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ABSTRACT
Creating test collections for batch offline retrieval evaluation re-
quires human effort to judge documents’ relevance. This expensive
activity motivated much work in developing new methods for con-
structing benchmarks with fewer assessment costs. In this respect,
adjudication methods actively decide both which documents and
the order in which experts review them, in order to better exploit
the assessment budget or to lower it. Researchers evaluate the qual-
ity of those adjudication methods by measuring the correlation
between the known gold ranking of systems under the full collec-
tion and the observed ranking of systems under the lower-cost one.
However, this traditional analysis ignores whether and how the
low-cost judgements impact on the statistically significant differ-
ences among systems with respect to the full collection. We fill
this void by proposing a novel methodology to evaluate how the
low-cost adjudication methods preserve the pairwise significant
differences between systems as the full collection. In other terms,
while traditional approaches look for stability in answering the
question “is system A better than system B?”, our proposed ap-
proach looks for stability in answering the question “is system A
significantly better than system B?”, which is the ultimate questions
researchers need to answer to guarantee the generalisability of their
results. Among other results, we found that the best methods in
terms of ranking of systems correlation do not always match those
preserving statistical significance.
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1 INTRODUCTION
Information Retrieval (IR) is a field with a strong focus on evalu-
ation [18, 50], whose main purpose is to empirically measure the
effectiveness of retrieval systems. Offline batch evaluation allows
researchers to perform experiments under controlled conditions
and enables the reproducibility of the results. It is based on test
collections, which consist of a corpus of documents, topics, and
relevance judgements (also called assessments, or qrels) [42]. Ac-
quiring the assessments for creating these collections is costly, since
human experts have to judge the documents’ content and decide
which ones are relevant for each topic. The advantage is that once
the collections are created, it is straightforward and cheap to con-
duct as many experiments as needed to evaluate and compare the
performance of (new) IR systems [55].

The first and small test collections had complete judgements [18],
containing a human assessment for each topic-document pair, thus
representing the ideal situation in terms of evaluation quality. How-
ever, that exhaustive procedure is only feasible for collections with
a very small corpus. Nonetheless, small corpora are not the condi-
tions that operational search systems face. As a consequence, when
larger collections arose, there was the need to implement some kind
of sampling so that assessors would not have to judge the relevance
of each document for each topic. However, simple random sampling,
the most immediate approach, would not work, since the number
of relevant documents for a topic is extremely small compared to
the size of the corpus of documents. Thus, a random sample would
end up consisting of (almost all) non-relevant documents. The first
solution to this problem was the pooling technique implemented by
TREC [45, 55]. With this technique, assessors only judge a subset of
the corpus, the pool. For each topic, the pool consists of the union
of the top-𝑘 documents retrieved by several search systems for that
topic. The assessors judge the relevance of the documents in the
pool while the rest, i.e. the non-pooled documents, are assumed
to be non-relevant. Top-𝑘 pooling builds on the assumption that
IR systems try to push relevant documents towards the top of the
ranking and thus there is a good chance to pool most of the rel-
evant documents for a topic, provided that 𝑘 is deep enough and
the pooled systems are diverse enough. However, the number of
judgements that an assessor can perform, i.e. the budget, is limited
and, therefore, there is a trade-off with the depth 𝑘 of the pool and
the number of pooled systems, since the more they grow, the higher
the number of documents in the pool.
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Pooling does not guarantee finding all the relevant documents
for a topic but, as said, it strives to find a very good share of them.
Researchers are interested in comparing systems in order to an-
swer the fundamental question “is system A better than system
B?”. Answering this question requires a good estimate of system
performance rather than absolute performance scores which, in
turn, would demand finding all the relevant documents. Therefore,
the quality of a pool is traditionally measured on its ability to fairly
rank systems, i.e. to fairly compare them. This is not limited to the
systems which were actually pooled, but it should also hold for
systems which were not pooled [59], to ensure the future reusability
of a test collection also with new systems.

