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What Does A�ect the Correlation Among Evaluation Measures?

NICOLA FERRO, University of Padua

Information Retrieval (IR) is well-known for the great number of adopted evaluation measures, with new
ones popping up more and more frequently. In this context, correlation analysis is the tool used to study
the evaluation measures themselves and to let us understand if two measures rank systems similarly, if they
grasp di�erent aspects of system performances or actually re�ect di�erent user models, if a new measure is
well motivated or not. To this end, the two most commonly used correlation coe�cients are the Kendall’s τ
correlation and the AP correlation τAP .

The goal of the paper is to investigate the properties of the tool itself, i.e. correlation analysis, we use to
study evaluation measures. In particular, we investigate three research questions about these two correlation
coe�cients: (i) what is the e�ect of the number of systems and topics? (ii) what is the e�ect of removing low
performing systems? (iii) what is the e�ect of the experimental collections?

To answer these research questions, we propose a methodology based on General Linear Mixed Model
(GLMM) and ANalysis Of VAriance (ANOVA) in order to isolate the e�ects of the number of topics, number of
systems, and experimental collections and to let us observe expected correlation values, net from these e�ects,
which are stable and reliable.

We learned that the e�ect of the number of topics is more prominent than the one of the number of
systems. Even if it produces di�erent absolute values, the e�ect of removing low performing systems does not
seem to provide information substantially di�erent from not removing them, especially when comparing a
whole set of evaluation measures. Finally, we found out that both document corpora and topic sets a�ect the
correlation among evaluation measures, being the e�ect of the latter more prominent. Moreover, there is a
substantial interaction between evaluation measures, corpora and topic sets, meaning that the correlation
between di�erent evaluation measures can be substantially increased or decreased depending on the di�erent
corpora and topics at hand.
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1 INTRODUCTION
Correlation analysis plays a central role in Information Retrieval (IR) evaluation where it is one of
the tools we use to study properties and relationships among evaluation measures. When a new
evaluation measure is proposed, correlation analysis is used to assess how the new measure ranks
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IR systems with respect to the other existing measures and, thus, to understand whether it actually
grasps di�erent aspects of the systems and its introduction is somehow motivated [23, 32, 52, 61, 63,
81]. In this context, the most used correlation coe�cients are the Kendall’s tau correlation τ [41]
and the AP correlation τAP [87].

Correlation analysis works as follows: let m1 and m2 be two evaluation measures; for example,
let m1 be Average Precision (AP). Let M1 and M2 be two t × s matrices where each cell contains
the performances on topic i of system j according to measuresm1 andm2, respectively. Therefore,
M1 and M2 represent the performances of s di�erent systems (columns) over t topics (rows); for
example, M1 contains the AP score of each system on each topic. Let M1 and M2 be the column-wise
averages of the two matrices; for example, M1 is a vector where each element is the Mean Average
Precision (MAP) of a system. If you sort systems by their score in M1 and M2, you obtain two
Rankings of Systems (RoS) corresponding to m1 and m2, respectively. A correlation coe�cient like τ
or τAP is then used to quantify how “close” these two RoS are; if the RoS produced by m1 and m2
are too “close”, then m1 and m2 are actually measuring very similar aspects of the systems and they
do not provide substantially di�erent information.

The goal of the paper is to investigate the properties of correlation analysis, i.e. the tool itself we
use to study evaluation measures. In particular, we carry out a thorough experimental study on the
factors a�ecting the τ and τAP correlation coe�cients and answer the following research questions

RQ1 What is the e�ect of the number of systems and topics?
RQ2 What is the e�ect of removing low performing systems?
RQ3 What is the e�ect of the experimental collections?

RQ1 stems from the observations of [50], who pointed out that
when τ is used [...] the null hypothesis of discordance will be likely rejected when
the sample size is large [i.e. the length of the ranking]. Because the samples are
often large in IR, it is not surprising that the use of τ often supports concordance

and [14], who argued that
the sample space we are actually interested in is the topic space [rather than the
system space]: given that two rankings of systems are correlated over a particular
set of topics, would they still be correlated, and would the correlation be as high, if
run over a di�erent set?

These remarks suggest that both the number of systems, i.e. the length of the RoS, and the
number of topics, i.e. the sample space, may a�ect correlation. Therefore, we will investigate not
only what is their individual impact on the correlation among evaluation measures but also if they
have some joint e�ect.
RQ2 investigates the common wisdom in the IR �eld according to which, when conducting

analyses, it is better to remove low performing systems, as done for example by [5, 55, 80].
Moreover, [68] highlighted that

when comparing the way that test collections rank runs, if the range of scores
assigned to each of the runs (being ranked) is wide, τ will tend to have a higher
coe�cient than if the range of scores is narrow.

It follows that, when you remove low performing systems, the range of system scores narrows
down and τ goes down as well. However, apart from providing higher or lower numbers, do the
di�erent scores tell us something actually di�erent? We will investigate this issue across joint
distributions of di�erent numbers of topics and systems.
RQ3 derives from the common practice of running experiments over di�erent collections to

seek for some sort of stable and consistent behavior. Therefore, we will investigate, across several
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collections, what are the e�ects of the experimental collections, i.e. the e�ects of corpora and topic
sets. RQ3 explores the previous claim by [14] as well, since it also answers the question about what
happens when you move from one topic set to another.

In order to answer these research questions, we rely on 7 di�erent Text REtrieval Conference
(TREC)1 collections and, for each collection, we create a Grid of Points (GoP)2 [29, 30], i.e. a set of
system runs originating from all the possible combinations of the following components: 6 di�erent
stop lists, 6 types of stemmers, 7 �avors of n-grams, and 17 distinct IR models. These GoPs basically
represent nearly all the state-of-the-art components which constitute the common denominator
almost always present in any IR system for English retrieval.

We consider 8 di�erent evaluation measures – namely, AP, P@10, Rprec, RBP, nDCG, nDCG@20,
ERR, and Twist. We compute them over the set of created GoP and this originates an Mk matrix for
each measure and GoP. We then properly sample these Mk matrices over topics and systems, we
average them column-wise, and we compute the τ and τAP correlation coe�cients between the RoS
induced by each pair of evaluation measures. Finally, we use General Linear Mixed Model (GLMM)
and ANalysis Of VAriance (ANOVA) [48, 58] to conduct the analyses needed to answer the above
research questions.

The main contributions of the paper are:

• a robust methodology for analyzing the behaviour of correlation among evaluation mea-
sures, based on GoP and GLMM/ANOVA;
• the insights gained from answering RQ1 to RQ3 which show: (i) how the e�ect of the number

of topics is more prominent than the number of systems; (ii) how removing low performing
systems changes the absolute correlation scores but does not convey substantially di�erent
information when comparing a set of evaluation measures; (iii) how the experimental
collections a�ects the correlation and, in particular, how the e�ect of topic sets is more
prominent than the one of corpora;
• one of the most systematic studies of correlation among up-to-date evaluation measures ever

conducted across many TREC collections. Indeed, as a side e�ect, the proposed methodology
allows us to compute the expected correlation values among evaluation measures (Tables 4
and 9), net from the other e�ects, which prove to be stable and reliable.

The paper is organized as follows: Section 2 provides background information; Section 3 describes
the experimental setup; Sections 4 to 6 answer the above research questions; �nally, Section 7
draws some conclusions and discusses future work.

2 BACKGROUND
2.1 Kendall’s Tau Correlation
Given two rankings X and Y , their Kendall’s τ correlation [41] is given by

τ
(
X ,Y

)
=

P −Q√(
P +Q +T

) (
P +Q +U

) (1)

where P is the total number of concordant pairs (pairs that are ranked in the same order in both
vectors) Q the total number of discordant pairs (pairs that are ranked in opposite order in the two
vectors), T and U are the number of ties, respectively, in the �rst and in the second ranking.

1http://trec.nist.gov/
2http://gridofpoints.dei.unipd.it/
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τ ∈ [−1, 1] where τ = 1 indicates two perfectly concordant rankings, i.e. in the same order,
τ = −1 indicates two fully discordant rankings, i.e. in opposite order, and τ = 0 means that 50% of
the pairs are concordant and 50% discordant.

[76, 77] considers τ ≥ 0.9 as indication of equivalent rankings while τ < 0.8 as an indication
of noticeable changes in the rankings; these values have been then taken as de-facto reference
thresholds by several authors, for example [15, 67, 86].

2.2 AP Correlation
AP correlation τAP [87] is a correlation coe�cient inspired by Kendall’s τ correlation but putting
more emphasis on the order of the top ranks.

Given twom elements rankings X and Y , their AP correlation is given by

τAP
(
Y ,X

)
=

2
m − 1

m∑
i=2

C(i)

i − 1
− 1 (2)

where C(i) is the number of items above rank i in X and correctly ranked with respect to the
item at rank i in Y , which acts as a reference. As τ , also τAP ∈ [−1, 1] with the same meaning.

Note that τAP is not symmetric and so, in general, τAP
(
Y ,X

)
, τAP

(
X ,Y

)
; for this reason, [87]

proposed a symmetric version of τAP consisting of the average of τAP
(
Y ,X

)
and τAP

(
X ,Y

)
. In the

paper, we use the not symmetric version of τAP , where the �rst measure in a pair acts a reference3.
Di�erently from τ , there are not (yet) de-facto reference thresholds for τAP .

2.3 Previous Work on Correlation Coe�icients
Generally speaking, correlation analysis is not limited to comparing evaluation measures but it is
also widely used in many other areas of IR as a means for comparing and assessing alternatives,
ranging from Web page crawling [6] and ranking [7], simulation of implicit user feedback [85],
resource selection in distributed IR [13], ranking queries by their di�culty [88], to measuring
retrieval e�ectiveness itself [21, 22, 45, 84], just to name a few.

When it comes to evaluation, correlation analysys is also adopted to study inter-assessor agree-
ment [76, 77] and quality of crowd-sourced relevance judgments [71]; it is employed in studying the
e�ects of graded relevance judgments [40] and evaluation by highly relevant documents [24, 78]; it
is utilized in investigating the impact of incomplete information in pools [8, 86], the robustness of
measures to pool downsampling [23, 28, 60] and alternative pooling strategies [79].

Many authors have observed shortcomings in interpreting Kendall’s τ scores: [72] have shown
that correlations around 0.4–0.5 are achieved even when relevance is assigned to retrieved docu-
ments randomly; [50] noted its tendency to concordance as the length of the ranked lists increases;
[68] pointed out how its values are a�ected by the range of the underlying scores; [14] posed the
problem of its dependence on the adopted topic set.

One of the biggest limitations of Kendall’s τ is its inability to weight swaps and ties: [69] proposed
a generic weighting framework for Kendall’s τ ; [51] introduced a probabilistic instantiation of this
framework and showed that τAP is also an instance of the same framework but more focussed
on top ranks. [45] laid in the same framework and focussed on weights based on items relevance
and similarity, while [22] applied penalty scores to weight the top ranks. [45] also proposed a
generalization of the Spearman’s footrule to compare rankings, extended also by [21] to ease a
graphical comparison of rankings.

3We also conducted preliminary experiments using the symmetric version of τAP but they led to similar conclusions as
those reported here for the not symmetric version.
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τAP does not handle tied values: therefore, [71] suggested to uniformly sample over possible
orders and to average the obtained τAP coe�cients. [75] noted that breaking ties randomly can
lead to some paradoxes and proposed a new weighting scheme to avoid this.

[34] proposed the τGAP coe�cient which is top heavy, as τAP , and also considers the amplitude
of the gap between two items in weighting a swap. [33] introduced a similar approach but applied
to the case of the Pearson correlation coe�cient.

[14] took a di�erent approach to overcome the shortcomings of Kendall’s τ and proposed the
rank distance measure, which estimates the probability of observing a particular alternative ranking
of systems given a baseline ranking based on measurements of system results over a sample of
topics.

Finally, [84] brought in yet another angle to rank correlation by de�ning Rank-Biased Overlap
(RBO), a measure for in�nite rankings based on a simple user model in which the user compares
the overlap of two rankings at incrementally increasing depths and, after examining each depth,
she/he has a �xed probability of stopping, modeled as a Bernoulli random variable; RBO is then
calculated as the expected average overlap that the user observes in comparing the two lists.

2.4 Grid of Points
The idea of creating all the possible combinations of components has been proposed by [27], who
noted that a systematic series of experiments on standard collections would have created a GoP,
where (ideally) all the combinations of retrieval methods and components are represented, allowing
us to gain more insights about the e�ectiveness of the di�erent components and their interaction;
this would have called also for the identi�cation of suitable baselines with respect to which all the
comparisons have to be made.

More recently, the proliferation of open source IR systems [73] allowed researchers to run
systematic experiments more easily. In this context, [74] conducted a vertical exploration of
variations of BM25 and Language Models (LMs) while the “Open-Source Information Retrieval
Reproducibility Challenge” [2] provided several reproducible baselines over TREC and Conference
and Labs of the Evaluation Forum (CLEF)4 collections. Overall, both these e�orts put some points in
the ideal GoP mentioned above.

[29–31] moved a step forward and created much �ner-grained and systematic GoPs and paired
them with a methodology based on GLMM and ANOVA in order to break down system perfor-
mances into the contribution of their constituent components.

In this paper, we take yet another angle and we exploit the GoPs with a completely di�erent
purpose, i.e. investigating the correlation among evaluation measures rather than breaking down
component contributions to overall system performances. The GoP are instrumental to this kind
of analyses because they contain an order of magnitude more runs than even large tracks of an
evaluation campaign; this allows us to extend the sample space and better explore RQ1 and RQ2.
Moreover, as far as RQ3 is concerned, they give us more control because the same systems are used
across di�erent collections, reducing the variance due to the systems e�ect, which would be less
controlled if you just use runs submitted to di�erent tracks of an evaluation campaign. Finally,
the new goal of studying correlation coe�cients calls for completely di�erent GLMM models and
ANOVA analyses with respect to those of [29].

4http://www.clef-initiative.eu/
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2.5 GLMM and ANOVA
A General Linear Mixed Model (GLMM) [48, 58] explains the variation of a dependent variable
(“Data”) in terms of a controlled variation of independent variables (“Model”) in addition to a
residual uncontrolled variation (“Error”): Data = Model + Error.

The most basic example of GLMM is simple linear regression, where Yi = β0 + β1Xi + εi , i.e. the
dependent variable Yi , representing the score of the i-th subject, is explained (predicted) in terms
of an intercept β0 and an independent variable Xi (predictor) times the regression coe�cient β1, i.e.
the slope of the regression line, plus a residual error εi , not explained by the model, which follows
a Gaussian distribution with mean 0.

In GLMM terms, ANalysis Of VAriance (ANOVA) attempts to explain data (the dependent variable
scores) in terms of the experimental conditions (the model) and an error component. Typically,
ANOVA is used to determine which experimental condition dependent variable score means di�er
and what proportion of variation in the dependent variable can be attributed to di�erences between
speci�c experimental groups or conditions, as de�ned by the independent variable(s). ANOVA can
be regarded as a particular type of regression analysis that employs only categorical predictors.

The previous regression model is expressed in ANOVA terms as Yi j = µ + α j + εi j , where Yi j
is the i-th subject’s dependent variable score in the j-th experimental condition, the parameter
µ is the grand mean of the experimental condition population means that underlies all subjects’
dependent variable scores, the parameter α j is the e�ect of the j-th experimental condition and the
random variable εi j is the error term, which re�ects variation due to any uncontrolled source. The
above regression model corresponds to this ANOVA one once you add as many Xi j predictors as
many levels there are in the experimental condition α j , e.g., by using dummy coding.

