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Abstract. The ultimate goal of the evaluation is to understand when
two IR systems are (significantly) different. To this end, many compari-
son procedures have been developed over time. However, to date, most re-
producibility efforts focused just on reproducing systems and algorithms,
almost fully neglecting to investigate the reproducibility of the methods
we use to compare our systems. In this paper, we focus on methods based
on ANalysis Of VAriance (ANOVA), which explicitly model the data in
terms of different contributing effects, allowing us to obtain a more ac-
curate estimate of significant differences. In this context, recent studies
have shown how sharding the corpus can further improve the estimation
of the system effect. We replicate and compare methods based on “tra-
ditional” ANOVA (tANOVA) to those based on a bootstrapped version
of ANOVA (bANOVA) and those performing multiple comparisons relying
on a more conservative Family-wise Error Rate (FWER) controlling ap-
proach to those relying on a more lenient False Discovery Rate (FDR)
controlling approach. We found that bANOVA shows overall a good degree
of reproducibility, with some limitations for what concerns the confidence
intervals. Besides, compared to the tANOVA approaches, bANOVA presents
greater statistical power, at the cost of lower stability. Overall, with this
work, we aim at shifting the focus of reproducibility from systems alone
to the methods we use to compare and analyze their performance.

1 Introduction

Comparing IR systems and identifying when they are significantly different is a
critical task for both industry and academia [4, 15, 23]. In recent years, many
fields have devoted a lot of effort to reproducing and generalizing their systems
and algorithms [5, 7, 9, 17]. Yet, the literature still lacks reproducibility studies
on the statistical tools used to compare the performance of such systems and al-
gorithms. Using reproducible – and thus trustworthy – statistical tools is crucial
to drawing robust inferences and conclusions. In this respect, our work makes
a first step toward the study of the reproducibility of evaluation methodologies
themselves. In this context, ANalysis Of VAriance (ANOVA) [21] is a widely
used technique, where we model performance as a linear combination of factors,
such as topic and system effects, and, by developing more and more sophisti-
cated models, we accrue higher sensitivity in determining significant differences
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among systems. We focus on two recently developed ANOVA models. Voorhees
et al. [27] used sharding of the document corpus to obtain the replicates of the
performance score for every (topic, system) pairs needed to develop a model ac-
counting not only for the main effects, but also for the interaction between topics
and systems; Voorhees et al. also used an ANOVA version based on residuals
bootstrapping [6], which we call bANOVA. Given the absence, at the current time,
of publicly available code, we are interested in replicating some of the results
presented by Voorhees et al.. Ferro and Sanderson [11] used document sharding
as well but they developed a more comprehensive model, based on traditional
ANOVA, which also accounts for the shard factor, the shard*system interaction,
and the topic*shard interaction; we call this approach tANOVA. Another funda-
mental aspect to consider when comparing several IR systems is the need to
adjust for multiple comparisons [12, 22]. Indeed, when comparing just two sys-
tems, significance tests control the Type-I error at the significance level α. The
Type-I error is the possibility to find a statistically significant difference between
a pair of systems when they are not (also called false positive). However, when
c simultaneous tests are carried out, the probability of committing at least one
Type-I error increases up to 1 − (1 − α)c. Several procedures have been devel-
oped for controlling Type-I errors when multiple comparisons are performed [14].
Voorhees et al. adopted a lenient False Discovery Rate (FDR) correction by Ben-
jamini and Hochberg [2]; Ferro and Sanderson used a conservative Family-wise
Error Rate (FWER) correction, using the Honestly Significant Difference (HSD)
method by Tukey [25]. In conclusion, we identified three aspects that can impact
the reproducibility of the above-mentioned ANOVA approaches: i) the strategy
used to obtain replicates, ii) the kind of ANOVA used, and iii) the control
procedure for the pairwise comparisons problem.

Our work is articulated in two research questions:

– RQ1: Given the absence of publicly available code, we are interested in de-
termining the degree of replicability of the evaluation methodology proposed
in Voorhees et al. [27]1;

– RQ2: We are interested in studying the behaviour of tANOVA and bANOVA
under different experimental settings – with respect to the above-mentioned
focal points – and the generalizability of their results.