However, collections kept growing in size, and just judging deep
pools over a diverse set of systems stopped to be a practicable
approach as well [53]. Therefore, much work has focused on de-
veloping alternative methods to better select which documents to
pool and judge by performing some sort of focused sampling, aimed
at picking documents which more probably turn out to be relevant
and better employing the assessor budget or allowing for lower
budgets at a comparable quality [29, 35]. A method that actively
decides which document to judge next is called an adjudication
method. However, alternative prioritisation models may introduce
biases or incompleteness in the judgements, hampering the future
reusability of an test collection [49].

Therefore, the quality of new adjudication methods is tradition-
ally assessed by checking that they rank systems as closely as
possible to the full set of judgements of a (good quality) top-𝑘 pool,
ensuring that they can still properly answer the question “is system
A better than system B?”. This is quantified by computing the cor-
relation, e.g. Kendall’s 𝜏 [25, 26], between the ranking of systems
produced by an adjudication method and by the full top-𝑘 pool.
The rationale is that if this correlation is high, one may assume
the validity of the new method and aim to use it in the future for
building new test collections at a comparable quality but with a
lower assessment cost.

However, the question researchers are really interested in is
rather “is system A statistically significantly better than system B?”,
since this ensures that observed differences are not due just to the
randomness present in the construction process of a collection and,
especially, that the found differences would generalise better and
still hold in operational settings [17, 38]. The problem is that the
above correlation measures ignore whether the evaluated systems’
statistical significance is preserved.

Let us better explain this problem with an example. Let us assume
we have three different IR systems, Sys1, Sys2 and Sys3, and that
their true ranking, given by the full top-𝑘 pool, is (Sys1, Sys2,
Sys3). We perform a significance test between all possible pairwise
comparisons and we obtain that Sys1 is significantly better than
Sys2 and Sys3, and Sys2 is also significantly better than Sys3.
Then, we create a new set of judgements using some adjudication
method and repeat the above procedure. Using this new pool, we
find the same ranking of systems as when using the full top-𝑘 pool,
leading to a perfect correlation and concluding that the adjudication
method is fully equivalent, but less costly, than the full top-𝑘 pool.
However, we do not know anything about the significance between
systems. If we repeat the same significance test using the new pool
instead, we may not find any significant difference between any

pair. We may thus conclude that there is no evidence of any system
being different from the rest. This would be the opposite conclusion
than the one drawn on the full top-𝑘 pool, where all the system
pairs were significantly different.

In this work, our objectives are two-fold. First, we aim to propose
a new approach to evaluate the validity of low-cost adjudication
methods, focusing on how they preserve the statistically significant
differences between systems. Second, we analyse some state-of-
the-art adjudication methods using our new approach to gain new
insights about them. In particular, we aim to answer the following
research questions: RQ1 Are the adjudication methods able to pre-
serve the same statistically significant differences as the full top-𝑘
pool? RQ2 When adjudication methods fail to see a real significant
difference, do they follow any distinguishable pattern in terms of
system position in the ranking? RQ3 Are the adjudication methods
able to preserve the same statistically significant differences as the
full top-𝑘 pool for new (non-pooled) systems?

The rest of the paper is organised as follows: Section 2 intro-
duces past work; Section 3 explains our methodology; Section 4
and Section 5 report our experiments; and, finally, Section 6 draws
conclusions and presents some ideas for future work.

2 RELATEDWORK
How to build high-quality experimental collections for retrieval
evaluation is still an open research question [13, 53, 56]. Research in
adjudication methods looks for ways of prioritising the pooled doc-
uments so that the assessors expend their effort in judging relevant
documents. In this way, we may only need to judge some of the
pooled documents while maintaining the quality of the judgements,
thus making more efficient use of the resources.

Losada et al. [29] proposed a series of sampling methods based
on the multi-armed bandit problem. The multi-armed bandit prob-
lem [46, Chapter 2] has been a subject of research for decades
in Reinforcement Learning (RL), statistics and other fields. These
methods bring ideas from RL to the task of document adjudica-
tion for building test collections. They apply Bayesian principles
to this problem, formalising the uncertainty associated with re-
viewing a document from a pooled system. Other works have also
explored the development of adjudication methods [11, 27, 32, 35]
Section 4 provides further details about the state-of-the-art adju-
dication methods under experimentation. Adjudication methods
have shown remarkable improvements in bringing relevant docu-
ments earlier in the pooling process, and indeed they were used to
build the collection of the TREC Common Core Track of 2017 [1].
However, the quality of the judgements produced with a limited
budget is still an open question [49].