For a given model, the ANOVA table summarizes the outcomes of the ANOVA test indicating,
for each factor, the Sum of Squares (SS), the Degrees of Freedom (DF), the Mean Squares (MS), the F
statistics, and the p-value of that factor, which allows us to determine the signi�cance of that factor.
In the following, we consider a con�dence level α = 0.05 to determine if a factor is statistically
signi�cant. For a detailed description on how to estimate GLMM model parameters and assess their
statistical signi�cance via ANOVA, please refer to [29, 48, 58].

The experimental design determines how you compute the model and how you estimate its
parameters. In particular, it is possible to have independent measures designs where di�erent subjects
participate to di�erent experimental conditions (factors) or repeated measures designs, where each
subject participates to all the experimental conditions (factors).

A �nal distinction is between crossed/factorial designs, where every level of one factor is measured
in combination with every level of the other factors, and nested designs, where levels of a factor
are grouped within each level of another nesting factor.

2.6 E�ect Size, Multiple Comparisons, and Power
We are not only interested in determining whether a factor e�ect is signi�cant, but also which
proportion of the variance is due to it, that is we need to estimate its e�ect-size measure or Strength of
Association (SOA). The SOA is a “standardized index and estimates a parameter that is independent
of sample size and quanti�es the magnitude of the di�erence between populations or the relationship
between explanatory and response variables” [53, 64].

ω̂2
〈f act 〉 =

d ff act (Ff act − 1)
d ff act (Ff act − 1) + N

(3)
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is an unbiased estimator of the variance components associated with the sources of variation in the
design, where Ff act is the F-statistics and d ff act are the degrees of freedom for the factor while N
is the total number of samples.

The common rule of thumb [58] when classifying ω̂2
〈f act 〉 e�ect size is: 0.14 and above is a large

size e�ect, 0.06–0.14 is a medium size e�ect, and 0.01–0.06 is a small size e�ect. ω̂2
〈f act 〉 values could

happen to be negative and in such cases they are considered as zero.
A Type I error occurs when a true null hypothesis is rejected and the signi�cance level α is the

probability of committing a Type I error. When performing multiple comparisons, the probability of
committing a Type I error increases with the number of comparisons and we keep it controlled by
applying the Tukey Honestly Signi�cant Di�erence (HSD) test [37] with a signi�cance level α = 0.05.
Tukey’s method is used in ANOVA to create con�dence intervals for all pairwise di�erences
between factor levels, while controlling the family error rate; it is an e�ective method generally
more powerful than other popular statistical methods like the Bonferroni one [48]. Two levels u
and v of a factor are considered signi�cantly di�erent when

|t | =
|µ̂u − µ̂v |√

MSerror
(

1
nu
+ 1

nv

) > 1
√

2
qα,k,N−k (4)

where µ̂u and µ̂v are the marginal means, i.e. the main e�ects, of the two factors; nu and nv are
the sizes of levels u and v ; qα,k,N−k is the upper 100 ∗ (1 − α)th percentile of the studentized range
distribution with parameter k and N − k degrees of freedom; k is the number of levels in the factor
and N is the total number of observations.

A Type 2 error occurs when a false null hypothesis is accepted and it is concerned with the
capability of the conducted experiment to actually detect the e�ect under examination. Type 2
errors are often overlooked because if they occur, although a real e�ect is missed, no misdirection
occurs and further experimentation is very likely to reveal the e�ect.

The power is the probability of correctly rejecting a false null hypothesis when an experimental
hypothesis is true

Power = 1 − β

where β (typically β = 0.2) is the Type 2 error rate.
To determine the power of an experiment, we compute the e�ect size parameter:

ϕ =

√√√
N ·

ω̂2
〈f act 〉

1 − ω̂2
〈f act 〉

(5)

and we compare it with its tabulated values for a given Type 1 error rate α to determine β . In
particular, we use the G*Power5 software to compute the power of the conducted experiments.

3 EXPERIMENTAL SETUP
To ease reproducibility, the code for running the experiments is available at6: https://bitbucket.org/
frrncl/tois-correlation.

5http://www.gpower.hhu.de/
6The code is based on the MATlab Toolkit for Evaluation of information Retrieval Systems (MATTERS) library available at:
http://matters.dei.unipd.it/
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3.1 Collections
We used the following standard and shared collections:

• TREC Adhoc tracks T07 and T08 [81, 82]: they focus on a news search task and adopt a
corpus of about 528K news documents, i.e. disk 4 and 5 of the TIPSTER collection minus the
Congressional Record; both T07 and T08 provide 50 di�erent topics, topic sets 351-400 and
401-450, respectively, with binary relevance judgments and a pool depth of 100 documents.
103 and 129 runs were submitted to T07 and T08, respectively;
• TREC Web tracks T09 and T10 [35, 36]: focus on a Web search task and adopt a corpus of

1.7M Web pages, i.e. the WT10g collection; both T09 and T10 are composed of 50 di�erent
topics, topic sets 451-500 and 501-550 respectively, with graded relevance judgments –
i.e., not relevant, relevant and highly relevant – and a pool depth of 100 documents. 104
and 97 runs were submitted to T09 and T10, respectively;
• TREC Terabyte tracks T13, T14, and T15 [11, 18, 20]: focus on a Web search task and adopt

a corpus of 125M Web pages, i.e. the GOV2 collection; T13, T14, and T15 are composed of 50
di�erent topics, topic sets 701-750 (but just 49 are actually used), 751-800, and 801-850
respectively, with graded relevance judgments – i.e., not relevant, relevant and highly
relevant – and a pool depths of 85, 100 and 50 documents respectively. 70, 58, and 80 runs
were submitted to T13, T14, and T15, respectively.

3.2 Grid of Points
We consider three types of components of an IR system: stop list, Lexical Unit Generator (LUG) –
either stemmer or n-gram – and IR model. We select a set of alternative implementations of each
component and, by using the Terrier7 open source system [47], we create a run for each system
de�ned by combining the available components in all the possible ways. This produced a di�erent
GoP, i.e. a full set of runs, for each of the adopted collections – T07, T08, T09, T10, T13, T14, and
T15.

The components we experiment are:
• Stop list (6 components): nostop, indri, lucene, snowball, smart, terrier;
• LUG (13 components): nolug, krovetz, lovins, porter, snowballPorter, weakPorter,
4grams, 5grams, 6grams, 7grams, 8grams, 9grams, 10grams;
• Model (17 components): bb2, bm25, dfiz, dfree, dirichletlm, dlh, dph, hiemstralm, ifb2,
inb2, inl2, inexpb2, jskls, lemurtfidf, lgd, pl2, tfidf.

Stop lists di�er in the number of composing terms: lucene has 33 terms, snowball has 174 terms,
indri has 418 terms, smart has 571 terms, and terrier 733 terms.

Stemmers can be classi�ed into aggressive and weak stemmers. lovins [46] is the most aggressive
stemmer; Porter-based ones (porter, snowballPorter, and weakPorter) [54] are weaker than
lovins; krovetz [43] is as aggressive as porter and weaker than lovins.

We consider seven di�erent n-grams lengths ranging from n = 4 to n = 10 [49], to have a very
extensive coverage of this component.

The models we employ are classi�ed into the three main approaches currently adopted by
search engines [57]: the vector space model [66] (tfidf and lemurtfidf), the probabilistic model
– comprehending the bm25 model [56] and Divergence From Randomness (DFR) models [1] (bb2,
dfiz, dfree, dlh, dph, ifb2, inb2, inl2, inexpb2, and pl2) – and Language Models (LMs) [89]
(dirichletlm, hiemstralm, jskls, and lgd). For all the models, we considered their o�-the-shelf
implementation with default parameters.

7http://www.terrier.org/
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Overall, we create GoPs consisting of 6 × 13 × 17 = 1, 326 system runs. They represent nearly all
the state-of-the-art components which constitute the common denominator almost always present
in any IR system for English retrieval and thus they are a good account of what can be found in
many di�erent operational settings.

Moreover, these GoPs are one order of magnitude bigger than the average number of runs
submitted to the tracks listed above; this allows for a much deeper and systematic experimentation
concerning the e�ects of the number of systems in RQ1 and RQ2.

Finally, the GoPs computed on the di�erent tracks are constituted by the same systems and, in
the case of RQ3, this allows us to keep the system variance controlled when conducting analyses
across tracks to study the collection e�ects. This would have not happened if we just used the
original systems submitted to the above tracks, since they changed from year to year.

3.3 Measures
We evaluate the GoPs by employing 8 di�erent evaluation measures: AP, P@10, Rprec, RBP, nDCG,
nDCG@20, ERR8, and Twist. Considering the overall 1,326 runs and 349 topics, this turns into more
than 3.7 million data points under experimentation. In the following we provide a short description
of each evaluation measure with references for further reading.

Average Precision (AP) [9] represents the “gold standard” measure in IR, known to be stable and
informative, with a natural top-heavy bias and an underlying theoretical basis as approximation of
the area under the precision/recall curve [55].

Precision at Ten (P@10) [12] is the classic precision measure with cut-o� at the �rst 10 retrieved
documents.
Rprec is precision calculated with cut-o� at the recall base – i.e., the total number of relevant

documents for a given topic. It is an highly informative measure which shares with AP the geometric
interpretation as approximation of the area under the recall-precision curve [3, 4].
Rank-Biased Precision (RBP) [52] is built around a user model based on the utility a user can

achieve by using a system: the higher, the better. The model it implements is that a user always
starts from the �rst document in the list and then s/he progresses from one document to the next
with a probability p. We calculated RBP by setting p = 0.8 which represent a good trade-o� between
a very persistent and a remitting user.

These measures are based on binary relevant judgments and thus can be naturally applied to T07
and T08. For T09, T10, T13, T14, and T15, we perform a lenient mapping of the relevance judgments
by considering as relevant both highly relevant and relevant documents.
Normalized Discounted Cumulated Gain (nDCG) [39] is the normalized version of the widely-

known DCG which discounts the gain provided by each relevant retrieved document proportionally
to the rank at which it is retrieved. nDCG is de�ned for graded relevance judgments and it is one
of the most common measures used for evaluating Web search tasks. For T07 and T08, we calculate
nDCG in a binary relevance setting by giving gain 0 to non-relevant documents and gain 5 to
the relevant ones; whereas, for T09, T10, T13, T14, and T15 we assign a weight 0 to non-relevant
documents, 5 to the relevant ones and 10 to the highly relevant ones. Furthermore, we use a loд10
discounting function, which accounts for a reasonably persistent user. nDCG is calculated up to
the last relevant retrieved document, whereas nDCG@20 is calculated up to rank position 20.
Expected Reciprocal Rank (ERR) [16] is a measure de�ned for graded relevance judgments and

for evaluating navigational intents. It is particularly top-heavy since it highly penalizes systems
placing not-relevant documents in high positions. For ERR we used the same gains as for nDCG.

8Due to the strong top heaviness of ERR, ERR@20 produces more or less the same scores as ERR. Therefore, we left it out
since it does not add any interesting contribution to correlation analysis.
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Twist [32] is a measure for informational intents, which handles both binary and graded relevance.
Twist adopts a user model where the user scans the ranked list from top to bottom until s/he stops,
and returns an estimate of the e�ort required by the user to traverse the ranked list. Twist evaluates
systems from the viewpoint of the avoidable e�ort for their users by accounting for their fatigue
while visiting a non-ideal ranking of documents; thus, it evaluates IR systems from a di�erent angle,
i.e., user e�ort, than other measures such as nDCG and ERR which are more focused on user’s gain.

Overall, IR evaluation measures embed (possibly quite) di�erent user models and they constitute
di�erent ways of scoring systems according to the di�erent viewpoints represented by their user
model. These di�erences a�ect the correlation among the evaluation measures: for example, ERR is
a much more top heavy measure than AP and this is re�ected in their relatively low correlation.

3.4 Validation of the Grid of Points
Before proceeding in the experimentation, we validate the created GoPs in order to understand
how representative are these GoPs of the data originally submitted to the TREC tracks under
consideration.

In particular, for each evaluation measure and track, we investigate how close is the performance
distribution of the original systems submitted to that TREC track to the performance distribution
of the GoP systems on the same track. To quantify this “closeness” we use the Kullback-Leibler
Divergence (KLD) [44] between the two performance distributions. In order to compute the KLD,
we need the Probability Density Function (PDF) of the performance distributions, which we estimate
by using a Kernel Density Estimation (KDE) [83] approach.

Given a vector X ofm elements, the KDE estimation of its PDF is given by

f̂X (x) =
1
mb

m∑
i=1

K

(
x − Xi

b

)
(6)

where b is a positive number called bandwidth or window width; K(·) is the kernel satisfying∫ +∞
−∞

K(x)dx = 1. We use Gaussian kernel with a bandwidth b = 0.015.
Given twom elements vectors X and Y , the KLD between their PDFs is given by

DKL
(
X
����Y )
=

∑
x

ln

(
f̂X (x)

f̂Y (x)

)
f̂X (x) (7)

Note that DKL is not symmetric and so, in general, DKL
(
X
����Y )
, DKL

(
Y
����X )

.
As explained in [10], DKL ∈ [0,+∞) denotes the information lost when Y is used to approximate

X ; in our context, it denotes the information lost when the GoP systems are used to “approximate”
an original set of systems submitted to a TREC track. Therefore, 0 means that there is no loss of
information and, in our context, that the original systems and the GoP ones are considered the
same; +∞means that there is a full loss of information and, in our context, that the original systems
and the GoP ones are considered completely di�erent.

Figure 1 shows the estimated PDF plots of the GoP systems and the systems originally submitted
to TREC. We show the plots in the case of AP and nDCG@20 and for the T08, T10, and T14 tracks;
the other evaluation measures and tracks exhibit a similar behaviour. We have chosen AP and
nDCG@20 because they are two widely used and very well understood evaluation measures while
the selected tracks represents one example for each possible corpus: T08 for TIPSTER, T10 for
WT10g, and T14 for GOV2. Table 1 reports the KLD for all the evaluation measures and all the tracks
under experimentation.

Figure 1 and Table 1 show that the performance distribution of GoP systems is very close to the
performance distribution of the original TREC systems. Therefore, GoP systems are representative
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Table 1. KL divergence between the estimated PDF of the GoP systems and the original TREC systems for
the di�erent tracks and evaluation measures under experimentation.

Systems AP P@10 R-prec RBP nDCG nDCG@20 ERR Twist
T07 vs T07gop 0.0330 0.0141 0.0304 0.0248 0.0428 0.0392 0.0073 0.0229
T08 vs T08gop 0.0335 0.0178 0.0330 0.0196 0.0368 0.0127 0.0168 0.0370
T09 vs T09gop 0.0227 0.0389 0.0461 0.0553 0.0356 0.0362 0.0442 0.0329
T10 vs T10gop 0.0227 0.0123 0.0566 0.0274 0.0234 0.0156 0.0197 0.0261
T13 vs T13gop 0.0322 0.0147 0.0557 0.0140 0.1235 0.0297 0.0148 0.0687
T14 vs T14gop 0.0376 0.0085 0.0205 0.0108 0.0286 0.0170 0.0141 0.0310
T15 vs T15gop 0.0328 0.0156 0.0323 0.0239 0.0313 0.0171 0.0212 0.0438
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Fig. 1. Estimated PDF of the GoP systems (solid blue line) and the original TREC systems (dashed red line)
and their KL divergence. On the le� there is AP, on the right there is nDCG@20; the T08 (top), T10 (middle),
and T14 (bo�om) tracks are shown.
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Fig. 2. Design of the GLMM model of equation (8) for the measure pair, topics size and system size e�ects.

of what happened in the selected TREC tracks but provide us with two key advantages. Firstly, for
RQ1 and RQ2, the GoPs contain at least one order of magnitude more systems than the original
TREC tracks, allowing for a more �ne-grained and extensive investigation. Secondly, RQ3 is possible
only using the GoP systems, since they are the same systems across all the tracks and this allows
us to study the e�ect of corpora and topic sets.