The paper is organized as follows: Section 2 discusses the related works;
Section 3 details on the replicated approach (i.e. Voorhees et al. [27]) and the
experimental setup; Sections 4 and 5 describe our efforts in generalizing the
results by Voorhees et al. and Ferro and Sanderson; finally, Section 6 draws
some conclusions and outlooks for future work.

2 Related Work

Tague-Sutcliffe and Blustein [24] used ANOVA to decompose performance into
a topic and a system factor and adopted the Scheffe tests to compensate for

1 We already have access to the code and data used by Ferro and Sanderson, so we
are not interested in their replicability.



System Effect Estimation by Sharding 3

multiple comparisons. Tague-Sutcliffe and Blustein were not able to model the
topic*system interaction factor due to the lack of replicates for each (topic,
system) pair but, later on, Banks et al. [1] suggested that the topic*system in-
teraction should have been a large size effect. Bodoff and Li [3] used multiple
relevance judgements to obtain replicates. Ferro et al. [8], Ferro and Sanderson
[10, 11], Voorhees et al. [27] investigated document shards as a mean to obtain
replicates and develop more sophisticated ANOVA models. One problem when
using document shards is that some topics may not have any relevant docu-
ment in a shard and this prevents the computation of any performance measure
on that shard. Voorhees et al. [27] solved this issue by resampling shards un-
til all the topics have relevant documents on all the shards; they developed an
ANOVA model consisting of a topic and system factors plus the topic*system
interaction. Ferro et al. [8], Ferro and Sanderson [11] substituted missing values
with an interpolated value. They developed models accounting for the topic, sys-
tem, and shard factors as well as all their interactions. Ferro and Sanderson [11]
(mathematically) proved that the system effect estimation is independent from
the used interpolation value, when adopting the most accurate ANOVA model.
Also Robertson and Kanoulas [20] explored the bootstrap usage to investigate
the inter-topic variability and to obtain the replicates necessary to compute the
interaction between topics and systems, while Robertson [19] investigated the
usage of document sampling to estimate the stability of traditional IR evalu-
ation. Multiple comparisons procedures aim at controlling either Family-wise
Error Rate (FWER) [16] or False Discovery Rate (FDR) [2]. FWER is the prob-
ability of having at most one false positive among all rejected null hypoteses,
and FWER-controlling procedures aim at keeping it equal to 1 − α. One of
the most popular FWER correction approaches is the Honestly Significant Dif-
ference (HSD) by Tukey [25]. Given µ̂.u. and µ̂.v. the marginal means for two
different systems, the test value for the HSD is computed as:

|tk| = |µ̂.u. − µ̂.v.|√
MSerror

T ·S

where: MSerror is the mean square error according to the ANOVA model and
T and S are respectively the number of topics and shards. This test value is
then compared against the critical value, obtained from QαR,dferror , the studen-
tized range distribution, where R is the number of systems. Conversely, FDR-
controlling procedures aim at keeping the false discovery rate (the number of
false findings over all findings) at level α: this corresponds to allowing the num-
ber of false positives to increase, as long as the number of true discoveries in-
creases. One of the most important FDR-controlling procedures is the Benjamini-
Hochberg (BH) [2] procedure. It sorts in ascending order the p-values associated
with N tested hypotheses. The greatest value of k for which p(k) ≤ α k

N is then
found: null hypotheses associated to p-values in ranks from 0 to k are rejected.
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3 Approach

3.1 ANOVA Models

We consider the following ANOVA models:

yijk = µ··· + τi + αj + εijk (MD1)

yijk = µ··· + τi + αj + (τα)ij + εijk (MD2)

yijk = µ··· + τi + αj + βk + (τα)ij + (τβ)ik + (αβ)jk + εijk (MD3)

where: µ··· is the grand mean; τi is the effect of the i-th topic; αj is the
effect of the j-th system; βk is the effect of the k-th shard; (τα)ij , (τβ)ik,
and (αβ)jk are respectively interactions between topics and systems, topics and
shards, and systems and shards; ε is the error committed by the model in
predicting y. Our (MD1) is the model originally used by Tague-Sutcliffe and
Blustein [24], it corresponds to the model in equation (2) of Voorhees et al.
[27] and to (MD2) of Ferro and Sanderson [11]. Our (MD2) corresponds to
the model in equation (3) of Voorhees et al. [27] and to (MD3) of Ferro and
Sanderson [11]. Finally, our (MD3) corresponds to the model (MD6) of Ferro
and Sanderson [11]. Voorhees et al. did not experimented with the latter model;
so, its usage represents an aspect of generalizability.