Previous work on adjudicating methods used a series of met-
rics to evaluate the quality of these algorithms. The commonest is
Kendall’s 𝜏 [25, 26] correlation, which researchers use to measure
how well a new adjudication method can induce the gold ranking
of systems, i.e. the one on the full top-𝑘 pool. Another top-weighted
correlation, 𝜏𝐴𝑃 [58], is also common. This correlation penalises
swaps in higher positions more. In some works [49, 53], they also
measure the change in the ranking position of the system that
suffers the highest drop as a measure of the reusability of an ex-
perimental collection. The problem with all these measures, as we
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already introduced earlier, is that they ignore the significance be-
tween the scores of the systems. If we ignore this, it is meaningless
to account for ranking swaps.

In this work, we propose a new methodology to evaluate low-
cost adjudication methods that, instead of focusing only on the
ranking of the systems, focuses on evaluating how well a method
preserves the real pairwise significant differences.

Statistical significance testing is of paramount importance in IR,
and studying the properties of significance tests is an active area
of research [4, 7, 8, 9, 10, 15, 16, 23, 33, 34, 39, 43, 44, 47, 48, 57].
However, this is out-of-scope for the present work which, instead,
focuses on considering the output of a statistical significance test
as a way to assess the quality of an adjudication method.

3 METHOD
Let 𝑆 = {𝑠𝑖 }, |𝑆 | = 𝑛, be the set of systems under experimentation,
and let 𝐺 be the gold assessments (also said gold qrels), i.e. the full
top-𝑘 pool. Using an effectiveness measure of choice, we compute
the per-topic scores for each of the 𝑛 systems and we perform
a statistical test for each pairwise comparison between systems.
From this test, we obtain, for each pair of systems 𝑠𝑖 and 𝑠 𝑗 (𝑖 <
𝑗 ≤ 𝑛), a triplet ⟨𝑠𝑖 , 𝑠 𝑗 , 𝑐⟩, where 𝑐 ∈ {>,≫, <,≪}, denoting the
four outcomes we are interested in: 𝑠𝑖 is better than 𝑠 𝑗 (𝑠𝑖 > 𝑠 𝑗 ), 𝑠𝑖
is significantly better than 𝑠 𝑗 (𝑠𝑖 ≫ 𝑠 𝑗 ), 𝑠 𝑗 is better than 𝑠𝑖 (𝑠𝑖 < 𝑠 𝑗 ),
or 𝑠 𝑗 is significantly better than 𝑠𝑖 (𝑠𝑖 ≪ 𝑠 𝑗 ).

Now we use 𝑅𝐺 to denote the set of triplets that result from
the statistical test performed using the gold qrels. Similarly, we
use 𝐿 to denote the qrels obtained with a low-cost adjudication
method (𝐿 ⊆ 𝐺) and 𝑅𝐿 to denote the set of triplets that result from
the statistical test performed with them. Note that |𝑅𝐺 | = |𝑅𝐿 | =
𝑛 (𝑛−1)

2 . Finally, we use 𝑇𝐺 to denote the set of comparisons from
𝑅𝐺 that are significantly different, that is, the set triplets for which
𝑐 ∈ {≪,≫}, and 𝑇𝐿 for the significantly different comparisons
obtained with the low-cost assessments.

As we already explained, we are interested in studying to what
extent the judgements produced by different low-cost adjudication
methods preserve the statistically significant differences between
systems we observe when using the gold qrels. The idea here is that
if the low-cost method is able to preserve such differences, we could
confidently use it to build new collections in the future with fewer
assessment costs. Thus, we compare how 𝑇𝐺 and 𝑇𝐿 agree with
each other using the measures described in the following section.