4 EFFECT OF THE NUMBER OF SYSTEMS AND TOPICS
4.1 Methodology
We create a GoP merging the T13, T14, and T15 GoPs, called the T131415 GoP, and thus containing
149 topics and 1,326 runs. For each topic size t ∈ T = {10, 20, 30, 40, 50, 60, 70} and system size
s ∈ S = {10, 20, 50, 75, 100, 125, 150, 200, 250, 500}, we independently drawH = 100 random samples
of t topics and H = 100 random samples of s systems from the T131415 GoP.

For each combination (t , s) ∈ T × S of topic and system sizes, we pick each sample h = 1, . . . ,H
of t topics and associate it with a corresponding, i.e. same index h, sample of s systems. In other
terms, for each combination of topic and system sizes, we select t rows and s columns from the
Mk matrices of the di�erent evaluation measures and we repeat this operation H = 100 times.
Therefore, we obtain Mh

k , h = 1, . . . ,H matrices containing the performances of the s sampled
systems over the t sampled topics according to the di�erent evaluation measures and these matrices
are then averaged column-wise Mh

k .
Finally, for each pair of evaluation measures mA and mB and each sample h = 1, . . . ,H , we

consider the RoS Mh
A and Mh

B produced by such pair and we compute the corresponding τ and τAP
correlation coe�cients.

Overall, for each combination (t , s) ∈ T × S of topic and system sizes and for each measure pair,
this procedure originates H = 100 samples of correlation values for both τ and τAP .
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As shown in Figure 2, this setup leads to a crossed design where subjects κi are the H = 100
samples for each combination (t , s) of topic and system sizes while factors α j , βk and γl correspond,
respectively, to measure pairs, number of topics and number of systems, leading to the following
GLMM model:

Yi jkl = µ · · · · + κi + α j + βk + γl︸                        ︷︷                        ︸
Main E�ects

+ (αβ)jk + (αγ )jl + (βγ )kl︸                         ︷︷                         ︸
Interaction E�ects

+ εi jkl︸︷︷︸
Error

(8)

where:
• Yi jkl is the correlation value, either τ or τAP , of the i-th subject in the j-th, k-th, and l-th

factors;
• µ · · · · is the grand mean;
• κi is the e�ect of the i-th subject, i.e. the h = 1, . . . ,H samples for each (t , s) combination,

where κi = µi · · · − µ · · · · and µi · · · is the mean of the i-th subject;
• α j = µ ·j · · − µ · · · · is the e�ect of the j-th factor, i.e. measure pairs, where µ ·j · · is the mean of

the j-th factor. Considering that we are experimenting with 8 evaluation measures, there
are

(8
2
)
= 28 measure pairs, i.e. 28 levels for factor α j ;

• βk = µ · ·k · − µ · · · · is the e�ect of the k-th factor, i.e. number of topics, where µ · ·k · is the mean
of the k-th factor; there are |T | = 7 levels for factor βk ;
• γl = µ · · ·l − µ · · · · is the e�ect of the l-th factor, i.e. number of systems, where µ · · ·l is the mean

of the l-th factor; there are |S | = 10 levels for factor γl ;
• (αβ)jk , (αγ )jl , and (βγ )kl are, respectively, the interactions between measures pairs and

number of topics, measure pairs and number of systems, and number of topics and number
of systems;
• εi jkl is the error committed by the model in predicting the score of the i-th subject in the

three factors j,k, l .
Considering that there are 28 measure pairs, 7 topic sizes, 10 system sizes and that, for each

combination of these factors, we use 100 subjects, overall this amounts to analyzing 196,000
correlation values for both τ and τAP .

4.2 Experimental Results
4.2.1 General Trends. Figure 3 shows the average correlation of the AP vs nDCG@20 pair over the

H = 100 samples for each (t , s) combination and the corresponding con�dence interval; Kendall’s τ
correlation is drawn with a solid blue line while AP correlation τAP is drawn with a dashed green
line. The other evaluation measure pairs exhibit a consistent behaviour with respect to the one of
the AP vs nDCG@20 pair, which we use here as an example to discuss the main trends because AP
and nDCG@20 are two very widely used and well-understood measures. If in the table of Figure 2
we �x the level α j corresponding to the AP vs nDCG@20 pair, we can note that Figure 3 just plots
the raw data contained in the cells under that level α j , using a sub-plot for each topic size βk level
and, within each sub-plot, plotting the di�erent system size γl levels on the x-axis.

As Figure 3 highlights, the number of topics a�ects both τ and τAP , since their average value
increases as the number of topics increases. On the other hand, the number of systems exhibits less
impact on the two correlation coe�cients: indeed, apart from a small transient up to around 75-100
systems, the trend for both coe�cients is somehow constant, especially when the number of topics
increases. We can note how, in the transient phase, τ and τAP behave di�erently: τ tends to slightly
increase before reaching stability while τAP manifest an initial decrease, sometimes followed by an
increase, before getting more or less constant.
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Fig. 3. AP vs nDCG@20 correlation on the T131415 GoP, averaged over H = 100 samples for each (t , s)
combination, and confidence interval (shaded). Kendall’s τ correlation is drawn with a solid blue line; AP
correlation τAP is drawn with a dashed green line. Each plot shows the correlation for a given number of
topics as the number of systems increases.

Figure 3 does not support the claim by [50], at least in the case of the correlation among evaluation
measures, since the τ coe�cient does not steadily increases as the sample size, i.e. the number of
systems, increases. This represents a positive feature of the τ coe�cient when used to study the
correlation among evaluation measures, because it frees us from the concern of how many systems
we are using and if this number would lead us to observe somehow biased correlation values.

When it comes to con�dence intervals, lower number of topics and systems call for larger
intervals, which is not surprising. However, τ generally exhibits smaller con�dence intervals than
τAP , especially for low number of topics. Moreover, τ seems to be a bit more e�ective than τAP in
bene�ting from the increasing number of topics and systems; indeed, correlation values get more
stable and con�dence intervals get smaller in a “faster” way for τ than for τAP .

4.2.2 GLMM and ANOVA Analysis. Tables 2 and 3 report the results of the ANOVA analyses on
the GLMM model of equation (8) for τ and τAP , respectively.

The tables show that the main e�ects of the measure pair (α j ), topic size (βk ), and system size
(γl ) factors are all statistically signi�cant for both τ and τAP .
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Table 2. Kendall’s τ correlation: ANOVA table for the GLMM model of equation (8), considering the measure
pair, topic size, and system size e�ects on the T131415 GoP.

Source SS DF MS F p-value ω̂2
〈f act 〉 Power

Subject 55.8432 99 0.5641 99.6711 0.0000
Measure Pair 1,666.5150 27 61.7228 10,906.3664 0.0000 0.6004 1.0000
Topic Size 418.7689 6 69.7948 12,332.6910 0.0000 0.2740 1.0000
System Size 2.3875 9 0.2653 46.8753 3.64e-85 0.0021 0.9999
Measure Pair*Topic Size 33.1886 162 0.2049 36.2001 0.0000 0.0283 1.0000
Measure Pair*System Size 0.9346 243 0.0038 0.6796 1.0000 0.0000 0.8043
Topic Size*System Size 0.6136 54 0.0114 2.0079 1.69e-05 0.0002 0.5137
Error 1,105.8283 195,399 0.0057
Total 3,284.0798 195,999

Table 3. AP correlation τAP : ANOVA table for the GLMM model of equation (8), considering the measure
pair, topic size, and system size e�ects on the T131415 GoP.

Source SS DF MS F p-value ω̂2
〈f act 〉 Power

Subject 71.0670 99 0.7178 86.7603 0.0000
Measure Pair 2,536.3318 27 93.9382 11,353.5200 0.0000 0.6100 1.0000
Topic Size 612.0528 6 102.0088 12,328.9432 0.0000 0.2740 1.0000
System Size 12.0979 9 1.3442 162.4638 4.20e-308 0.0074 1.0000
Measure Pair*Topic Size 26.9371 162 0.1662 20.0967 0.0000 0.0155 1.0000
Measure Pair*System Size 1.2495 243 0.0051 0.6214 1.0000 0.0000 0.7467
Topic Size*System Size 0.8735 54 0.0162 1.9550 3.44e-05 0.0002 0.4966
Error 1,616.7174 195,399 0,0083
Total 4,877.3271 195,999

The most prominent e�ect is the measure pair one, which is a large size e�ect in terms of ω̂2,
and it has almost the same size for both τ and τAP . The large portion of variance explained by
the measure pair factor makes sense since correlation varies quite a lot from one measure pair to
another one and it is what actually discriminates evaluation measures.

The second biggest e�ect is the topic size one, which again is a large size e�ect and it has the
same size for both τ and τAP . This supports the previous observations about Figure 3 when we
noted that the topic size is the most prominent factor in�uencing the correlation among evaluation
measures. However, its size is slightly less half than the size of the measure pair e�ect, indicating
that the correlation among evaluation measures is by far the dominating factor.

Finally, the system size e�ect, even if signi�cant, is a very small size e�ect and we can consider
it almost negligible; however, it should be noted that this e�ect is a little bit more than three times
bigger for τAP than for τ . Overall, this sustains the observations made above about the smaller
importance of the number of systems on the correlation among evaluation measures, with τAP
being more sensitive to this factor than τ .

When it comes to the interaction between e�ects, for both τ and τAP , the measure pair and
topic size (αβ)jk and the topic size and system size (βγ )kl interactions are statistically signi�cant.
On the other hand, the measure pair and system size (αγ )jl interaction is not signi�cant and this
further stress the fact that the number of systems does not in�uence much the correlation among
evaluation measures.

The interaction between measure pair and topic size (αβ)jk is a small size e�ect, about 1.8 times
bigger for τ than for τAP , indicating that the former is slightly more in�uenced by it. This not only
strengthens the importance of the number of topics on the correlation among evaluation measures
but it also suggests that di�erent evaluation measure pairs may interact di�erently with the number
of topics, i.e. the correlation between certain measure pairs may be increased or decreased more
than others by some number of topics. The topic size and system size interaction (βγ )kl is another
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Table 4. Main e�ects of the τ and τAP correlation coe�icients for each evaluation measure pair, net from the
number of topics and systems e�ects on the T131415 GoP. These are the values plo�ed in Figure 4 on the
le�. Note that τAP is not symmetric and we used as reference the evaluation measure reported in the row.

AP P@10 R-prec RBP nDCG nDCG@20 ERR Twist

AP τ 1.0000 0.7273 0.9087 0.7307 0.8923 0.7814 0.6216 0.8793
τAP 1.0000 0.6064 0.8477 0.6160 0.8484 0.6741 0.4959 0.8125

P@10 τ – 1.0000 0.7165 0.8720 0.6909 0.8221 0.6860 0.7126
τAP – 1.0000 0.5919 0.7787 0.5665 0.7098 0.5481 0.5864

R-prec τ – – 1.0000 0.7197 0.8734 0.7736 0.6197 0.8690
τAP – – 1.0000 0.6038 0.8002 0.6641 0.4912 0.7849

RBP τ – – – 1.0000 0.6894 0.8141 0.7550 0.7092
τAP – – – 1.0000 0.5710 0.7051 0.6322 0.5883

nDCG τ – – – – 1.0000 0.7376 0.5892 0.8841
τAP – – – – 1.0000 0.6276 0.4683 0.8125

nDCG@20 τ – – – – – 1.0000 0.6754 0.7644
τAP – – – – – 1.0000 0.5381 0.6478

ERR τ – – – – – – 1.0000 0.6057
τAP – – – – – – 1.0000 0.4726

Twist τ – – – – – – – 1.0000
τAP – – – – – – – 1.0000

extremely small size e�ect that we can neglect, again indicating that the number of systems/topics
tend to not in�uence each other.

As a �nal remark emerging from from Tables 2 and 3, we can note how consistent is the behavior
of τ and τAP , which basically exhibit extremely close e�ect sizes for almost all the factors. Moreover,
the statistical power is extremely high for all the signi�cant e�ects, with the exception of the topic
size and system size interaction which is slightly under-powered.

4.2.3 Main E�ects Analysis. Figure 4 shows the main e�ects plot of the measure pair (on the left),
topics size (on the middle) and system size (on the right) factors for both τ (top in blue) and τAP
(bottom in green). The main e�ects plot graphs the response mean for each factor level connected
by a dotted tiny line and, by means of this plot, we can easily determine the impact of the di�erent
levels of a factor. In the case of the topic size and system size factor, we also report the outcomes of
the Tukey HSD test for the t = 50 topic size and the s = 100 system size, respectively: topic sizes
and system size not signi�cantly di�erent from t = 50 and s = 100, i.e. those which are in the same
group, are highlighted with a diamond.

Figure 4 on the left shows the expected values of τ and τAP , net from the e�ects of the number
of topics and systems; these values are also reported in Table 4, which can be held as reference
correlation values among these evaluation measures, distilled across a wide range of number of
topics and systems. As anticipated in Section 2.2, τAP is not symmetric and we used as reference
the evaluation measure reported in the row of Table 4 which corresponds to the �rst one in the
labels of measure pair plot in Figure 4.

The e�ect of the number of topics (middle plot of Figure 4) is to increase the correlation score
for both the correlation coe�cients and the Tukey HSD plots show that the topic sizes tend to
be signi�cantly di�erent from each other, apart from t = 50 and = 60 which belong to the same
group. However, the actual increment due to the topic size slows down as the topic size increases.
Indeed, the marginal means with respect to the topic size factor are: at 10 topics τ̄ t=10 = 0.6669
and τ̄ t=10

AP = 0.5441; at 30 topics τ̄ t=30 = 0.7413 and τ̄ t=30
AP = 0.6268 with a di�erence of 11.16% and

15.20%, respectively, with respect to 10 topics; at 50 topics τ̄ t=50 = 0.7908 and τ̄ t=50
AP = 0.6907 with

a di�erence of 6.68% and 10.19%, respectively, with respect to 30 topics; at 70 topics τ̄ t=70 = 0.8075
and τ̄ t=70

AP = 0.7132 with a di�erence of 2.11% and 3.26%, respectively, with respect to 50 topics.
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Fig. 4. Main e�ects for the measure pair (on the le�), topics size (on the middle) and system size (on the
right) factors on the T131415 GoP. Kendall’s τ correlation is at the top in blue, AP correlation τAP is at the
bo�om in green. The topic size and system size plots report also the Tukey HSD comparison for the t = 50
topic size and the s = 100 system size, respectively. Topic sizes and system size not significantly di�erent from
t = 50 and s = 100 are highlighted with a diamond. Note that τAP is not symmetric and we used as reference
the first evaluation measure in the labels of the measure pair plot. Also note that the figure is rotated and
indications like le�, middle and right all refer to when you rotate the figure to read it.
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Fig. 5. Interaction e�ects for the Measure Pair*Topic Size factors on the T131415 GoP. Kendall’s τ correlation
is on the le�, AP correlation τAP is on the right.