3.2 Bootstrap ANOVA (bANOVA)

The bootstrap based version of ANOVA is the focus of our reproducibility study.
It relies on bootstrap sampling of the residuals produced by a tradional ANOVA
linear model. The use of bootstrap is motivated by the fact that, since it does
not rely on the traditional F statistics, it allows for minimizing the assumptions
imposed on the distribution of the data. To compute the bootstrap ANOVA,
it is necessary to fit a traditional ANOVA linear model. Once the model is
estimated, we can use it to compute the estimated performance ŷijk, for the i-th
topic, using the j-th system on the k-th shard. Note that estimated performance
values can be organized in an estimated performance tensor Ŷ, where Ŷijk =
ŷijk. Afterwards, residuals are computed as rijk = yijk − ŷijk, where yijk is
the observed performance value. Called R the set of all residuals, B different
perturbation tensors R(b) are sampled, with b ∈ {0, ..., B − 1}. In particular,

R
(b)
ijk = r

(b)
ijk where r

(b)
ijk is sampled uniformly with replacement among all possible

original ANOVA residuals R. These perturbation tensors are then added to Ŷ,
producing B perturbed observation tensors Ỹ(b). Each perturbed observation
tensor is then used to fit an ANOVA model, providing B new bootstrap sampled
estimations for the effect of each system. Using these estimations, it is possible to
fit a Probability Density Function (PDF) of the effect of the system. Note that,
Voorhees et al. do not specify the approach to fit the PDF, and thus we used the
Kernel Density Estimation (KDE) technique [28], using a Maximum Likelihood
Estimation (MLE) approach. The average MLE bandwidth is 0.0016 and ranges
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between 0.0005 and 0.0033, according to the system, the number of shards, and
model considered. Such distribution is used to compute the p-value associated
with the null hypothesis that the system with greater effect is not statistically
significantly better then the other (one-tail hypothesis). Once a p-value for each
pairwise comparison is available, Voorhees et al. propose to apply Benjamini-
Hochberg correction procedure to correct for multiple comparisons. Finally, using
the information on the number of significant differences found, Voorhees et al.
propose a strategy to compute an interval of confidence around the system effect,
by trimming the vector of the bootstrap sampled estimations of the system
effects. In particular, the proportion of samples removed from each side is α k

2N ,
where N is the total number of pairwise comparisons between systems and k is
the number of pairs of systems for which one of the two system has statistically
larger effect size, according to the Benjamini-Hochberg procedure.

3.3 Experimental Setup

Akin Voorhees et al., we used two collections: the TREC-3 Adhoc track [13] and
TREC-8 Adhoc track [26]. TREC-3 contains 50 topics and 40 runs for a total of
820 pairwise run comparisons. TREC-8 consists of 50 topics and 129 runs for a
total of 8,256 pairwise run comparisons.

We conducted all the experiments on both collections and we observed very
similar behaviours. However, due to space constraints, the replicability results in
Section 4 are reported on TREC-3, since Voorhees et al. provide more details on
this collection; the generalizability results in Section 5 are reported on TREC-8,
since it contains more runs. Note that the replicability experiments concern only
bANOVA by Voorhees et al. and not also tANOVA by Ferro and Sanderson, since the
latter is our own code. We use Average Precision (AP) and Precision (P) with
the cutoff at 10 documents (P@10) as performance measure. The document
corpus has been split in 2, 3, 5, 10 even-sized random shards and we repeated
the sampling 5 times. For replicability in Section 4, we repeated the sampling
until all the shards contain at least one relevant document for each topic; for
generalizability in Section 5, if a shard does not contain any relevant document
for a topic, we interpolate the missing value using 4 possible strategies: zero;
lq, the value of the lower quartile of the measure scores; mean, the average value
of the measure scores; and, one. Note that, for generalizability in Section 5,
due to space constraints, we report only the case of 5-shards, being the others
very similar. To ease the reproducibility of our experiments, the source code is
publicly available at https://github.com/guglielmof/replicate URIIRE.