3.1 Measures
Kendall’s 𝜏 . Kendall’s 𝜏 is the measure traditionally used to evalu-
ate adjudication methods. It computes the correlation between the
ranking of systems under the gold qrels setting and the one under
the qrels produced with the different adjudication methods.

Given two rankings over the same set of items, Kendall’s 𝜏 com-
putes how many items are swapped as follows: 𝜏 = (𝑃 − 𝑄)/(𝑛2) ,
where 𝑃 is the number of concordant pairs (pairs of systems ranked
in the same relative order in both lists), 𝑄 is the number of dis-
cordant pairs (swapped pairs of systems), and

(𝑛
2
)
=

𝑛 (𝑛−1)
2 is the

number of total pairs, given that we have 𝑛 items.

Precision and Recall. We consider the Precision (P) and Recall
(R) of the significantly different pairs detected by the low-cost
adjudication methods, defined as follows:

𝑃 =
|𝑇𝐺 ∩𝑇𝐿 |
|𝑇𝐿 |

, 𝑅 =
|𝑇𝐺 ∩𝑇𝐿 |
|𝑇𝐺 |

where |𝑇𝐺 ∩𝑇𝐿 | is the number of significantly different pairs com-
mon to both the gold and adjudication qrles, i.e. the correct ones
when assuming the gold qrels detect the “true” differences. Preci-
sion indicates how much “noise” is introduced by an adjudication
method, meant as additional significant differences not detected by
gold qrels; Recall indicates how many of the total possible signifi-
cant differences are not detected by an adjudication method.

Agreements. We consider an adaptation of a series of agreement
measures that have been used in past work [14, 15, 31, 48]. Note
that, while Kendall’s 𝜏 and Precision/Recall focus on ranking of
systems (the former) or on matching significantly different pairs
(the latter) in isolation, the following agreement measures consider
them jointly.
• Active Agreements (AA): the set of consistent outcomes be-
tween both methods. This is, ⟨𝑠𝑖 , 𝑠 𝑗 ,≫⟩ ∈ 𝑇𝐺 and ⟨𝑠𝑖 , 𝑠 𝑗 ,≫⟩ ∈ 𝑇𝐿 or
⟨𝑠𝑖 , 𝑠 𝑗 ,≪⟩ ∈ 𝑇𝐺 and ⟨𝑠𝑖 , 𝑠 𝑗 ,≪⟩ ∈ 𝑇𝐿 . This is the best possible case,
and thus, the larger AA are, the better.
• Active Disagreements (AD): the set of opposite outputs be-
tween both methods. This is, ⟨𝑠𝑖 , 𝑠 𝑗 ,≫⟩ ∈ 𝑇𝐺 and ⟨𝑠𝑖 , 𝑠 𝑗 ,≪⟩ ∈ 𝑇𝐿 ,
or ⟨𝑠𝑖 , 𝑠 𝑗 ,≪⟩ ∈ 𝑇𝐺 and ⟨𝑠𝑖 , 𝑠 𝑗 ,≫⟩ ∈ 𝑇𝐿 . This is the worst possible
case, since it means that both methods reach complete opposite
conclusions for a given pair. Thus, the lesser, the better.
• Mixed Agreements (MA): we have four possible options: ➊

⟨𝑠𝑖 , 𝑠 𝑗 ,≪⟩ ∈ 𝑇𝐺 and ⟨𝑠𝑖 , 𝑠 𝑗 , <⟩ ∈ 𝑇𝐿 , or ➋ ⟨𝑠𝑖 , 𝑠 𝑗 ,≫⟩ ∈ 𝑇𝐺 and
⟨𝑠𝑖 , 𝑠 𝑗 , >⟩ ∈ 𝑇𝐿 , or ➌ ⟨𝑠𝑖 , 𝑠 𝑗 , <⟩ ∈ 𝑇𝐺 and ⟨𝑠𝑖 , 𝑠 𝑗 ,≪⟩ ∈ 𝑇𝐿 , or ➍