Overall, this suggests that the 50 topics typically found in a track of an evaluation campaign
are at the beginning of the range where the e�ect of the number of topics stabilizes and thus they
represent a reasonable choice, trading o� the cost of topic and ground-truth creation. Moreover,
these �ndings answer the question of [14] from a di�erent angle, since they clearly show that the
topic size matters a lot when studying the correlation among evaluation measures.

When it comes to the number of systems (right plot of Figure 4), we can see how τ is slightly
less a�ected by them than τAP and that, after an initial small transient up to 75-100 systems where
τ marginally increases and τAP marginally decreases, both τ and τAP becomes basically constant.
This is also con�rmed if you look at the marginal means with respect to the system size factor:
at 10 systems τ̄ s=10 = 0.7458 and τ̄ s=10

AP = 0.6649; at 50 systems τ̄ s=50 = 0.7588 and τ̄ s=50
AP = 0.6515

with a di�erence of just 1.74% and 2.02%, respectively, with respect to 10 systems; at 100 systems
τ̄ s=100 = 0.7558 and τ̄ s=100

AP = 0.6425 with a di�erence of 0.40% and 1.38%, respectively, with respect
to 50 topics; at 150 systems τ̄ s=150 = 0.7541 and τ̄ s=150

AP = 0.6410 with a very small di�erence of
only 0.22% and 0.23%, respectively, with respect to 100 systems; and similarly for even greater
numbers of systems. So, even if the Tukey HSD test shows a few signi�cant di�erences, we can see
how these di�erences have a limited impact in practical terms, as also supported by the ANOVA
Tables 2 and 3 which show how the system size is a signi�cant but extremely small e�ect.

As previously noted, these results do not support the claim by [50], who suggested that τ increases
with the length of the sample size, i.e. the number of systems in our case. However, the example of
[50] consists of a list where the top 10 elements are in opposite order and kept �xed while all the
others are concordant as the list gets longer: in this case, as the list length increases, τ increases. In
our case, instead, we have swaps in all the positions of the RoS of the longer and longer lists and
this motivates why we observe a di�erent behavior than [50].

4.2.4 Interaction E�ects Analysis. Figure 5 shows the interaction plots for the Measure Pair*Topic
Size factor which, according to Tables 2 and 3 is the only signi�cant interaction e�ect with a not-
negligible e�ect size; τ is plotted on the left and τAP is plotted on the right. An interaction e�ects
plot displays the levels of one factor on the X axis and has a separate line for the means of each

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0. Publication date: June 2017.



What Does A�ect the Correlation Among Evaluation Measures? 0:19

= =AP
nDCG vs ERR - 0.5892
ERR vs Twist - 0.6057

R-prec vs ERR - 0.6197
AP vs ERR - 0.6216

nDCG@20 vs ERR - 0.6754
P@10 vs ERR - 0.6860
RBP vs nDCG - 0.6894

P@10 vs nDCG - 0.6909
RBP vs Twist - 0.7092

P@10 vs Twist - 0.7126
P@10 vs R-prec - 0.7165

R-prec vs RBP - 0.7197
AP vs P@10 - 0.7273

AP vs RBP - 0.7307
nDCG vs nDCG@20 - 0.7376

RBP vs ERR - 0.7550
nDCG@20 vs Twist - 0.7644

R-prec vs nDCG@20 - 0.7736
AP vs nDCG@20 - 0.7814

RBP vs nDCG@20 - 0.8141
P@10 vs nDCG@20 - 0.8221

R-prec vs Twist - 0.8690
P@10 vs RBP - 0.8720

R-prec vs nDCG - 0.8734
AP vs Twist - 0.8793

nDCG vs Twist - 0.8841
AP vs nDCG - 0.8923
AP vs R-prec - 0.9087

R
oM

P 
by

 K
en

da
ll's

 =
 C

or
re

la
tio

n

= =AP
0.4683 - nDCG vs ERR
0.4726 - ERR vs Twist
0.4912 - R-prec vs ERR
0.4959 - AP vs ERR
0.5381 - nDCG@20 vs ERR
0.5481 - P@10 vs ERR
0.5665 - P@10 vs nDCG
0.5710 - RBP vs nDCG
0.5864 - P@10 vs Twist
0.5883 - RBP vs Twist
0.5919 - P@10 vs R-prec
0.6038 - R-prec vs RBP
0.6064 - AP vs P@10
0.6160 - AP vs RBP
0.6276 - nDCG vs nDCG@20
0.6322 - RBP vs ERR
0.6478 - nDCG@20 vs Twist
0.6641 - R-prec vs nDCG@20
0.6741 - AP vs nDCG@20
0.7051 - RBP vs nDCG@20
0.7098 - P@10 vs nDCG@20
0.7787 - P@10 vs RBP
0.7849 - R-prec vs Twist
0.8002 - R-prec vs nDCG
0.8125 - nDCG vs Twist
0.8125 - AP vs Twist
0.8477 - AP vs R-prec
0.8484 - AP vs nDCG

R
oM

P 
by

 A
P 

C
or

re
la

tio
n 
=

AP

Correlation among RoMP: tauCorr = 0.9735; apCorr = 0.8815

AP
 v

s 
R

-p
re

c
AP

 v
s 

nD
C

G
nD

C
G

 v
s 

Tw
is

t
AP

 v
s 

Tw
is

t
R

-p
re

c 
vs

 n
D

C
G

P@
10

 v
s 

R
BP

R
-p

re
c 

vs
 T

w
is

t
P@

10
 v

s 
nD

C
G

@
20

R
BP

 v
s 

nD
C

G
@

20
AP

 v
s 

nD
C

G
@

20
R

-p
re

c 
vs

 n
D

C
G

@
20

nD
C

G
@

20
 v

s 
Tw

is
t

R
BP

 v
s 

ER
R

nD
C

G
 v

s 
nD

C
G

@
20

AP
 v

s 
R

BP
AP

 v
s 

P@
10

R
-p

re
c 

vs
 R

BP
P@

10
 v

s 
R

-p
re

c
P@

10
 v

s 
Tw

is
t

R
BP

 v
s 

Tw
is

t
P@

10
 v

s 
nD

C
G

R
BP

 v
s 

nD
C

G
P@

10
 v

s 
ER

R
nD

C
G

@
20

 v
s 

ER
R

AP
 v

s 
ER

R
R

-p
re

c 
vs

 E
R

R
ER

R
 v

s 
Tw

is
t

nD
C

G
 v

s 
ER

R

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

C
or

re
la

tio
n 

M
ar

gi
na

l M
ea

n 
C

en
te

re
d 

ar
ou

nd
 Z

er
o RMSE between = and =AP curves = 0.0242.

=
=AP

Fig. 6. Comparison of the main e�ects of measure pair factor for both τ and τAP on the T131415 GoP. On
the le�, RoMP are ordered by τ and τAP : horizontal and oblique lines indicate, respectively, concordance and
discordance between the rankings. On the right, the same main e�ects shown in Figure 4 on the le� but with
means centered around zero, where τ is drawn with a solid blue line while τAP with a dashed green line.

level of the other factor on the Y axis; it allows us to understand whether the e�ect of one factor
depends on the level of the other factor. Two parallel lines indicate that no interaction occurred,
whereas nonparallel lines indicate an interaction between factors; the more nonparallel the lines
are, the greater the strength of the interaction.

We can see that in Figure 5, even if lines exhibit a common upward trend as the topic size
increases, there are many non parallel lines and many crossings, denoting a good interaction
between the two factors. For example, in the case of τ , AP vs Twist (solid thick blue line) is below
P@10 vs RBP (dotted thick blue line) at 10 topics, they cross around 20 topics, and P@10 vs RBP
gets over AP vs Twist from 30 topics onwards; we can note how the AP vs Twist slope is a bit
steeper than the P@10 vs RBP one, indicating that AP vs Twist bene�ts more than P@10 vs RBP
from the progressively increasing topic size; �nally, in the case of τAP we can observe that AP vs
Twist is always above P@10 vs RBP and, as in the case of τ , its slope is steeper than the P@10 vs
RBP one, again denoting interaction between the two factors. As a further example, for both τ and
τAP , R-prec vs RBP (solid thick green line) starts below many other measure pairs but it has a
quite steep slope and, as the topic size increases, it crosses several of the measure pairs above it.

Overall, this con�rms that the number of topics has a great impact on the correlation among
evaluation measures and that, at di�erent topic sizes, we may observe di�erent behaviors for
di�erent measure pairs.

4.2.5 τ and τAP Comparison. It can be noted how, in Figure 4, the τ and τAP curves for the
measure pair factor look very similar, provided that τAP has lower values than τ and it is translated
towards the bottom. This suggest that, yet providing di�erent correlation values, τ and τAP may
convey somewhat similar information about the correlation among a set of evaluation measures.

To explore a bit more this aspect, we rank measure pairs by their τ and τAP scores reported in
Table 4 and shown in Figure 4 on the left; this originates two Rankings of Measure Pairs (RoMP) and
we investigate how close these two RoMP are, considering that the closer they are the more similar
information they provide about the correlation among evaluation measures.

Figure 6 on the left shows a parallel coordinates plot [38] of the τ and τAP RoMP. The parallel
coordinates plot is a visualization technique used to plot individual data elements across many
dimensions; each of the dimensions corresponds to a vertical axis – in our case we have two axes,
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one for τ and another for τAP – and each data element is displayed as a series of connected points
along the dimensions/axes.

It emerges that there are many concordant pairs, that there are just 5 swaps between the two
RoMP, and that these swaps are only local, i.e. they concern just two adjacent positions, as in the
case of the AP vs R-Prec and AP vs nDCG pairs in the top ranks. To get a quantitative appreciation
of how close these two RoMP are, we can adopt the Kendall’s tau and AP correlation coe�cients
themselves but playing a di�erent role: here we use them as an analysis tool and they are not the
object of investigation, as it generally happens in this paper; to clearly indicate these di�erent roles,
we label them tauCorr and apCorr when they are used as an analysis tool while we label them
τ and τAP when they are the object of investigation. We obtain that the correlation among the
two RoMP is tauCorr = 0.9735 and apCorr = 0.8815, suggesting that τ and τAP rank evaluation
measure pairs in a very similar manner. We can also note how the 3 swaps in the top ranks of the
RoMP are penalized by apCorr, which is about 10% lower than tauCorr.

We look at how similar information τ and τAP provide about the correlation among evaluation
measures also from another angle. We have observed that the τ and τAP curves for the measure
pair factor, shown in Figure 4 on the left and reported in Table 4, look very similar even if they are
somewhat translated. Therefore, to better appreciate this similarity, we center the mean of the τ
and τAP curves around zero, i.e. we remove from each curve its mean across the di�erent measure
pairs, as shown in Figure 6. Finally, we quantify how close these two curves are by using the Root
Mean Square Error (RMSE) [42], which is just RMSE = 0.0242, indicating very small di�erences.

Overall, these �ndings suggest that, if you consider a set of evaluation measures and you compare
them across a large set of topic and system sizes, removing those e�ects, τ and τAP have di�erent
absolute values but they provide a quite consistent assessment of what the di�erences among these
evaluation measures are.

5 EFFECT OF REMOVING LOW PERFORMING SYSTEMS
5.1 Methodology
When conducting experimentation, low performing systems are identi�ed in various ways, accord-
ing to what �ts best with the goal of the experiment at hand. For example, [5, 55] consider only
runs that retrieve at least 5 relevant and 5 highly relevant documents while [80] remove runs in
the �rst quartile of MAP. Here, we take the same angle as [80] and we consider as low performing
systems those falling in the �rst quartile of MAP, since this is a very commonly adopted approach.

Our goal is to understand whether the following two cases provide substantially di�erent
information about the correlation among evaluation measures: allQ case, where we use all the
systems to compute the correlation scores; no1Q case, where we remove low performing systems,
i.e. those falling in the �rst quartile of MAP, before computing the correlation scores.

We use the same dataset and experimental setup described in Section 4.1 and brie�y recapped
here: (i) generate H = 100 samples of t topics and s systems; (ii) for each sample, compute the
performance of the systems over the topics with respect to all measures; (iii) for each sample, rank
the systems by the performance measures, one RoS per measure; (iv) for each sample and for each
pair of measures, compute the correlation of the RoS with both τ and τAP .

Therefore, for each combination (t , s) ∈ T × S of topic and system sizes, we consider:
(1) allQ: τ and τAP correlations scores, averaged over the H = 100 samples, where at step (iii)

we use the whole RoS;
(2) no1Q: τ and τAP correlations scores, averaged over the H = 100 samples, where at step (iii)

we remove �rst quartile systems from the RoS; we identify systems in the �rst quartile in
terms of their MAP.
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Fig. 7. Experimental design for investigating RQ2.

Adopting the above procedure, as shown in Figure 7, we end up with 28 distinct τ and τAP
average correlation scores, where 28 is the number of possible measure pairs, for the allQ and
no1Q cases at each combination (t , s) ∈ T × S of topic and system sizes.

Now, for each cell of the table in Figure 7, i.e. for each combination (t , s) ∈ T × S of topic and
system sizes, we need to understand whether the allQ and no1Q cases convey somewhat similar
information about the correlation among evaluation measures. To this end, we reason in a way
similar to what we did in Section 4.2.5 and we analyze the data as follows:

• we rank measure pairs by their allQ and no1Q correlation scores and we investigate how
close these two allQ and no1Q RoMP are, considering that the closer they are the more
similar information they provide about the correlation among evaluation measures. To get
a quantitative appreciation of how close these two RoMP are, we use the Kendall’s tau and
AP correlation coe�cients themselves but playing the role of an analysis tool; therefore,
we label them tauCorr and apCorr in this case.
• we consider the allQ and no1Q curves, i.e. the plot of the values contained in a cell of

the table in Figure 7, and we center the mean of the allQ and no1Q curves around zero,
i.e. we remove from each curve its mean across the di�erent measure pairs. This allows
us to assess how close are the allQ and no1Q curves, once the vertical translation due to
di�erent absolute values has been removed. We quantify this “closeness” in terms of RMSE
between the allQ and no1Q curves: the lower the RMSE scores, the more similar are the
allQ and no1Q curves and the smaller the di�erence between removing or not removing
low performing systems.
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Fig. 8. AP vs nDCG@20 pair correlation on the T131415 GoP, averaged over H = 100 samples at the t =
10, 30, 50, 70 topic sizes, and confidence interval (shaded). Kendall’s τ correlation is on the top: allQ is a solid
blue line and no1Q is a dashed red line; AP correlation τAP is on the bo�om: allQ is a solid green line and
no1Q is a dashed orange line. Each plot shows the correlation for a given number of topics as the number of
systems increases. The allQ curves are the same as those shown in the corresponding plots of Figure 3.
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Table 5. Comparison of Kendall’s τ correlation with and without removing first quartile systems on the
T131415 GoP. For each (t , s) combination, the tauCorr and apCorr values measure how close the RoMP are
with and without removing first quartile systems; the RMSE values quantify how close are the allQ and no1Q
scores, once their mean over the set of evaluation measure pairs has been centered around zero.