4 Replicability of bANOVA

We tried to replicate the widths of the confidence intervals of the system effect
and the number of s.s.d. pairs, i.e. systems for which one is significantly better
than the other. Table 1 reports the results of our replicability analysis. Con-
fidence intervals are much smaller, approximately halved, than those reported
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Table 1. Confidence interval widths on systems effects and number of s.s.d. system
pairs using one-tailed bANOVA on TREC-3. Between parentheses, values originally re-
ported by Voorhees et al.; dashed values were not reported in the original paper.

no interactions (MD1) interactions (MD2)

sample measure mean min max s.s.d. mean min max s.s.d.

2 shards

AP 0.045
(0.075)

0.044
(0.071)

0.045
(0.082)

683.80
(—)

0.016
(0.029)

0.016
(0.026)

0.017
(0.031)

749.00
(743)

P@10 0.078
(0.130)

0.076
(0.122)

0.080
(0.140)

666.00
(—)

0.038
(0.065)

0.037
(0.061)

0.039
(0.069)

728.00
(712)

3 shards

AP 0.038
(0.064)

0.037
(0.060)

0.039
(0.069)

699.40
(—)

0.018
(0.032)

0.018
(0.030)

0.019
(0.034)

746.20
(741)

P@10 0.062
(0.106)

0.061
(0.099)

0.063
(0.112)

682.20
(—)

0.037
(0.065)

0.036
(0.061)

0.037
(0.071)

727.00
(712)

5 shards

AP 0.033
(0.055)

0.032
(0.052)

0.033
(0.058)

714.40
(—)

0.020
(0.033)

0.020
(0.031)

0.021
(0.034)

742.20
(—)

P@10 0.046
(0.081)

0.045
(0.076)

0.047
(0.086)

697.00
(—)

0.031
(0.055)

0.030
(0.052)

0.032
(0.060)

723.00
(—)

Table 2. Confidence intervals width on systems effects and number of s.s.d. system
pairs using two-tailed bANOVA on TREC-3.

no interactions (MD1) interactions (MD2)

sample measure mean min max s.s.d. mean min max s.s.d.

2 shards
AP 0.045 0.044 0.046 661.40 0.016 0.016 0.017 743.20

P@10 0.078 0.076 0.080 639.60 0.038 0.037 0.039 717.40

3 shards
AP 0.038 0.038 0.039 678.80 0.019 0.018 0.019 739.60

P@10 0.062 0.061 0.064 662.40 0.037 0.036 0.038 717.80

5 shards
AP 0.033 0.032 0.034 696.00 0.020 0.020 0.021 734.80

P@10 0.047 0.046 0.048 677.60 0.031 0.030 0.032 712.00

in the original paper. On the other hand, the number of s.s.d. pairs is slightly
higher for both AP and P@10; however, this could be still considered within the
bounds of the variability due to the random sharding, observed also by Voorhees
et al.. To further investigate the interval size, we hypothesized that, even if the
original paper describes a single-tailed test, its implementation might have used
a more-strict two-tailed one, which is often the default in many statistical soft-
ware libraries. Table 2 shows the results when using such a two-tailed test. We
can note that the confidence intervals are still very similar to the case of Table 1
and, thus, the difference between one-tailed and two-tailed test is not the cause
of the observed discrepancy. On the other hand, the number of s.s.d. pairs is
getting even closer to those of Voorhees et al.; a little bit less close in the case
of P@10 but, as also observed by Voorhees et al., it is a less stable measure. To
understand the issue with confidence interval sizes, we modified how they are
computed. Instead of removing a percentage of the total number of samples, as
described by Voorhees et al., we treated that number as an integer value, rep-
resenting the actual number of samples to discard. Basically, this milder cut-off
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Table 3. Mean, Min and Max modified confidence intervals widths of systems effects
on TREC-3, using 3 shards. Highlighted values are the closest to the original ones
by Voorhees et al. (∗ for AP and ‡ for P@10).