⟨𝑠𝑖 , 𝑠 𝑗 , >⟩ ∈ 𝑇𝐺 and ⟨𝑠𝑖 , 𝑠 𝑗 ,≫⟩ ∈ 𝑇𝐿 . We distinguish between MAG
(➊ and ➋), which counts the cases where the adjudication method
was not able to see a gold significant difference. Conversely, MAL (➌
and ➍) counts the cases where a low-cost method sees a significant
difference that is not in the gold qrels. Note that MAG + MAL = MA
• Mixed Disagreements (MD): we also have four possible cases
here: ➎ ⟨𝑠𝑖 , 𝑠 𝑗 ,≪⟩ ∈ 𝑇𝐺 and ⟨𝑠𝑖 , 𝑠 𝑗 , >⟩ ∈ 𝑇𝐿 , or ➏ ⟨𝑠𝑖 , 𝑠 𝑗 ,≫⟩ ∈ 𝑇𝐺
and ⟨𝑠𝑖 , 𝑠 𝑗 , <⟩ ∈ 𝑇𝐿 , or ➐ ⟨𝑠𝑖 , 𝑠 𝑗 , >⟩ ∈ 𝑇𝐺 and ⟨𝑠𝑖 , 𝑠 𝑗 ,≪⟩ ∈ 𝑇𝐿 , or
➑ ⟨𝑠𝑖 , 𝑠 𝑗 , <⟩ ∈ 𝑇𝐺 and ⟨𝑠𝑖 , 𝑠 𝑗 ,≫⟩ ∈ 𝑇𝐿 . Here, as with MA, we also
distinguish between MDG (➎ and ➏) and MDL (➐ and ➑)

Bias. Analogously to Ferro and Sanderson [15], we also consider
the publication bias, i.e. the likelihood of a researcher publishing
a significant result using an adjudication method when in fact a
significance test on the gold qrels would have produced either
no significance (MA, MD) or a significant result in the opposite
direction (AD). We define it as follows:

𝐵𝑖𝑎𝑠 = 1 − 𝐴𝐴

𝐴𝐴 +𝐴𝐷 +𝑀𝐴𝐿 +𝑀𝐷𝐿

A value of 0% means that every significance detected by an
adjudication method leads to the same conclusions (and publication)
as those of the gold qrels. Conversely, a value of 100% means that
every significance detected by an adjudication method leads to
opposite conclusions (and publication) to those of the gold qrels.
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Thus, the lower the bias, the better. Note that, differently from
Ferro and Sanderson [15], we do not consider the whole MA and
MD but just MAL and MDL, since we are interested only in the
publication bias induced by the adjudication method. This metric
tries to measure the situations where a researcher sees a significant
outcome under the reduced pools when, in reality, it would be a
different conclusion under the gold qrels.

3.2 Family-Wise Error Rate (FWER)
Performing multiple comparisons—in our case between each pair
of systems—leads to an increase of the Type I error, i.e. incorrectly
rejecting the null hypothesis, and inflates the number of significant
differences found [20, 22, 37].

The Type I error probability is equal to the significance level 𝛼
and, as the number of comparisons increases, this probability also
does. If we perform 𝑘 different system comparisons, the probability
of correctly accepting the null hypothesis for all of them is equal
to (1 − 𝛼)𝑘 . Thus, the probability of committing at least one Type I
error is 1 − (1 − 𝛼)𝑘 . This is the family-wise error rate (FWER). If
we have, for example, 𝛼 = 0.05 and 𝑘 = 6 comparisons (4 systems,
4(4−1)

2 = 6), this probability would rise to 0.264, which is not
acceptable. For this reason, when we perform multiple comparisons,
we should employ a technique to adjust the p-values, so that the
FWER stays below 𝛼 . Obviously, this has the side-effect of reducing
the power of the statistical test and increasing the number of Type
II errors, i.e. not detecting an actual significant difference.