System Size
10 25 50 75 100 125 150 200 250 500

To
pi
c
Si
ze

10
tauCorr 0.9312 0.9524 0.9577 0.9577 0.9577 0.9524 0.9524 0.9418 0.9418 0.9418
apCorr 0.9075 0.9589 0.8937 0.9647 0.9617 0.9411 0.9415 0.9298 0.9233 0.9338
RMSE 0.0452 0.0400 0.0419 0.0379 0.0416 0.0399 0.0419 0.0400 0.0414 0.0413

20
tauCorr 0.9365 0.9788 0.9894 0.9894 0.9894 0.9841 0.9788 0.9841 0.9841 0.9894
apCorr 0.9291 0.8966 0.9871 0.9899 0.9871 0.9830 0.9825 0.9832 0.9832 0.9871
RMSE 0.0521 0.0406 0.0440 0.0463 0.0452 0.0471 0.0471 0.0465 0.0462 0.0464

30
tauCorr 0.9524 0.9735 0.9947 0.9735 0.9894 0.9841 1.0000 0.9947 0.9841 0.9894
apCorr 0.9264 0.9077 0.9815 0.9561 0.9903 0.9719 1.0000 0.9938 0.9714 0.9780
RMSE 0.0566 0.0499 0.0497 0.0474 0.0493 0.0502 0.0513 0.0498 0.0494 0.0494

40
tauCorr 0.9365 0.9841 0.9894 0.9788 0.9788 0.9841 0.9947 0.9841 0.9947 0.9841
apCorr 0.9417 0.9744 0.9817 0.9830 0.9538 0.9785 0.9965 0.9571 0.9852 0.9785
RMSE 0.0480 0.0428 0.0462 0.0454 0.0466 0.0467 0.0479 0.0457 0.0474 0.0473

50
tauCorr 0.9683 0.9894 0.9788 0.9683 0.9947 0.9735 0.9841 0.9683 0.9735 0.9683
apCorr 0.9306 0.9927 0.9788 0.9472 0.9954 0.9640 0.9858 0.9435 0.9643 0.9520
RMSE 0.0440 0.0370 0.0385 0.0403 0.0423 0.0415 0.0415 0.0408 0.0415 0.0417

60
tauCorr 0.9894 0.9841 0.9735 0.9788 0.9841 0.9894 0.9894 0.9735 0.9841 0.9894
apCorr 0.9925 0.9671 0.9326 0.9628 0.9769 0.9806 0.9808 0.9632 0.9725 0.9802
RMSE 0.0486 0.0416 0.0429 0.0453 0.0466 0.0456 0.0470 0.0462 0.0473 0.0468

70
tauCorr 0.9577 0.9630 0.9524 0.9418 0.9418 0.9471 0.9683 0.9418 0.9577 0.9524
apCorr 0.9547 0.9335 0.9337 0.9054 0.9027 0.9394 0.9281 0.9029 0.9142 0.9103
RMSE 0.0417 0.0383 0.0421 0.0409 0.0421 0.0420 0.0433 0.0413 0.0428 0.0428

Table 6. Comparison of AP correlation τAP with and without removing first quartile systems on the T131415
GoP. For each (t , s) combination, the tauCorr and apCorr values measure how close the RoMP are with and
without removing first quartile systems; the RMSE values quantify how close are the allQ and no1Q scores,
once their mean over the set of evaluation measure pairs has been centered around zero.

System Size
10 25 50 75 100 125 150 200 250 500

To
pi
c
Si
ze

10
tauCorr 0.9471 0.9788 0.9735 0.9788 0.9788 0.9841 0.9735 0.9735 0.9683 0.9788
apCorr 0.9645 0.9849 0.9768 0.9830 0.9709 0.9897 0.9718 0.9690 0.9775 0.9869
RMSE 0.0306 0.0235 0.0243 0.0219 0.0231 0.0224 0.0231 0.0224 0.0230 0.0228

20
tauCorr 0.9683 0.9788 0.9947 0.9947 0.9894 0.9894 0.9894 0.9947 0.9947 0.9947
apCorr 0.9055 0.9681 0.9938 0.9943 0.9905 0.9911 0.9911 0.9938 0.9973 0.9973
RMSE 0.0325 0.0252 0.0254 0.0269 0.0262 0.0268 0.0269 0.0264 0.0263 0.0263

30
tauCorr 0.9577 1.0000 0.9894 0.9788 0.9788 0.9894 0.9841 0.9788 0.9894 0.9947
apCorr 0.8900 1.0000 0.9916 0.9673 0.9051 0.9916 0.9741 0.9129 0.9213 0.9259
RMSE 0.0360 0.0308 0.0297 0.0286 0.0287 0.0299 0.0299 0.0291 0.0292 0.0290

40
tauCorr 0.9630 1.0000 0.9894 0.9788 0.9947 0.9894 0.9841 0.9841 1.0000 0.9841
apCorr 0.8994 1.0000 0.9913 0.9098 0.9961 0.9213 0.9186 0.9191 1.0000 0.9193
RMSE 0.0326 0.0273 0.0290 0.0280 0.0281 0.0283 0.0293 0.0278 0.0286 0.0285

50
tauCorr 0.9788 0.9841 0.9947 0.9894 0.9947 0.9841 0.9894 0.9841 0.9947 0.9947
apCorr 0.9061 0.9148 0.9259 0.9227 0.9259 0.9136 0.9210 0.9173 0.9259 0.9259
RMSE 0.0287 0.0241 0.0247 0.0252 0.0261 0.0255 0.0257 0.0252 0.0254 0.0254

60
tauCorr 0.9894 0.9947 1.0000 0.9841 0.9841 0.9947 0.9894 0.9841 0.9788 0.9894
apCorr 0.9915 0.9973 1.0000 0.9186 0.9849 0.9973 0.9937 0.9158 0.9810 0.9232
RMSE 0.0313 0.0266 0.0271 0.0278 0.0283 0.0279 0.0285 0.0280 0.0285 0.0281

70
tauCorr 0.9788 0.9947 0.9788 0.9894 0.9788 0.9894 0.9841 0.9841 0.9841 0.9894
apCorr 0.9157 0.9973 0.9030 0.9904 0.9124 0.9202 0.9174 0.9156 0.9159 0.9213
RMSE 0.0285 0.0256 0.0271 0.0262 0.0265 0.0266 0.0267 0.0260 0.0267 0.0265
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5.2 Experimental Results
5.2.1 General Trends. Figure 8 shows the correlation of the AP vs nDCG@20 pair, averaged over

the H = 100 samples, at the t = 10, 30, 50, 70 topic sizes9 and the corresponding con�dence interval;
Kendall’s τ correlation is drawn with a solid blue line (allQ) and a dashed red line (no1Q) while AP
correlation τAP is drawn with a solid green line (allQ) and a dashed orange line (no1Q). Figure 8
basically plots the raw data contained in the cells of the table in Figure 7 for the rows corresponding
to topic sizes t = 10, 30, 50, 70 across the columns of all the system sizes. The other evaluation
measure pairs exhibit a consistent behaviour with respect to the one of the AP vs nDCG@20 pair,
which we use here as an example to discuss the main trends. Note that the allQ curves in the plots
of Figure 8 are the same curves also shown in the corresponding plots of Figure 3.

[68] stated that the higher the range of scores of the ranked systems, the higher the correlation
coe�cient and Figure 8 basically generalizes their claim across many topic and system sizes. Indeed,
we can observe that, for all the topics and system sizes, τ and τAP excluding �rst quartile systems
(no1Q), i.e. reducing the range of the system scores, are consistently lower by their counterpart
considering all the systems (allQ).

When can also note that the no1Q version of the curves tend to have bigger con�dence intervals
than the allQ one, especially at lower topic and system sizes. This makes sense when you consider
that the no1Q version removes 25% of the systems and this particularly a�ects the lower topic and
system sizes.

Finally, Figure 8 evidences how close is the behaviour of the allQ and no1Q curves, yet with
di�erent absolute values, for both τ and τAP .

5.2.2 Analysis. Figure 9 compares, for the (t = 50, s = 100) combination, the allQ and no1Q
RoMP as well as the allQ and no1Q curves. In other terms, it applies the analysis procedure described
in Section 5.1 to the contents of the cell of the table in Figure 7 corresponding to t = 50 topics and
s = 100 systems.

As shown in the parallel coordinates plot on the left, for both τ and τAP , the di�erence between
allQ and no1Q consists of just one swap between two adjacent measure pairs, somehow in the
middle for τ and at the top for τAP ; as a consequence, in the case of τ , the correlations between the
allQ and no1Q RoMP are tauCorr = 0.9947 and apCorr = 0.9954; in the case of τAP , the correlations
between the allQ and no1Q rankings are tauCorr = 0.9947 and apCorr = 0.9259, a little lower due
to the single swap happening at the top rank.

Figure 9 shows, on the right, the allQ and no1Q curves with mean centered around zero. We can
observe how close they are, as also supported by the low RMSE which is RMSE = 0.0423 in the
case of Kendall’s τ correlation and RMSE = 0.0261 in the case of AP correlation τAP . We can also
note that, for both τ and τAP , the no1Q curve is constantly above the allQ one for measure pairs in
the top half of the RoMP while the opposite happens for measure pairs in the bottom half. This
suggest that removing low performing systems somehow boosts more highly correlated measure
pairs and narrows down the less correlated ones.

Finally, Table 5 (τ ) and Table 6 (τAP ) reports the results of the application of the analysis method-
ology described in Section 5.1 to each cell of the table show in Figure 7.

We can observe that the correlations between the allQ and no1Q RoMP are quite high, for all
the possible topic and system sizes, being a bit lower just in case of very low numbers of topics and
systems: they are typically over 0.9 for both τ (Table 5) and τAP (Table 6).

Overall, the grand mean across the cells of Tables 5 and 6 is: for Kendall’s τ correlation tauCorr =
0.9723 and apCorr = 0.9580 and for AP correlation τAP tauCorr = 0.9852 and apCorr = 0.9538,

9The trends for the other topics are quite similar and we do not show them here for space reasons.
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RMSE between allQ and no1Q curves = 0.0423.
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Fig. 9. Comparison of the allQ and no1Q τ and τAP versions for the (t = 50, s = 100) level across all the
pairs of evaluation measures. τ is on the top and τAP is on the bo�om. On the le�, the rankings of the
evaluation measure pairs are ordered by the allQ and no1Q approaches: horizontal and oblique lines indicate,
respectively, concordance and discordance between the rankings. On the right, theallQ and no1Q curves are
shown but with means centered around zero.

indicating an almost perfect concordance between the allQ and no1Q cases. This is also supported
by the RMSE which is typically low and whose grand mean is RMSE = 0.0446 for Kendall’s τ
correlation and RMSE = 0.0271 for AP correlation τAP

Overall, these analyses suggest that the allQ and no1Q approaches do not convey substantially
di�erent information when comparing a set of evaluation measures.

On the other hand removing �rst quartile systems, or lower performing systems according to
some other criteria, may make the experiments more di�cult to reproduce [25, 26] because of
various reasons, e.g. overlooking to remove low performing systems, wrong implementation of the
removal criterion, and so on.

Furthermore, these analyses highlight a serious issue concerning the di�culty in using and
interpreting absolute thresholds, as pointed out also by [68]. The τ = 0.9 threshold indicated
by [76, 77], and then widely adopted by researchers, is well motivated and sensible when it comes
to its interpretation of level above which we can consider rankings to be equivalent but its absolute
value 0.9 is mostly bound to the speci�c experiments that have been conducted and to their setup.

For example, Figure 8 shows how for the AP vs nDCG@20 pair, the di�erence between the allQ
and the no1Q systems is to obtain a Kendall’s τ score closer to or farther away from the 0.9 threshold;
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Fig. 10. Design of the GLMM model of equation (9) for the measure pair, corpus and topic set e�ects.

this, in turn, would make you reach quite di�erent conclusions about the correlation between these
two evaluation measures. And, if you consider that both the allQ and the no1Q choice does not
substantially a�ect the positioning of the AP vs nDCG@20 pair with respect to the others, this turns
out to be a bit severe consequence of using absolute thresholds.

Therefore, for all these reasons, it should be carefully thought when it is really needed and
bene�cial to remove low performing systems and, instead, it is not detrimental of the reproducibility
and ease of interpretation of the experimental results.

6 EFFECT OF EXPERIMENTAL COLLECTIONS
6.1 Methodology
To answer RQ3, we adopt an approach inspired by experimental design described in Section 4.1 but
with changes to �t it to the case at hand. We create a GoP for each of the 7 adopted collections,
from T07 to T15. We use all the topics available in each collection, i.e. a topic size t = 50 for each
collection except for T13 which has t = 49, and we set a system size s = 100. This (t , s) combination
represents the typical settings from a reasonably large track in an evaluation campaign.

We randomly draw H = 100 samples of s = 100 systems out of the 1, 326 possible systems and
we run these system over the topics of all the collections from T07 to T15. For each sample and
each collection, we compute all the evaluation measures and this produces H = 100 RoS for each
measure and collection. Finally, for each collection, we compute both τ and τAP over all the possible
measure pairs for each of these H = 100 RoS.

This setup allows us to isolate the e�ects of the topic sets and corpora, since the same systems
are evaluated over all the used GoPs.

We adopt the mixed design shown in Figure 10: subjects κi are the H = 100 samples for each
combination of topics and systems; factors α j and βk correspond, respectively, to measure pairs
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and document corpora; and, factor γl (k ), nested within factor βk , represent topic sets. Factor γl (k ) is
nested within factor βk because the same corpus is used by more collections but each topic set is
used just with one corpus: for example, T07 and T08 both use the TIPSTER corpus but they use two
di�erent topic sets, i.e. 351-400 and 401-450, respectively, as reported in Section 3.1. This leads to
the following GLMM model:

Yi jkl = µ · · · · + κi + α j + βk + γl (k )︸                           ︷︷                           ︸
Main E�ects

+ (αβ)jk + (αγ )jl (k )︸                ︷︷                ︸
Interaction E�ects

+ εi jkl︸︷︷︸
Error

(9)

where:
• Yi jkl is the correlation value (either τ or τAP ) of the i-th subject in the j-th, k-th, and l-th

factors;
• µ · · · · is the grand mean;
• κi is the e�ect of the i-th subject, i.e. the h = 1, . . . ,H samples for each topics and system

combination, where κi = µi · · · − µ · · · · and µi · · · is the mean of the i-th subject;
• α j = µ ·j · · − µ · · · · is the e�ect of the j-th factor, i.e. measure pairs, where µ ·j · · is the mean of

the j-th factor. Considering that we are experimenting with 8 evaluation measures, there
are

(8
2
)
= 28 measure pairs, i.e. 28 levels for factor α j ;

• βk = µ · ·k · − µ · · · · is the e�ect of the k-th factor, i.e. corpora, where µ · ·k · is the mean of the
k-th factor; there are 3 levels for factor βk , each one corresponding to a di�erent corpus,
namely TIPSTER, WT10g, and GOV2;
• γl (k) = µ · · ·l (k) − µ · · · · is the e�ect of the l-th factor, i.e. topic sets, where µ · · ·l (k) is the mean

of the l-th factor; for TIPSTER and GOV2 there are 2 levels of factor γl (k ), corresponding
to topics sets 351-400 and 401-450 for TIPSTER and topic sets 451-500 and 501-550 for
WT10g; for GOV2 there are 3 levels of factor γl (k ), corresponding to topics sets 701-750,
751-800, and 801-850;
• (αβ)jk and (αγ )jl (k ) are, respectively, the interactions between measure pairs and corpora

and between measure pairs and topic sets;
• εi jkl is the error committed by the model in predicting the score of the i-th subject in the

three factors j,k, l .
Considering that there are 28 measure pairs, 2 corpora with 2 topic sets each and 1 corpus with 3

topic sets and that, for each combination of these factors, we use 100 subjects, overall this amounts
to analyzing 19,600 correlation values for both τ and τAP .