no interactions (MD1) interactions(MD2)

sample measure mean min max mean min max

original
AP 0.064 0.060 0.069 0.032 0.030 0.034

P@10 0.106 0.099 0.112 0.065 0.061 0.071

1
AP 0.065∗ 0.061 0.071 0.033 0.030∗ 0.035

P@10 0.106‡ 0.100 0.113 0.063 0.058 0.069‡

2
AP 0.065∗ 0.061 0.072 0.032∗ 0.030∗ 0.034∗

P@10 0.105 0.099‡ 0.112‡ 0.063 0.060‡ 0.068

3
AP 0.068 0.065 0.073 0.037 0.034 0.041

P@10 0.107 0.101 0.113 0.066‡ 0.062 0.074

4
AP 0.065∗ 0.060∗ 0.070 0.030 0.028 0.033

P@10 0.105 0.098 0.112‡ 0.061 0.057 0.064

5
AP 0.065∗ 0.059 0.069∗ 0.030 0.026 0.032

P@10 0.105 0.099‡ 0.114 0.063 0.059 0.068

avg
AP 0.066 0.061 0.071 0.032 0.030 0.035

P@10 0.106 0.099 0.113 0.063 0.059 0.069

allows for removing just the most extreme values. Table 3 reports the result for
such modification and we can now see that these modified confidence intervals
are closer to those of Voorhees et al.. To double-check the confidence intervals,
we also tried the vice-versa, i.e. we used the intervals reported in Voorhees et al.
to determine the number of s.s.d. pairs. Note that Voorhees et al. use the BH
correction to determine the s.s.d. pairs and not the confidence intervals; in their
case, they estimate confidence intervals in such a way that they should be con-
sistent with the number of s.s.d. pairs obtained by the BH correction. Since we
do not have the sizes of the original intervals, we use, for all the systems, in
turn, the mean, minimum, and maximum interval widths reported by Voorhees
et al.. Table 4 reports the results of such analysis. The number of s.s.d. pairs
is still lower compared to the expected one, in the range of 30 to 70 less, on
average (cf. Tab. 2). This suggests that the original intervals are still a bit large
to obtain the reported number of s.s.d. pairs; this might be due to the intrinsic
accuracy of the estimation procedure or to some differences in the implementa-
tion, as we hypothesized in Table 3. Overall, we can conclude that it is possible
to fully replicate the bANOVA with BH correction and the resulting number of
s.s.d. system pairs which, to us, is the core contribution of the paper and what
is used in actual analyses. On the other hand, we were not able to replicate the
derived estimation of the confidence intervals and remains an open issue.

5 Generalizability of tANOVA and bANOVA

5.1 Impact of the multiple comparison strategies and bootstrapping

To investigate the differences between ANOVA approaches, our first analysis
compares the number of s.s.d. system pairs found by them. We consider the
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Table 4. s.s.d. system pairs as obtained by using the confidence intervals widths re-
ported by Voorhees et al.. Compare them with the ones reported in Table 1

no interactions (MD1) interactions (MD2)

sample measure mean min max mean min max

2 shards
AP 577.20 590.00 563.20 711.00 721.60 706.00

P@10 544.60 558.20 528.80 670.40 678.80 661.40

3 shards
AP 608.80 622.80 592.00 702.80 708.60 695.00

P@10 573.80 583.20 562.00 659.80 667.60 638.60

5 shards
AP 638.80 645.60 629.00 697.40 704.80 695.00

P@10 597.00 608.20 586.40 656.80 663.60 644.00

Table 5. s.s.d. pairs of systems for different ANOVA approaches, using AP.