There are several options to control the FWER in a multiple
comparison situation. The Bonferroni correction, for example, is
a post-hoc correction where, if we have 𝑘 different comparisons,
we should use 𝑝 < 𝛼

𝑘 as our significance level in each pairwise
comparison. However, the Bonferroni correction is known to be too
conservative and to reduce the power of a test too much, especially
when the number of comparisons increases as in our case. There-
fore, we employ the randomised version of the Tukey Honestly
Significant Difference (HSD) test [8, 37]. This is a nonparametric
computer-based generalisation of the common permutation test
for handling more than 2 systems. At each permutation, the test
perturbs the array of system scores of each topic, and, after this
perturbation, computes the difference between the maximum and
minimum average system scores. Then the test counts how many
times the actual differences between system average performance
is greater than the permuted mean to determine if it is honestly
significant [8]. The Tukey HSD test produces a p-value for each
pairwise comparison, which can be compared to the significance
level 𝛼 to decide whether that pair of systems is significantly dif-
ferent or not. Algorithm 1 (adapted from prior work [8, 37]) shows
the details of our implementation.

4 EXPERIMENTAL SETUP
Collections. We employ the TREC-8 ad hoc collection, known to
have a very high-quality pool [54, 56]. It includes 129 runs (system
submissions), retrieving 1000 documents for each topic, and 50 top-
ics. Official relevance judgements are based on a pool of depth 100
over 71 out of 129 submitted runs, resulting in 86 830 assessments
across all 50 topics. The average pool size per topic is 1736, while
the maximum and the minimum are 2992 and 1046, respectively.

Algorithm 1 Paired Randomised Tukey HSD
Input

𝑋 𝑚 × 𝑛 topic-system scores matrix.
𝐵 number of permutations.

Output
𝑃 𝑛 ×𝑛 matrix holding a p-value for each pairwise system

comparison.
for 𝑘 ← 1 to 𝐵 do

initialise𝑚 × 𝑛 matrix 𝑋 ′
for each topic 𝑡 do

row t of 𝑋 ′ ← permutation of values in row t of 𝑋
end for
𝑑′ ← max𝑖 𝑋 ′𝑖 −min𝑗 𝑋

′
𝑗 ⊲ 𝑋 ′𝑖 is the mean of column 𝑖

for each pair of systems 𝑖, 𝑗 do
if 𝑑′ > |𝑋𝑖 − 𝑋 𝑗 | then

𝑃𝑖, 𝑗 ← 𝑃𝑖, 𝑗 + 1
𝐵

end if
end for

end for

Additionally, we use the collection from the document ranking task
of TREC 2021 Deep Learning track [12], which adopted a shallow
pooling approach at depth 10, then enlarged with a method based
on active learning. We used only the documents in the top-10 pools
as our gold qrels to provide a fairer comparison to the case of TREC-
8. It includes 66 runs, retrieving 100 documents for each topic, and
13 058 judgements made by NIST assessors over 57 different top-
ics. The depth-10 pools we used include 6510 judgements, with an
average pool size of 114. The maximum pool size is 226 and the
minimum is 50.

Adjudication methods. We consider a series of state-of-the-art
adjudication methods.
• top-𝑘 pooling. We adapt the standard method used in TREC
to limited-budget situations. When limiting the budget of assess-
ments, we choose a 𝑘 deep enough to fill that budget. Then, pooled
documents are sorted by their document identifier [55].
• MoveToFront (MTF). MTF is a dynamic adjudication method
proposed by Cormack and colleagues [11] that has been acknowl-
edged as a robust adjudication method [2].
• MaxMean (MM), MM Non Stationary (MM-NS), Thompson
Sampling (TS) and TS Non Stationary (TS-NS). Bandit-based
methods for document adjudication apply bayesian principles to
formalise the uncertainty associated with the probabilities of pulling
a positive reward (a relevant document) from playing a bandit [28].
• Hedge. Hedge is an online learning algorithm adapted for pool-
ing in [3]. A more detailed explanation of applying Hedge for pool-
ing can be found in this article [29].
• NTCIR top-𝑘 prioritization. Documents in the pool are sorted
by the number of runs that contain the document at or above the
depth 𝑘 (the higher the better), ties are solved with the sum of the
ranks of that document within the runs (the lower the better) [41].