6.2 Experimental Results
6.2.1 General Trends. Figure 11 shows the τ (top) and τAP (bottom) correlation values, averaged

over the H = 100 samples, across the T07, T08, T09, T10, T13, T14, and T15 collections. On the left,
you can see the actual average correlation values; on the right, there are the RoMP produced by
these correlation values. Figure 11 on the left basically plots the raw data contained in the cells
of the table in Figure 10, where each line in the plot corresponds to a row in the table and each
collection on the x-axis in the plot corresponds to a column in the table identi�ed by a (corpus,
topic set) pair, e.g. T07 collection corresponds to the (TIPSTER, 351-400) column.

It clearly emerges from both the left and the right plots of Figure 11 that there is quite a big
variation across the di�erent collections and that it a�ects both τ and τAP . For example in the
case of τ , the nDCG vs Twist pair (solid thick blue line) goes above and below the 0.9 threshold,
making us to reach di�erent conclusions about these two measures depending on the collection
they are tested against. A similar example is the AP vs nDCG pair (dotted thick blue line) which

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0. Publication date: June 2017.



0:28 N. Ferro

Kendall’s tau Correlation

AP correlation
T07 T08 T09 T10 T13 T14 T15

Collection

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Ke
nd

al
l's

 =
 C

or
re

la
tio

n

nDCG vs Twist
AP vs R-prec
AP vs nDCG
R-prec vs Twist
R-prec vs nDCG
AP vs Twist
R-prec vs nDCG@20
P@10 vs RBP
AP vs nDCG@20
P@10 vs nDCG@20
nDCG vs nDCG@20
nDCG@20 vs Twist
RBP vs nDCG@20
AP vs P@10
P@10 vs R-prec
AP vs RBP
P@10 vs Twist
P@10 vs nDCG
R-prec vs RBP
RBP vs ERR
RBP vs Twist
RBP vs nDCG
P@10 vs ERR
nDCG@20 vs ERR
AP vs ERR
R-prec vs ERR
ERR vs Twist
nDCG vs ERR

T07 T08 T09 T10 T13 T14 T15
Collection

nDCG vs ERR
ERR vs Twist

R-prec vs ERR
AP vs ERR

nDCG@20 vs ERR
P@10 vs ERR
RBP vs nDCG
RBP vs Twist
RBP vs ERR

R-prec vs RBP
P@10 vs nDCG
P@10 vs Twist

AP vs RBP
P@10 vs R-prec

AP vs P@10
RBP vs nDCG@20

nDCG@20 vs Twist
nDCG vs nDCG@20
P@10 vs nDCG@20

AP vs nDCG@20
P@10 vs RBP

R-prec vs nDCG@20
AP vs Twist

R-prec vs nDCG
R-prec vs Twist

AP vs nDCG
AP vs R-prec

nDCG vs Twist

RO
M

P 
by

 K
en

da
ll's

 =
 C

or
re

la
tio

n

T07 T08 T09 T10 T13 T14 T15
Collection

ERR vs Twist
nDCG vs ERR

AP vs ERR
R-prec vs ERR

nDCG@20 vs ERR
P@10 vs ERR

RBP vs ERR
P@10 vs Twist
RBP vs nDCG
RBP vs Twist

P@10 vs nDCG
P@10 vs R-prec

R-prec vs RBP
AP vs P@10

AP vs RBP
nDCG@20 vs Twist
RBP vs nDCG@20

nDCG vs nDCG@20
P@10 vs nDCG@20

AP vs nDCG@20
R-prec vs nDCG@20

P@10 vs RBP
R-prec vs nDCG
R-prec vs Twist

AP vs Twist
AP vs R-prec
AP vs nDCG

nDCG vs Twist

RO
M

P 
by

 A
P 

Co
rre

la
tio

n 
=

AP

T07 T08 T09 T10 T13 T14 T15
Collection

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

AP
 C

or
re

la
tio

n 
=

AP

nDCG vs Twist
AP vs nDCG
AP vs R-prec
AP vs Twist
R-prec vs Twist
R-prec vs nDCG
P@10 vs RBP
R-prec vs nDCG@20
AP vs nDCG@20
P@10 vs nDCG@20
nDCG vs nDCG@20
RBP vs nDCG@20
nDCG@20 vs Twist
AP vs RBP
AP vs P@10
R-prec vs RBP
P@10 vs R-prec
P@10 vs nDCG
RBP vs Twist
RBP vs nDCG
P@10 vs Twist
RBP vs ERR
P@10 vs ERR
nDCG@20 vs ERR
R-prec vs ERR
AP vs ERR
nDCG vs ERR
ERR vs Twist

Fig. 11. Kendall’s τ correlation (top) and AP correlation τAP (bo�om) across the T07, T08, T09, T10, T13, T14,
and T15 GoP. On the le�, there are the correlation values, averaged over the H = 100 samples. On the right,
there are the RoMP, ordered by their correlation on the T07 collection: the lines show how these ranks varies
across the other collections.

goes above and under the 0.9 threshold many times and keeps crossing with the nDCG vs Twist
pair. If we look at the parallel coordinates plots on the right, we can see how the changes in the
correlation values a�ect the ranking of these two measures pairs, with nDCG vs Twist and AP vs
nDCG becoming the top ranked pair depending on the collection.

Overall, this suggest that collections have an impact on the correlation among evaluation mea-
sures and RQ3 investigates how much of this impact is due to the corpora and how much to the
topic sets.

6.2.2 GLMM and ANOVA Analysis. Tables 7 and 8 report the results of the ANOVA analyses
for the GLMM of equation (9) for τ and τAP , respectively: all the e�ects are statistically signi�cant;
they are all large size e�ects with the exception of the corpus e�ect which is a medium size one;
and, the power is 1 for all the analyzed e�ects.

The most prominent e�ect is the measure pair one; as discussed also in Section 4.2, this makes
sense since correlation values vary quite a lot from one measure pair to another one and it is what
actually di�erentiates evaluation measures.

The corpus e�ect is the smallest one and, in the case of τAP , it is about half the size than in the
case of τ , indicating that the former is less sensitive to the change of corpora. This might due to the
fact that good systems are top ranked over di�erent corpora and τAP focuses more on top ranked
systems. You can also note how the topic set e�ect is about 2–3 times bigger than the corpus e�ect,
indicating that it dominates.
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Table 7. Kendall’s τ correlation: ANOVA table for the GLMM of equation (9), considering measure pair, corpus
and topic set e�ects on the T07, T08, T09, T10, T13, T14, and T15 GoPs.

Source SS DF MS F p-value ω̂2
〈f act 〉 Power

Subject 5.1083 99 0.0516 96.2944 0.0000
Measure Pair 114.9086 27 4.2559 7,942.3019 0.0000 0.9162 1.0000
Corpus 1.4975 2 0.7488 1,397.3473 0.0000 0.1247 1.0000
Topic Set(Corpus) 4.0247 4 1.0062 1,877.7154 0.0000 0.2769 1.0000
Measure Pair*Corpus 5.1302 54 0.0950 177.2957 0.0000 0.3269 1.0000
Measure Pair*Topic Set(Corpus) 13.8983 108 0.1287 240.1563 0.0000 0.5686 1.0000
Error 10.3446 19,305 0.0005
Total 163.8230 19,599

Table 8. AP correlation τAP : ANOVA table for the GLMM of equation (9), considering measure pair, corpus
and topic set e�ects on the T07, T08, T09, T10, T13, T14, and T15 GoPs.

Source SS DF MS F p-value ω̂2
〈f act 〉 Power

Subject 6.7980 99 0.0687 62.9948 0.0000
Measure Pair 178.9458 27 6.6276 6,080.1540 0.0000 0.8933 1.0000
Corpus 1.4495 2 0.7247 664.8616 5.8e-280 0.0634 1.0000
Topic Set(Corpus) 5.5632 4 1.3908 1,275.9127 0.0000 0.2065 1.0000
Measure Pair*Corpus 10.0543 54 0.1862 170.8107 0.0000 0.3187 1.0000
Measure Pair*Topic Set(Corpus) 14.8491 108 0.1375 126.1342 0.0000 0.4081 1.0000
Error 21.0433 19,305 0.0011
Total 253.0846 19,599

Overall, this answers the question of [14] about the impact of changing the topic set: indeed,
we experimented the same systems across di�erent collections, i.e. corpora and topic sets, and
topic sets demonstrate to in�uence correlation a lot. Moreover, if we compare ω̂2

〈Topic Set(Corpus)〉
in Tables 7 and 8 with ω̂2

〈Topic Size〉 in Tables 2 and 3, we can see how they have comparable e�ect
sizes, indicating that these two di�erent phenomena impact a lot the correlation among evaluation
measures.

When it comes to the interaction e�ects, it is interesting to note how the measure pair and
corpus interaction is about 3–5 times bigger than the corpus e�ect alone and that measure pair
and topic set interaction is about 2 times bigger than topics set e�ect alone. This suggest that the
variation we observed in Figure 11 is not only due to the corpus and topic set e�ects alone but also,
and mostly, to the interaction these e�ects have with the evaluation measure pairs. Moreover, if
we compare the Measure Pair*Topic Size interaction (Tables 2 and 3) with the Measure Pair*Topic
Set(Corpus) interaction (Tables 7 and 8), we can observe how the former has a ω̂ about 25 times
smaller than the latter, indicating that evaluation measure pairs interact more with the speci�c
topics at hand rather than with a speci�c number of topics.

6.2.3 Main E�ects Analysis. Figure 12 shows the main e�ects plot for both τ (in blue) and τAP
(in green). On the left, it shows the expected values of τ and τAP , net from the e�ects of the corpora
and topic sets; these values are also reported in Table 9, which can be held as reference correlation
values, distilled across many experimental collections. As anticipated in Section 2.2, τAP is not
symmetric and we used as reference the evaluation measure reported in the row of Table 9 which
corresponds to the �rst one in the labels of measure pair plot in Figure 12.

The e�ect of the corpus (middle plot of Figure 12) varies: for τ there is an increase from the
TIPSTER corpus, which basically represents a news retrieval task, to the WT10g one, which is a Web
retrieval task, while there is a very slight decrease between WT10g and GOV2, which are both Web
retrieval tasks, but the latter collection is about 2 orders of magnitude bigger. On the other hand,
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Fig. 12. Main e�ects for the measure pair (on the le�), corpus (on the middle) and topic set (on the right)
factors on the T07, T08, T09, T10, T13, T14, and T15 GoP. Kendall’s τ correlation is at the top in blue, AP
correlation τAP is at the bo�om in green. Note that τAP is not symmetric and we used as reference the first
evaluation measure in the labels of the measure pair plot. Also note that the figure is rotated and indications
like le�, middle and right all refer to when you rotate the figure to read it.
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Fig. 13. Interaction e�ects for the Measure Pair*Corpus (on the le�) and Measure Pair*Topic Set (on the
right) factors. Kendall’s τ correlation is at the top, AP correlation τAP is at the bo�om.

τAP shows a very modest increase from TIPSTER to WT10g and no increase from WT10g to GOV2,
being almost insensitive to di�erent corpora. The e�ect of the topic set (right plot of Figure 12) is
more pronounced and less regular.

Finally, we can note a trend observed also in Section 4.2.5: the τ and τAP curves look very similar,
provided that τAP has lower values than τ and it is somehow translated towards the bottom. We
applied the same analysis conducted in Section 4.2.5 to the experimental data used here and we
drew the same conclusions about the similarities between τ and τAP ; the detailed analysis is not
reported here for space reasons.

6.2.4 Interaction E�ects Analysis. Figure 13 shows the interaction plots for the Measure Pair*Corpus
(on the left) and Measure Pair*Topic Set (on the right), where τ is at the top and τAP is at the bottom.
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It can be noted how the interaction between measure pairs and corpora/topic sets is quite high,
for both τ and τAP , and how di�erently each measure pair is increased or decreased by a given
corpus or topic set.

For example, in the left plots, we can note how the TIPSTER and GOV2 corpora have somehow
similar e�ects on the R-prec vs nDCG (dashed thick blue line) and RBP vs Twist (solid thick green
line) while WT10g narrows down R-prec vs nDCG and boosts RBP vs Twist to the extent that
they perform almost the same. In the right plots, we can see how much di�erent topic sets in�uence
these two measure pairs: while, in general, R-prec vs nDCG is higher than RBP vs Twist, topic
set 501-550 narrows down R-prec vs nDCG and boost RBP vs Twist so much that they perform
the same.

This further stresses the need for carefully taking into account the corpus and topic set e�ects
because, together with their main e�ects, they can substantially a�ect the correlation between two
evaluation measures, changing from collection to collection and making us draw possibly di�erent
conclusions about such measures.

6.2.5 Comparison between RQ1 and RQ3 Measure Pair Main E�ects. We investigate the relation-
ship between the main e�ects of the measure pair factor, i.e. the expected correlation values between
evaluation measures, as computed for research questions RQ1 and RQ3 and reported, respectively,
in Table 4 and Table 9. To this end, we adopt the same methodology used in Section 4.2.5 for
comparing τ and τAP , i.e. we assess how close RQ1 and RQ3 rank evaluation measure pairs and
how close are the RQ1 and RQ3 curves, once you have centered their mean around zero.

We are interested in understanding whether the two di�erent kinds of analyses for RQ1 and
RQ3, de�ned by the GLMM models of equations (8) and (9), lead us to draw similar or di�erent
conclusions.

Figure 14 shows the comparison between the main e�ects of the measure pair factor for RQ1
and RQ3. On the left, you can see the rankings of the evaluation measure pairs in RQ1 and RQ3
and it can be noted that they are reasonably similar. When considering Kendall’s τ correlation, the
correlations between the RQ1 and RQ3 RoMP are tauCorr = 0.9524 and apCorr = 0.8996, indicating
they are quite similar but with some swaps in the top ranks. When considering AP correlation
τAP , the correlations between the RQ1 and RQ3 RoMP are tauCorr = 0.9365 and apCorr = 0.8456,
indicating they are quite similar again but with some more swaps in the top ranks.

On the right of Figure 14, we show the main e�ects of the measure pair factor for RQ1 and RQ3
but with means centered around zero. The �gure further highlights how close the RQ1 and RQ3
curves are across the evaluation measure pairs with a very small RMSE = 0.0185, when considering
Kendall’s τ correlation, and RMSE = 0.0260, when considering AP correlation τAP .

Overall, these analyses suggest that both RQ1 and RQ3 are in agreement and provide stable and
consistent results. Therefore, we can consider the expected correlation among measures reported
in Tables 4 and 9 as a good approximation of the real (unknown) ones.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we analyzed three research questions about the Kendall’s τ correlation and the AP
correlation τAP coe�cients among evaluation measures:

RQ1 What is the e�ect of the number of systems and topics?
RQ2 What is the e�ect of removing low performing systems?
RQ3 What is the e�ect of the experimental collections?

To conduct these analyses, we developed a methodology based on GLMM and ANOVA, which
allowed us to break down and isolate the di�erent e�ects, in order to appreciate their impact and
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Table 9. Main e�ects of the τ and τAP correlation coe�icients for each evaluation measure pair, net from the
corpus and topic set e�ects, on the T07, T08, T09, T10, T13, T14, and T15 GoP. These are the values plo�ed
in Figure 12 on the le�. Note that τAP is not symmetric and we used as reference the evaluation measure
reported in the row.