Model Approach bANOVA(BH) tANOVA(BH) tANOVA(HSD)

MD1
bANOVA(BH) 6866.60 ± 36.965 329.20 ± 22.027 2275.80 ± 39.844
tANOVA(BH) - 6537.40 ± 57.107 1946.60 ± 23.190
tANOVA(HSD) - - 4590.80 ± 75.850

MD2
bANOVA(BH) 7231.80 ± 51.085 375.20 ± 17.436 2133.40 ± 70.456
tANOVA(BH) - 6856.60 ± 65.859 1758.20 ± 54.580
tANOVA(HSD) - - 5098.40 ± 113.429

MD3
bANOVA(BH) 7563.40 ± 15.273 262.00 ± 11.681 1655.80 ± 25.377
tANOVA(BH) - 7301.40 ± 11.734 1393.80 ± 32.585
tANOVA(HSD) - - 5907.60 ± 37.359

following multiple comparison procedures: HSD for tANOVA, as originally pro-
posed by Ferro and Sanderson, indicated with tANOVA(HSD); BH for bANOVA, as
originally proposed by Voorhees et al., indicated with bANOVA(BH); and, BH for
tANOVA, indicated with tANOVA(BH). tANOVA with Benjamini-Hochberg correction
is here employed and analyzed for the first time, representing a generalizability
aspect. It takes the p-values on the difference between levels of the factors pro-
duced by the traditional ANOVA, but corrects them using the BH correction.
The rationale behind it is that it enjoys the statistical properties provided by the
ANOVA while granting a higher discriminative powerf, due to the BH correc-
tion procedure. Finally, in this specific setting, such correction procedure allows
us to investigate whether the differences between the bANOVA and tANOVA are
due to the different ANOVA computation (bootstrap vs direct computation of
F-statistics), or are due to the correction procedure applied (BH vs HSD) correc-
tion. zero has been used as interpolation strategy; in Section 5.3 we empirically
show that the interpolation strategy has a negligible effect on the results. Fi-
nally, we experiment all the models from (MD1) to (MD3) with all the ANOVA
approaches; note that (MD3) has not been studied before for bANOVA and this
represents another generalizability aspect.

Table 5 reports the results averaged over the five samples of shards together
with their confidence interval. Numbers on the diagonal of Table 5 describe
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how many pairs of systems are considered s.s.d. by a given approach; numbers
above the diagonal are the additional s.s.d. pairs found by one method with re-
spect to the other. Table 5 shows that, as the complexity of the model increases
from (MD1) to (MD3), the pairs of systems deemed significantly different in-
crease as well, confirming previous findings in the literature. tANOVA(HSD) con-
trols tANOVA(BH) since all the s.s.d. pairs for tANOVA(HSD) are significant also for
tANOVA(BH); this was expected since FWER controls FDR [14]. It is possible see
this by considering the differences between approaches (above diagonal): by sum-
ming the difference between tANOVA(HSD) and tANOVA(BH) to the tANOVA(HSD)
you obtain back the number of s.s.d. pairs identified by tANOVA(BH). However,
this pattern holds also for bANOVA(BH) and tANOVA(BH), i.e. all the s.s.d. pairs of
tANOVA(BH) are s.s.d. pairs for bANOVA(BH) too. While the relation between BH
and HSD was expected, this finding sheds some light on the difference between
using a traditional or a bootstrapped version of ANOVA. In summary, most of
the increase in the s.s.d. pairs is due to the correction procedure rather than the
use of bootstrap or not. Since bANOVA is more computationally demanding than
tANOVA, due to its iterative nature, its use may be not worth if not when you
really need to squeeze out all the possible s.s.d. pairs.

5.2 Effect of the Random Shards on the Stability of the Approaches

To assess the stability of different approaches against random resharding, we fix
the number of shards (5 in the following analysis).We resampled the shards 5
times and we considered all the possible pairs of shard samples – i.e. 10 possible
pairs of shards. To assess the stability with respect to random resharding, we
consider the following counting measures proposed in [18]:

– Active Agreements (AA), i.e. the number of pairs of systems A and B for
which an approach considers A to be significantly better than B on both
samples of shards;

– Active Disagreements (AD), i.e. the number of pairs of systems A and B for
which an approach considers A to be significantly better than B on a sample
but B is significantly better than A on the other sample;

– Passive Agreements (PA), i.e. the number of pairs of systems A and B for
which an approach considers A to not be significantly better than B on both
samples of shards;

– Passive Disagreements (PD), i.e. the number of pairs of systems A and B for
which an approach considers A to be significantly better than B on a sample
but A is not significantly better than B on the other sample.