Other Settings. We used Average Precision (AP) [6] and Normal-
ized Discounted Cumulative Gain (NDCG) [24] as performance
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measures to score runs. We used 𝛼 = 0.05 as significance level and
𝐵 = 1 000 000 permutations in Tukey HSD test. Finally, since MTF,
MM, MM-NS, TS, and TS-NS have a stochastic nature, the reported
results for those methods are averaged over 50 executions of each.

To ease the reproducibility of the experiments, we release the
source code.1

5 RESULTS AND DISCUSSION
5.1 RQ1: Preservation of significant differences
In Table 1, we report the Kendall’s 𝜏 , Precision and Recall, as defined
in Section 3, that each adjudication method achieves, while varying
the number of assessments per topic. We report the scores for 100
judgements per topic (which is a 6% budget of the original pool), and
300 (17%). All this values were obtained using the pooled systems
of the TREC-8 collection, which includes 71 different systems.

Regarding Kendall’s 𝜏 and consistently with previous findings
in the literature, we see almost every method achieves a very high
correlation (𝜏 > 0.90) already at a 6% of the original budget. While
this means that every method obtains a ranking of systems very
similar to the one of the gold qrels, it also makes it very difficult
to distinguish among methods. Moreover, we can observe that
top-𝑘 and NTCIR methods stay behind the rest, leaving room for
improvement in developing more efficient adjudication strategies
for building new collections in evaluation workshops.

As we mentioned earlier, Kendall’s 𝜏 does not allow us to know
whether the compared algorithms preserve the same statistically
significant differences as the gold qrels. Therefore, we study to
which extent this effect might hold by using the Precision and
Recall measures previously introduced.

We observe that every method obtains Precision and Recall val-
ues over 90% in almost all the cases, which is a quite solid result.
Moreover, every method is able to mostly preserve the same differ-
ences just having a 6% of the original budget. With 300 assessment
per topic (17% of the budget), Recall is (almost) 1.00 for most of the
methods, indicating that they are able to detect all the significant
differences of the gold qrels at less than one third of the cost.

It is also interesting to observe that most of them detect some
differences that there were not detected in the gold qrels. Indeed,
1https://github.com/davidoterof/cikm2023

Table 1: Kendall’s 𝜏 , Precision and Recall (see Section 3) of each
adjudication method for a varying number of judgements per topic.
100 and 300 are the budget of judgements per topic. Parentheses
indicate the size of this budget with respect to the full pool. We used
the 71 pooled systems of TREC-8. For each column, best values are
bolded and worst ones underlined.

Method
MAP/100 (6%) MAP/300 (17%) NDCG/100 (6%) NDCG/300 (17%)

𝜏 P R 𝜏 P R 𝜏 P R 𝜏 P R

top-𝑘 0.91 0.932 0.888 0.95 0.955 0.955 0.90 0.975 0.929 0.94 0.985 0.970
MTF 0.94 0.946 0.961 0.97 0.962 0.980 0.91 0.975 0.953 0.96 0.982 0.985
MM 0.95 0.948 0.958 0.98 0.969 0.992 0.92 0.942 0.973 0.96 0.976 0.991
MM-NS 0.93 0.942 0.957 0.97 0.967 0.987 0.90 0.970 0.962 0.96 0.986 0.991
TS 0.95 0.947 0.954 0.98 0.969 0.991 0.92 0.940 0.970 0.96 0.975 0.990
TS-NS 0.93 0.945 0.949 0.97 0.966 0.983 0.90 0.971 0.960 0.96 0.985 0.991
Hedge 0.94 0.955 0.947 0.98 0.968 0.980 0.91 0.959 0.978 0.95 0.972 0.989
NTCIR 0.83 0.900 0.876 0.96 0.942 0.925 0.81 0.961 0.942 0.93 0.977 0.988

Precision is lower than 1.00 while Recall is almost 1.00 (all the
differences in the gold qrels detected). In other terms, 𝑇𝐿 (the set of
significant differences detected by the adjudication method) is not
a proper subset of 𝑇𝐺 (the set of significant differences detected by
the gold qrels). A possible explanation might be that, since reduced
pools lack some relevant documents, the performance difference of
some pair of systems (delta AP/NDCG between the two systems in
our case) turns out to be increased with respect to the gold qrels
and this makes the pair significantly different on the reduced pool
but not on the gold qrels. Since more evaluation on this issue would
need more experimentation, due to space restrictions we leave this
investigation for future work.

