev
el

op
er

.a
nd

ro
id

.c
om

http://developer.android.com/reference/android/app/Activity.html

A NOTE ON IOS

Only one app in the foreground

Apps in the background
iOS≤3: simply not allowed 
Apps are closed when they leave the foreground
iOS≥4: simply not scheduled  
Apps still in RAM but suspended.  
Can be killed at any time

Apps in the background cannot be trusted to complete
any job, but it is easier to determine when they are
scheduled

BACKGROUND EXECUTION
IN ANDROID (1/3)

Services 
Allow an app to run in the background for an
unlimited period of time

A process running a service is ranked higher than a
process with background activities, hence an activity
that initiates a long-running operation might do well to
start a service for it, rather than creating a thread—
particularly if the operation will likely outlast the
activity

BACKGROUND EXECUTION
IN ANDROID (2/3)

Broadcast receivers  
Allow an application to run in the background for a
brief amount of time as a result of an external event

The time limit for broadcast receivers is currently  
10 seconds, so background receivers should consider
employing services as well

BACKGROUND EXECUTION
IN ANDROID (3/3)

Content Providers  
Encapsulate structured sets of data, and provide
access to them

Content providers are the standard interface that
connects data in one process with code running in
another process.
Querying a content provider for data takes time.  
If the query is run from an activity, the UI may slow
down and/or the activity may get blocked.  
Consider initiating the query on a separate thread

TO LEARN MORE

Keeping Your App Responsive

Sending Operations to Multiple Threads

Best Practices for Background Jobs

SMP Primer for Android

http://developer.android.com/training/articles/perf-anr.html
http://developer.android.com/training/multiple-threads/index.html
http://developer.android.com/training/best-background.html
http://developer.android.com/training/articles/smp.html

LAST MODIFIED: MAY 5, 2015

COPYRIGHT HOLDER: CARLO FANTOZZI (FANTOZZI@DEI.UNIPD.IT)
LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 3.0

mailto:fantozzi@dei.unipd.it
http://creativecommons.org/licenses/by-sa/3.0/