We did not find any occurrence of AD in any of our experiments, which would
indicate a dependency of an approach on a specific random shard, raising some
concerns about its stability . AA, PA, and PD are aggregated as follows:

– The Proportion of Active Agreements (PAA), given by PAA = 2AA/(2AA+
PD), represents how many times an approach agrees on two systems being
s.s.d. concerning the total number of times two systems are claimed s.s.d.;
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Table 6. Average PAA and PPA.

Model Approach Average PAA Average PPA

MD1
bANOVA(BH) 0.979 ± 0.001 0.903 ± 0.005
tANOVA(BH) 0.980 ± 0.001 0.924 ± 0.004
tANOVA(HSD) 0.979 ± 0.002 0.973 ± 0.003

MD2
bANOVA(BH) 0.980 ± 0.001 0.866 ± 0.007
tANOVA(BH) 0.979 ± 0.001 0.896 ± 0.006
tANOVA(HSD) 0.977 ± 0.002 0.963 ± 0.004

MD3
bANOVA(BH) 0.982 ± 0.001 0.802 ± 0.012
tANOVA(BH) 0.980 ± 0.001 0.850 ± 0.006
tANOVA(HSD) 0.981 ± 0.001 0.953 ± 0.003

– The Proportion of Passive Agreements (PPA), given by PPA = 2PA/(2PA+
PD), shows how often an approach agrees on two systems not being s.s.d.
compared to the total number of times two systems are not claimed s.s.d..

PAA and PPA indicate, respectively, the stability of the decisions about which
systems are and are not s.s.d., independently from the shard samples. Overall,
these two proportions indicate how much you would not change your mind when
changing the random shard sample at hand.

Table 6 shows the PAA and PPA averaged over every possible pair of shards
together with their confidence intervals. All the approaches have a very high
PAA, suggesting that the conclusion about which systems are to be considered
s.s.d. is quite stable. The PAA is also very close for all the approaches, slightly
increasing as we adopt the more sophisticated (MD3) model but without notable
differences between bootstrap and traditional ANOVA or between HSD and BH
correction. On the other hand, tANOVA approaches lead to higher PPA than
bANOVA ones. The HSD correction produces notably higher PPA than the BH
one. We hypothesize that the additional s.s.d. pairs brought in by bootstrap and
BH are “corner cases” and the decision about them depends more on the actual
shards at hand. We can also observe as the PPA tends to decrease as the models
get more sophisticated from (MD1) to (MD3); also, in this case, a more complex
model can identify more s.s.d. pairs, but some of them are “corner” cases subject
to change from a random shard to another. Overall, the findings concerning PAA
and PPA suggest that tANOVA with HSD correction is the most stable approach
against different random shards. It should therefore be used when the goal is
not the absolute number of s.s.d. pairs, but the accuracy of the decisions.

5.3 Stability of ANOVA Models with respect to Different
Interpolation Values

We study the impact of the interpolation strategy, i.e. how to substitute missing
values for topics without any relevant document on a given shard, for the different
approaches. Here, for space reasons, we report only the results for tANOVA(HSD)
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Table 7. Average number of PD for ANOVA model MD2.

(MD2) 5 Shards
Approach Interp. zero lq mean one

tANOVA(HSD)

zero 230.60± 21.55 23.00± 15.21 100.20± 74.45 89.80± 82.47
lq — 239.20± 22.56 77.20± 62.86 85.60± 96.98
mean — — 253.20± 32.18 124.40± 92.81
one — — — 265.80± 53.21

bANOVA(BH)

zero 282.60± 13.70 5.80 ± 3.45 41.60 ± 24.44 33.20 ± 28.83
lq — 280.80± 12.99 35.80 ± 21.12 32.60 ± 30.75
mean — — 285.00 ± 13.24 49.20 ± 40.73
one — — — 288.40 ± 18.59