AP P@10 R-prec RBP nDCG nDCG@20 ERR Twist

AP τ 1.0000 0.7688 0.8968 0.7779 0.8796 0.8147 0.6603 0.8821
τAP 1.0000 0.6505 0.8151 0.6729 0.8134 0.7055 0.5218 0.8038

P@10 τ – 1.0000 0.7581 0.8804 0.7305 0.8369 0.7045 0.7519
τAP – 1.0000 0.6286 0.7889 0.6092 0.7192 0.5543 0.6256

R-prec τ – – 1.0000 0.7642 0.8579 0.8111 0.6547 0.8776
τAP – – 1.0000 0.6484 0.7600 0.6972 0.5115 0.7843

RBP τ – – – 1.0000 0.7294 0.8312 0.7749 0.7542
τAP – – – 1.0000 0.6183 0.7219 0.6381 0.6402

nDCG τ – – – – 1.0000 0.7767 0.6148 0.8892
τAP – – – – 1.0000 0.6540 0.4702 0.7980

nDCG@20 τ – – – – – 1.0000 0.6946 0.8007
τAP – – – – – 1.0000 0.5480 0.6874

ERR τ – – – – – – 1.0000 0.6414
τAP – – – – – – 1.0000 0.4959

Twist τ – – – – – – – 1.0000
τAP – – – – – – – 1.0000
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Fig. 14. Comparison of the main e�ects of measure pair factor for RQ1 and RQ3. On the le�, the rankings of
the evaluation measure pairs are ordered as in RQ1 and RQ3: horizontal and oblique lines indicate, respectively,
concordance and discordance between the rankings. On the right, the same main e�ects shown in Figures 4
and 12 but with means centered around zero. τ is at the top and τAP is at the bo�om.
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to derive expected correlation values among evaluation measures, net from these e�ects, than can
be taken as reference values.

An important part of this methodology is the use of GoPs, which represent nearly all the state-
of-the-art components commonly used in English retrieval. These GoPs allow us both to have a
much larger sample space than the one typically available with the runs submitted to an evaluation
campaign and to keep the variance due to systems controlled, thus improving the experimental
outcomes.

With respect to RQ1, we discovered that the number of topics impacts more than the number of
systems and that the number of systems does not cause the correlation to steadily increase but
it reaches a stable point quite quickly. The typical setting with 50 topics and about 100 systems
produces good results and it is an e�ective tradeo� between the e�ort for topic and ground-truth
creation and the quality of the results. We also observed that the behavior of τ and τAP is quite
consistent when comparing a whole set of evaluation measures, yet producing di�erent absolute
correlation values.

When it comes to RQ2, we found out that removing the low performing systems does not convey
information substantially di�erent from not removing them, when you consider a whole set of
evaluation measures. On the other hand, removing or not the low performing systems changes
the absolute correlation values and this make the use of absolute thresholds problematic, possibly
a�ecting the reproducibility and ease of interpretation of the experiments.

As far as RQ3 is concerned, we observed that corpora and topic sets considerably a�ect correlation,
with the latter e�ect being more prominent, and that there is quite a lot of interaction between
correlation among evaluation measures and the corpus/topic set at hand, making the correlation
values increase or decrease substantially. Moreover, compared to the outcomes of RQ1, we noted
that the e�ect of the number of topics is comparable to the one of topic sets but the interaction
between topic sets and measure pairs is much greater than the one between topic sizes and measure
pair; this suggest that not only the number of topics matters but also which topics you actually use.

Finally, it is interesting to note how the main e�ects of the measure pair factor, i.e. the expected
correlation values, determined with the GLMM of RQ1 and RQ3 agree each other and are quite
consistent, yet being produced by di�erent models over di�erent data sets. This suggests that the
expected correlation values reported in Tables 4 and 9 are a good approximation of the real ones.

Overall, this paper delivered two major outcomes: a methodology to investigate the properties of
one of the tools, i.e. correlation analysis, we use to study evaluation measures and the �ndings about
the correlation among evaluation measures obtained from the application of that methodology.
Starting from these two results we envisage two future areas of work: one concerns the extension
of the methodology itself in order to study further properties of the correlation among evaluation
measures; the other concerns the application of the methodology developed here to other relevant
tools we use to study evaluation measures.

With respect to the extension of the methodology, we plan to investigate how the di�erent
system components a�ect the correlation among evaluation measures. This interest stems from our
previous work on breaking down the contribution of di�erent components to the overall system
performances [29] and from the open question “do di�erent components induce somehow di�erent
correlation values?”. In order to achieve this goal we will need to exploit the GoP in a di�erent
way, which allows us to group RoS originated by di�erent types of IR components, and to develop
a di�erent ANOVA design to properly analyze such new data.

With respect to the application of this methodology to other tools, we intend to investigate
RQ1, RQ2, and RQ3 in the case of the discriminative power [59, 62], which is used to assess the
degree to which an evaluation measure can detect di�erences between systems relative to other
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evaluation measures. This kind of analysis is adopted by various authors to study the quality of
evaluation measures [17, 19, 23, 32, 70]. Moreover, [65] suggests that a high discriminative power
is a necessary condition for a good quality evaluation measures. Nevertheless, there is still no study
on the factors a�ecting the discriminative power and the application of the methodology developed
here will represent a �rst step in this direction.

ACKNOWLEDGMENTS
The author wishes to warmly thank Gianmaria Silvello for the great deal of help and e�ort put in
preparing the Grid of Points (GoP) used for the analyses carried out in this paper. The author also
thanks Gianfranco Bilardi for having made available the high performance computing facilities
needed to produce the GoP utilized in the paper. Last but not least, the author sincerely thanks
the associate editor and the anonymous reviewers for the thorough reviews and the challenging
discussions which greatly helped in improving this paper.

REFERENCES
[1] G. Amati and C. J. van Rijsbergen. 2002. Probabilistic Models of Information Retrieval based on measuring the

Divergence From Randomness. ACM Transactions on Information Systems (TOIS) 20, 4 (2002), 357–389.
[2] J. Arguello, M. Crane, F. Diaz, J. Lin, and A. Trotman. 2015. Report on the SIGIR 2015 Workshop on Reproducibility,

Inexplicability, and Generalizability of Results (RIGOR). SIGIR Forum 49, 2 (December 2015), 107–116.
[3] J. A. Aslam and E. Yilmaz. 2005. A Geometric Interpretation and Analysis of R-precision. In Proc. 14th International

Conference on Information and Knowledge Management (CIKM 2005), O. Herzog, H.-J. Schek, N. Fuhr, A. Chowdhury,
and W. Teiken (Eds.). ACM Press, New York, USA, 664–671.

[4] J. A. Aslam, E. Yilmaz, and V. Pavlu. 2005. A Geometric Interpretation of R-precision and Its Correlation with Average
Precision. In Proc. 28th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2005), R. Baeza-Yates, N. Ziviani, G. Marchionini, A. Mo�at, and J. Tait (Eds.). ACM Press, New York,
USA, 573–574.

[5] J. A. Aslam, E. Yilmaz, and V. Pavlu. 2005. The Maximum Entropy Method for Analyzing Retrieval Measures. In Proc.
28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2005),
R. Baeza-Yates, N. Ziviani, G. Marchionini, A. Mo�at, and J. Tait (Eds.). ACM Press, New York, USA, 27–34.

[6] R. Baeza-Yaetes, C. Castillo, M. Marin, and A. Rodriguez. 2005. Crawling a Country: Better Strategies than Breadth-First
for Web Page Ordering. In Proc. 14th International Conference on World Wide Web (WWW 2005), A. Ellis, T. Hagino,
F. Douglis, and P. Raghavan (Eds.). ACM Press, New York, USA, 864–872.

[7] A. Z. Broder, R. Lempel, F. Maghoul, and J. Pedersen. 2006. E�cient PageRank approximation via graph aggregation.
Information Retrieval 9, 2 (March 2006), 123–138.

[8] C. Buckley and E. M. Voorhees. 2004. Retrieval Evaluation with Incomplete Information. In Proc. 27th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2004), M. Sanderson,
K. Järvelin, J. Allan, and P. Bruza (Eds.). ACM Press, New York, USA, 25–32.

[9] C. Buckley and E. M. Voorhees. 2005. Retrieval System Evaluation. In TREC. Experiment and Evaluation in Information
Retrieval, D. K. Harman and E. M. Voorhees (Eds.). MIT Press, Cambridge (MA), USA, 53–78.

[10] K. P. Burnham and D. R. Anderson. 2002. Model Selection and Multimodel Inference. A Practical Information-Theoretic
Approach (2nd ed.). Springer-Verlag, Heidelberg, Germany.

[11] S. Büttcher, C. L. A. Clarke, and I. Soboro�. 2007. The TREC 2006 Terabyte Track. In The Fifteenth Text REtrieval
Conference Proceedings (TREC 2006), E. M. Voorhees and L. P. Buckland (Eds.). National Institute of Standards and
Technology (NIST), Special Publication 500-272, Washington, USA.

[12] S. Büttcher, C. L. A. Clarke, P. C. K. Yeung, and I. Soboro�. 2007. Reliable Information Retrieval Evaluation with Incom-
plete and Biased Judgements. In Proc. 30th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2007), W. Kraaij, A. P. de Vries, C. L. A. Clarke, N. Fuhr, and N. Kando (Eds.). ACM Press,
New York, USA, 63–70.

[13] J. Callan and M. Connell. 2001. Query-Based Sampling of Text Databases. ACM Transactions on Information Systems
(TOIS) 19, 2 (April 2001), 97–130.

[14] B. A. Carterette. 2009. On Rank Correlation and the Distance Between Rankings. In Proc. 32nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2009), J. Allan, J. A. Aslam, M. Sanderson,
C. Zhai, and J. Zobel (Eds.). ACM Press, New York, USA, 436–443.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0. Publication date: June 2017.



0:36 N. Ferro

[15] B. A. Carterette and J. Allan. 2005. Incremental Test Collections. In Proc. 14th International Conference on Information
and Knowledge Management (CIKM 2005), O. Herzog, H.-J. Schek, N. Fuhr, A. Chowdhury, and W. Teiken (Eds.). ACM
Press, New York, USA, 680–687.

[16] O. Chapelle, D. Metzler, Y. Zhang, and P. Grinspan. 2009. Expected Reciprocal Rank for Graded Relevance. In Proc.
18th International Conference on Information and Knowledge Management (CIKM 2009), D. W.-L. Cheung, I.-Y. Song,
W. W. Chu, X. Hu, and J. J. Lin (Eds.). ACM Press, New York, USA, 621–630.

[17] A. Chuklin, P. Serdyukov, and M. de Rijke. 2013. Click Model-Based Information Retrieval Metrics. In Proc. 36th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2013), G. J. F. Jones,
P. Sheridan, D. Kelly, M. de Rijke, and T. Sakai (Eds.). ACM Press, New York, USA, 493–502.

[18] C. L. A. Clarke, N. Craswell, and I. Soboro�. 2004. Overview of the TREC 2004 Terabyte Track. In The Thirteenth Text
REtrieval Conference Proceedings (TREC 2004), E. M. Voorhees and L. P. Buckland (Eds.). National Institute of Standards
and Technology (NIST), Special Publication 500-261, Washington, USA.

[19] C. L. A. Clarke, N. Craswell, I. Soboro�, and A. Ashkan. 2011. A Comparative Analysis of Cascade Measures for
Novelty and Diversity. In Proc. 4th ACM International Conference on Web Searching and Data Mining (WSDM 2011),
I. King, W. Nejdl, and H. Li (Eds.). ACM Press, New York, USA, 84–75.

[20] C. L. A. Clarke, F. Scholer, and I. Soboro�. 2005. Overview of the TREC 2005 Terabyte Track. In The Fourteenth Text
REtrieval Conference Proceedings (TREC 2005), E. M. Voorhees and L. P. Buckland (Eds.). National Institute of Standards
and Technology (NIST), Special Publication 500-266, Washington, USA.

[21] G. M. Di Nunzio and G. Silvello. 2015. A Graphical View of Distance Between Rankings: The Point and Area Measure. In
Proc. 6th Italian Information Retrieval Workshop (IIR 2015), P. Boldi, R. Perego, and F. Sebastiani (Eds.). CEUR Workshop
Proceedings (CEUR-WS.org), ISSN 1613-0073, http://ceur-ws.org/Vol-1404/.

[22] R. Fagin, R. Kumar, and D. Sivakumar. 2003. Comparing top k lists. SIAM Journal on Discrete Mathematics 17, 1 (2003),
134–160.

[23] M. Ferrante, N. Ferro, and M. Maistro. 2014. Injecting User Models and Time into Precision via Markov Chains. In
Proc. 37th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2014), S. Geva, A. Trotman, P. Bruza, C. L. A. Clarke, and K. Järvelin (Eds.). ACM Press, New York, USA, 597–606.

[24] M. Ferrante, N. Ferro, and M. Maistro. 2014. Rethinking How to Extend Average Precision to Graded Relevance. In
Information Access Evaluation – Multilinguality, Multimodality, and Interaction. Proceedings of the Fifth International
Conference of the CLEF Initiative (CLEF 2014), E. Kanoulas, M. Lupu, P. Clough, M. Sanderson, M. Hall, A. Hanbury,
and E. Toms (Eds.). Lecture Notes in Computer Science (LNCS) 8685, Springer, Heidelberg, Germany, 19–30.

[25] N. Ferro. 2017. Reproducibility Challenges in Information Retrieval Evaluation. ACM Journal of Data and Information
Quality (JDIQ) 8, 2 (February 2017), 8:1–8:4.

[26] N. Ferro, N. Fuhr, K. Järvelin, N. Kando, M. Lippold, and J. Zobel. 2016. Increasing Reproducibility in IR: Findings from
the Dagstuhl Seminar on “Reproducibility of Data-Oriented Experiments in e-Science”. SIGIR Forum 50, 1 (June 2016),
68–82.

[27] N. Ferro and D. Harman. 2010. CLEF 2009: Grid@CLEF Pilot Track Overview. In Multilingual Information Access
Evaluation Vol. I Text Retrieval Experiments – Tenth Workshop of the Cross–Language Evaluation Forum (CLEF 2009).
Revised Selected Papers, C. Peters, G. M. Di Nunzio, M. Kurimo, T. Mandl, D. Mostefa, A. Peñas, and G. Roda (Eds.).
Lecture Notes in Computer Science (LNCS) 6241, Springer, Heidelberg, Germany, 552–565.

[28] N. Ferro and G. Silvello. 2015. Rank-Biased Precision Reloaded: Reproducibility and Generalization. In Advances in
Information Retrieval. Proc. 37th European Conference on IR Research (ECIR 2015), N. Fuhr, A. Rauber, G. Kazai, and
A. Hanbury (Eds.). Lecture Notes in Computer Science (LNCS) 9022, Springer, Heidelberg, Germany, 768–780.

[29] N. Ferro and G. Silvello. 2016. A General Linear Mixed Models Approach to Study System Component E�ects. In Proc.
39th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2016),
R. Perego, F. Sebastiani, J. Aslam, I. Ruthven, and J. Zobel (Eds.). ACM Press, New York, USA, 25–34.

[30] N. Ferro and G. Silvello. 2016. The CLEF Monolingual Grid of Points. In Experimental IR Meets Multilinguality,
Multimodality, and Interaction. Proceedings of the Seventh International Conference of the CLEF Association (CLEF 2016),
N. Fuhr, P. Quaresma, T. Gonçalves, B. Larsen, K. Balog, C. Macdonald, L. Cappellato, and N. Ferro (Eds.). Lecture
Notes in Computer Science (LNCS) 9822, Springer, Heidelberg, Germany, 16–27.

[31] N. Ferro and G. Silvello. 2017. Towards an Anatomy of IR System Component Performances. Journal of the American
Society for Information Science and Technology (JASIST) (2017).

[32] N. Ferro, G. Silvello, H. Keskustalo, A. Pirkola, and K. Järvelin. 2016. The Twist Measure for IR Evaluation: Taking
User’s E�ort Into Account. Journal of the American Society for Information Science and Technology (JASIST) 67, 3 (2016),
620–648.

[33] N. Gao, M. Bagdouri, and D. W. Oard. 2016. Pearson Rank: A Head-Weighted Gap-Sensitive Score-Based Correlation
Coe�cient. In Proc. 39th Annual International ACM SIGIR Conference on Research and Development in Information

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0. Publication date: June 2017.

http://ceur-ws.org/Vol-1404/


What Does A�ect the Correlation Among Evaluation Measures? 0:37

Retrieval (SIGIR 2016), R. Perego, F. Sebastiani, J. Aslam, I. Ruthven, and J. Zobel (Eds.). ACM Press, New York, USA,
941–944.

[34] N. Gao and D. W. Oard. 2015. A Head-Weighted Gap-Sensitive Correlation Coe�cient. In Proc. 38th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2015), R. Baeza-Yates, M. Lalmas,
A. Mo�at, and B. Ribeiro-Neto (Eds.). ACM Press, New York, USA, 799–802.

[35] D. Hawking. 2000. Overview of the TREC-9 Web Track. In The Ninth Text REtrieval Conference (TREC-9), E. M.
Voorhees and D. K. Harman (Eds.). National Institute of Standards and Technology (NIST), Special Publication 500-249,
Washington, USA, 87–103.

[36] D. Hawking and N. Craswell. 2001. Overview of the TREC-2001 Web Track. In The Tenth Text REtrieval Conference
(TREC 2001) , E. M. Voorhees and D. K. Harman (Eds.). National Institute of Standards and Technology (NIST), Special
Publication 500-250, Washington, USA, 61–67.

[37] Y. Hochberg and A. C. Tamhane. 1987. Multiple Comparison Procedures. John Wiley & Sons, USA.
[38] A. Inselberg. 2009. Parallel Coordinates. Visual Multidimensional Geometry and Its Applications. Springer-Verlag, New

York, USA.
[39] K. Järvelin and J. Kekäläinen. 2002. Cumulated Gain-Based Evaluation of IR Techniques. ACM Transactions on

Information Systems (TOIS) 20, 4 (October 2002), 422–446.
[40] J. Kekäläinen. 2005. Binary and graded relevance in IR evaluations – Comparison of the e�ects on ranking of IR

systems. Information Processing & Management 41, 5 (September 2005), 1019–1033.
[41] M. G. Kendall. 1948. Rank correlation methods. Gri�n, Oxford, England.
[42] J. F. Kenney and E. S. Keeping. 1954. Mathematics of Statistics – Part One (3rd ed.). D. Van Nostrand Company,

Princeton, USA.
[43] R. Krovetz. 2000. Viewing morphology as an inference process. Arti�cial Intelligence 118, 1–2 (April 2000), 277–294.
[44] S. Kullback and R. A. Leibler. 1951. On Information and Su�ciency. The Annals of Mathematical Statistics 22, 1 (March

1951), 79–86.
[45] R. Kumar and S. Vassilvitskii. 2010. Generalized Distances between Rankings. In Proc. 19th International Conference on

World Wide Web (WWW 2010), M. Rappa, P. Jones, J. Freire, and S. Chakrabarti (Eds.). ACM Press, New York, USA,
571–580.

[46] J. B. Lovins. 1971. Error Evaluation for Stemming Algorithms as Clustering Algorithms. Journal of the American
Society for Information Science (JASIS) 22, 1 (January/February 1971), 28–40.

[47] C. Macdonald, R. McCreadie, R. L. T. Santos, and I. Ounis. 2012. From Puppy to Maturity: Experiences in Developing
Terrier. In Proc. SIGIR 2012 Workshop on Open Source Information Retrieval, A. Trotman, C. L. A. Clarke, I. Ounis, J. S.
Culpepper, M.-A. Cartright, and S. Geva (Eds.). 60–63.

[48] S. Maxwell and H. D. Delaney. 2004. Designing Experiments and Analyzing Data. A Model Comparison Perspective (2nd
ed.). Lawrence Erlbaum Associates, Mahwah (NJ), USA.

[49] P. McNamee and J. May�eld. 2004. Character N-Gram Tokenization for European Language Text Retrieval. Information
Retrieval 7, 1-2 (January 2004), 73–97.

[50] M. Melucci. 2007. On Rank Correlation in Information Retrieval Evaluation. SIGIR Forum 41, 1 (June 2007), 18–33.
[51] M. Melucci. 2009. Weighted Rank Correlation in Information Retrieval Evaluation. In Information Retrieval Technology

– Proc. 5th Asia Information Retrieval Symposium (AIRS 2009), G. G. Lee, D. Song, C.-Y. Lin, A. Aizawa, K. Kuriyama,
M. Yoshioka, and T. Sakai (Eds.). Lecture Notes in Computer Science (LNCS) 5839, Springer, Heidelberg, Germany,
75–86.

[52] A. Mo�at and J. Zobel. 2008. Rank-biased Precision for Measurement of Retrieval E�ectiveness. ACM Transactions on
Information Systems (TOIS) 27, 1 (2008), 2:1–2:27.

[53] S. Olejnik and J. Algina. 2003. Generalized Eta and Omega Squared Statistics: Measures of E�ect Size for Some Common
Research Designs. Psychological Methods 8, 4 (December 2003), 434–447.

[54] M. F. Porter. 1980. An algorithm for su�x stripping. Program 14, 3 (July 1980), 130–137.
[55] S. E. Robertson, E. Kanoulas, and E. Yilmaz. 2010. Extending Average Precision to Graded Relevance Judgments. In

Proc. 33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2010), F. Crestani, S. Marchand-Maillet, E. N. Efthimiadis, and J. Savoy (Eds.). ACM Press, New York, USA, 603–610.

[56] S. E. Robertson and U. Zaragoza. 2009. The Probabilistic Relevance Framework: BM25 and Beyond. Foundations and
Trends in Information Retrieval (FnTIR) 3, 4 (2009), 333–389.

[57] T. Roelleke. 2013. Information Retrieval Models. Foundations and Relationships. Morgan & Claypool Publishers, USA.
[58] A. Rutherford. 2011. ANOVA and ANCOVA. A GLM Approach (2nd ed.). John Wiley & Sons, New York, USA.
[59] T. Sakai. 2006. Evaluating Evaluation Metrics based on the Bootstrap. In Proc. 29th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR 2006), E. N. Efthimiadis, S. Dumais, D. Hawking,
and K. Järvelin (Eds.). ACM Press, New York, USA, 525–532.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0. Publication date: June 2017.



0:38 N. Ferro

[60] T. Sakai. 2007. Alternatives to Bpref. In Proc. 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2007), W. Kraaij, A. P. de Vries, C. L. A. Clarke, N. Fuhr, and N. Kando
(Eds.). ACM Press, New York, USA, 71–78.

[61] T. Sakai. 2007. On the reliability of information retrieval metrics based on graded relevance. Information Processing &
Management 42, 2 (March 2007), 531–548.

[62] T. Sakai. 2012. Evaluation with Informational and Navigational Intents. In Proc. 21st International Conference on World
Wide Web (WWW 2012), A. Mille, F. L. Gandon, J. Misselis, M. Rabinovich, and S. Staab (Eds.). ACM Press, New York,
USA, 499–508.

[63] T. Sakai. 2014. Metrics, Statistics, Tests. In Bridging Between Information Retrieval and Databases - PROMISE Winter
School 2013, Revised Tutorial Lectures, N. Ferro (Ed.). Lecture Notes in Computer Science (LNCS) 8173, Springer,
Heidelberg, Germany, 116–163.

[64] T. Sakai. 2014. Statistical Reform in Information Retrieval? SIGIR Forum 48, 1 (June 2014), 3–12.
[65] T. Sakai, N. Craswell, R. Song, S. E. Robertson, Z. Dou, and C.-Y. Lin. 2010. Simple Evaluation Metrics for Diversi�ed

Search Results. In Proc. 3rd International Workshop on Evaluating Information Access (EVIA 2010), T. Sakai, M. Sanderson,
and W. Webber (Eds.). National Institute of Informatics, Tokyo, Japan, 42–50.

[66] G. Salton and M. J. McGill. 1983. Introduction to Modern Information Retrieval. McGraw-Hill, New York, USA.
[67] M. Sanderson and H. Joho. 2004. Forming Test Collections with No System Pooling. In Proc. 27th Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2004), M. Sanderson, K. Järvelin,
J. Allan, and P. Bruza (Eds.). ACM Press, New York, USA, 33–40.

[68] M. Sanderson and I. Soboro�. 2007. Problems with Kendall’s Tau. In Proc. 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2007), W. Kraaij, A. P. de Vries, C. L. A. Clarke,
N. Fuhr, and N. Kando (Eds.). ACM Press, New York, USA, 839–840.

[69] G. S. Shieh. 1998. A weighted Kendall’s tau statistic. Statistics & Probability Letters 39, 1 (July 1998), 17–24.
[70] M. D. Smucker and C. L. A. Clarke. 2012. Time-Based Calibration of E�ectiveness Measures. In Proc. 35th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2012), W. Hersh,
J. Callan, Y. Maarek, and M. Sanderson (Eds.). ACM Press, New York, USA, 95–104.

[71] M. D. Smucker, G. Kazai, and M. Lease. 2014. Overview of the TREC 2013 Crowdsourcing Track. In The Twenty-Second
Text REtrieval Conference Proceedings (TREC 2013), E. M. Voorhees (Ed.). National Institute of Standards and Technology
(NIST), Special Publication 500-302, Washington, USA.

[72] I. Soboro�, C. Nicholas, and P. Cahan. 2001. Ranking Retrieval Systems without Relevance Judgments. In Proc. 24th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2001), D. H.
Kraft, W. B. Croft, D. J. Harper, and J. Zobel (Eds.). ACM Press, New York, USA, 66–73.

[73] A. Trotman, C. L. A. Clarke, I. Ounis, J. S. Culpepper, M.-A. Cartright, and S. Geva. 2012. Open Source Information
Retrieval: a Report on the SIGIR 2012 Workshop. ACM SIGIR Forum 46, 2 (December 2012), 95–101.

[74] A. Trotman, A. Puurula, and B. Burgess. 2014. Improvements to BM25 and Language Models Examined. In Proc. 19th
Australasian Document Computing Symposium (ADCS 2014), J. S. Culpepper, L. Park, and G. Zuccon (Eds.). ACM Press,
New York, USA, 58–65.

[75] S. Vigna. 2015. A Weighted Correlation Index for Rankings with Ties. In Proc. 24th International Conference on World
Wide Web (WWW 2015), A. Gangemi, S. Leonardi, A. Panconesi, K. Gummadi, and C. Zhai (Eds.). ACM Press, New
York, USA, 1166–1176.

[76] E. M. Voorhees. 1998. Variations in relevance judgments and the measurement of retrieval e�ectiveness. In Proc. 21st
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1998), W. B.
Croft, A. Mo�at, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel (Eds.). ACM Press, New York, USA, 315–323.

[77] E. M. Voorhees. 2000. Variations in relevance judgments and the measurement of retrieval e�ectiveness. Information
Processing & Management 36, 5 (September 2000), 697–716.

[78] E. M. Voorhees. 2001. Evaluation by Highly Relevant Documents. In Proc. 24th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2001), D. H. Kraft, W. B. Croft, D. J. Harper,
and J. Zobel (Eds.). ACM Press, New York, USA, 74–82.

[79] E. M. Voorhees. 2014. The E�ect of Sampling Strategy on Inferred Measures. In Proc. 37th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2014), S. Geva, A. Trotman, P. Bruza,
C. L. A. Clarke, and K. Järvelin (Eds.). ACM Press, New York, USA, 1119–1122.

[80] E. M. Voorhees and C. Buckley. 2002. The E�ect of Topic Set Size on Retrieval Experiment Error. In Proc. 25th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2002), K. Järvelin,
M. Beaulieu, R. Baeza-Yates, and S. Hyon Myaeng (Eds.). ACM Press, New York, USA, 316–323.

[81] E. M. Voorhees and D. K. Harman. 1998. Overview of the Seventh Text REtrieval Conference (TREC-7). In The Seventh
Text REtrieval Conference (TREC-7), E. M. Voorhees and D. K. Harman (Eds.). National Institute of Standards and

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0. Publication date: June 2017.



What Does A�ect the Correlation Among Evaluation Measures? 0:39

Technology (NIST), Special Publication 500-242, Washington, USA, 1–24.
[82] E. M. Voorhees and D. K. Harman. 1999. Overview of the Eigth Text REtrieval Conference (TREC-8). In The Eighth Text

REtrieval Conference (TREC-8), E. M. Voorhees and D. K. Harman (Eds.). National Institute of Standards and Technology
(NIST), Special Publication 500-246, Washington, USA, 1–24.

[83] M. P. Wand and M. C. Jones. 1995. Kernel Smoothing. Chapman and Hall/CRC, USA.
[84] W. Webber, A. Mo�at, and J. Zobel. 2010. A Similarity Measure for Inde�nite Rankings. ACM Transactions on

Information Systems (TOIS) 4, 28 (November 2010), 20:1–20:38.
[85] R. W. White, I. Ruthven, J. M. Jose, and C. J. van Rijsbergen. 2005. Evaluating Implicit Feedback Models Using Searcher

Simulations. ACM Transactions on Information Systems (TOIS) 23, 3 (July 2005), 325–361.
[86] E. Yilmaz and J. A. Aslam. 2006. Estimating Average Precision With Incomplete and Imperfect Judgments. In Proc.

15th International Conference on Information and Knowledge Management (CIKM 2006), P. S. Yu, V. Tsotras, E. A. Fox,
and C.-B. Liu (Eds.). ACM Press, New York, USA, 102–111.

[87] E. Yilmaz, J. A. Aslam, and S. E. Robertson. 2008. A New Rank Correlation Coe�cient for Information Retrieval. In
Proc. 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2008), T.-S. Chua, M.-K. Leong, D. W. Oard, and F. Sebastiani (Eds.). ACM Press, New York, USA, 587–594.

[88] E. Yom-Tov, S. Fine, D. Carmel, and A. Darlow. 2005. Learning to Estimate Query Di�culty – Learning to Estimate
Query Di�culty Including Applications to Missing Content Detection and Distributed Information Retrieval. In Proc.
28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2005),
R. Baeza-Yates, N. Ziviani, G. Marchionini, A. Mo�at, and J. Tait (Eds.). ACM Press, New York, USA, 512–519.

[89] C. Zhai. 2008. Statistical Language Models for Information Retrieval. A Critical Review. Foundations and Trends in
Information Retrieval (FnTIR) 2, 3 (2008), 137–213.

Received 1 September 2016; revised 19 December 2016; revised 1 April 2017; accepted 9 June 2017

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0. Publication date: June 2017.


	Abstract
	1 Introduction
	2 Background
	2.1 Kendall's Tau Correlation
	2.2 AP Correlation
	2.3 Previous Work on Correlation Coefficients
	2.4 Grid of Points
	2.5 GLMM and ANOVA
	2.6 Effect Size, Multiple Comparisons, and Power

	3 Experimental Setup
	3.1 Collections
	3.2 Grid of Points
	3.3 Measures
	3.4 Validation of the Grid of Points

	4 Effect of the Number of Systems and Topics
	4.1 Methodology
	4.2 Experimental Results

	5 Effect of Removing Low Performing Systems
	5.1 Methodology
	5.2 Experimental Results

	6 Effect of Experimental Collections
	6.1 Methodology
	6.2 Experimental Results

	7 Conclusions and Future Work
	Acknowledgments
	References