and bANOVA(BH), being the tANOVA(BH) midway between these two.
Ferro and Sanderson [11] mathematically proved that model (MD3) is inde-
pendent of the adopted interpolation values while Voorhees et al. [27] did not
experiment with interpolation values and did not consider this model at all.
Tables 7 and 8 report the average PD counts together with their confidence inter-
val (remember that AD turned out to be zero in our experiments), respectively
for models MD2 and MD3. Values on the diagonal are the average PD observed
using the same interpolation strategy, but over the pairs of shards samples. The
upper triangle of the Table contains the average PD when using two different
interpolation values. The PD counts on the diagonal are consistent with the
findings of Table 6 in terms of PPA, confirming that bANOVA(BH) is more sensi-
tive to the random sampling of shards than tANOVA(HSD). Table 7 shows what
happens if, using model (MD2) by Voorhees et al., instead of re-sampling shards
we use an interpolation value. We can note that the PD count on the diago-
nal, compared to the one of Table 8, slightly increases for both bANOVA(BH) and
tANOVA(HSD). On the other hand, the values are in the same confidence interval,
and thus are not significantly different.We can also note that, as the interpola-
tion value increases, the PD count on the diagonal tends to increase too. When
it comes to the upper triangles, we interestingly find that bANOVA(BH) is much
less sensitive to the interpolation values than tANOVA(HSD), being the PD counts
substantially lower. Thus, Voorhees et al. could have used an interpolation value
instead of re-sampling, without drastically changing the conclusions. The boot-
strapped version of ANOVA (bANOVA) appears to be less stable with respect
to the resharding. This phenomenon is likely due to its greater discriminative
power: since a small evidence for bANOVA is enough to assess when two systems
are different, the random resharding might produce spurious evidence and thus
large variation among different samples. In Table 8, as expected from [11], the
upper triangle for tANOVA(HSD) is zero, since tANOVA(HSD) with (MD3) is in-
dependent from the interpolation values. The most interesting finding is that
also bANOVA(BH) with (MD3) is independent of the interpolation values. Indeed,
the bANOVA approach samples the residuals and Ferro and Sanderson proved
that they are independent of the interpolation value for (MD3). Therefore, us-
ing (MD3) also the bootstrap approach by Voorhees et al. does not need to
re-sample shards.
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Table 8. Average number of PD for ANOVA model MD3.

(MD3) 5 Shards
Approach Interp. zero lq mean one

tANOVA(HSD)

zero 222.60± 15.392 0.00± 0.000 0.00± 0.000 0.00± 0.000
lq — 222.60± 15.392 0.00± 0.000 0.00± 0.000
mean — — 222.60± 15.392 0.00± 0.000
one — — — 222.60± 15.392

bANOVA(BH)

zero 279.20± 16.60 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
lq - 279.20± 16.60 0.00 ± 0.00 0.00 ± 0.00
mean - - 279.20± 16.60 0.00 ± 0.00
one - - - 279.20± 16.60

6 Conclusions and Future Work

The aim of this paper is multi-folded: we wanted to replicate results by Voorhees
et al., generalize the proposed method and compare it with other ANOVA ap-
proaches. We were able to replicate the number of s.s.d. found by bANOVA, i.e.
the main contribution of the paper, but not the size of the confidence interval.
Furthermore, we compared the tANOVA and bANOVA approaches under different
conditions. We found out that tANOVA tends to be more robust than bANOVA
with respect to the actual random shards used, suggesting more reliability in
drawing the same conclusions. On the other hand, when using partial ANOVA
models like (MD2) which are not able to deal with shards without relevant doc-
uments, bANOVA is more robust than tANOVA to the chosen interpolation value.
Regarding the multiple comparison strategy, we have found that tANOVA with
HSD is more restrictive than bANOVA but tANOVA with BH correction behaves
similarly to bANOVA. Overall, we can conclude that, the decision of the model
and the correction technique depends on the final aim of the researcher. If you
prioritize the stability of the results over the number of s.s.d. pairs found and
you plan to use a full model like (MD3), it is preferable to use tANOVA(HSD),
since it is more stable with respect to random shards and less computationally
expensive. If instead, your focus is on the number of pairs, bANOVA(BH) gives
you the maximum boost but at the price of less stability for random shards. If
you plan to use a partial model, like (MD2), which is less expensive from the
computational point of view, bANOVA(BH) frees you more from the dependency
on topics without relevant documents on some shards. Future work will investi-
gate the use of uneven-size random shards, instead of the even-size ones used in
the literature so far.
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