To support a more detailed analysis, in Table 2, we report the raw
agreements of each method. The upper half of the table includes the
results obtained when using AP for evaluating the runs. In this case,
there are a total of 966 gold significant differences (|𝑇𝐺 | = 966). The
lower half includes the results when using NDCG for evaluating the
runs. In this case, there are a total of 917 gold significant differences
(|𝑇𝐺 | = 917).

The AA counts confirm that adjudication methods are more
effective than top-𝑘 and NTCIR pooling methods in detecting sig-
nificant pairs in the correct order, especially at lower budgets. They
provide further insights about the (almost) 1.00 Recall (see Table 1)
we observed for most adjudication methods. Indeed, with AP, the
gold qrels detect 966 significantly different pairs and the AA counts
is (almost) 966, indicating that the 1.00 Recall is due to significant
pairs in the correct order. The same happens for NDCG, where we
observe that most methods obtain AA values near 917. In other
terms, the slight drop in Kendall’s 𝜏 observed in Table 1 is not
caused by wrongly ordered pairs, even when Recall is 1.00. When
it comes to the specific methods, MTF achieves the best AA figures
for budgets of 100, 300 when using AP, while under NDCG Hedge
works slightly better with lower budgets and bandit-based methods
perform the best with a budget of 300.

If we compare the AA counts with the number of relevant docu-
ments found by a method (the # rels. row), we observe a somehow
unexpected behaviour. One might think that the more relevant
documents found, the more AA increases. However, for a budget of
100 judgements per topic, Hedge adjudicated 2170 relevant docu-
ments, 485 more than MTF, but the latter one achieves the highest
AA with AP; the same happens again for a budget of 300: MTF is
not the best one in terms of relevant documents but it is the best
in terms of AA. We can observe something similar with NDCG:
founding more relevant documents does not necessarily mean more
AA. Obviously, having more relevant documents in the pool helps
in increasing the number of AA, but these results showcase that
it is not the only factor. Overall, these observations suggest that
not all the relevant documents are equally discriminative in finding
significantly different pairs. Indeed, relevant documents appear at
different ranks in the results lists and the same (or even higher)
number of relevant documents may contribute differently to the
performance score of a run and, in turn, to the significant differ-
ences found. So far, research has mostly focused on determining
the number of topics needed [5, 40, 43, 51, 52] or on identifying the
most discriminative subset of topics [19, 21, 30, 36]. These findings
open up the possibility of future research on which are the best

https://github.com/davidoterof/cikm2023
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Table 2: Relevants, agreements and bias of each adjudication method
for a varying number of judgements per topic. Parentheses indicate
the size with respect to the full pool. We used the 71 pooled systems
of TREC-8. The top-100 full pool includes 4728 relevant documents.
There are 2485 pairwise comparisons, of which 966 are significant
under the gold qrels with MAP (upper half), and 917 with NDCG
(lower half). For each budget and metric, the best values are bolded
and the worst ones are underlined.

Metric
Adjudication method

top-k MTF MM MM-NS TS TS-NS Hedge NTCIR
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AA 858 929 926 925 922 917 915 846
MAtotal 170 90 90 98 94 102 94 185
MAG 108 37 40 41 44 49 51 91
MAL 62 52 50 57 50 53 43 94
MDtotal 0 0 1 0 1 0 0 29
MDG 0 0 0 0 0 0 0 29
MDL 0 0 1 0 1 0 0 0
AD 0 0 0 0 0 0 0 0
Bias 7% 5% 5% 6% 5% 5% 4% 10%
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MAtotal 86 43 38 44 39 50 50 127
MAG 43 5 7 12 8 16 19 72
MAL 43 38 30 32 30 33 31 55
MDtotal 0 0 0 0 0 0 0 0
MDG 0 0 0 0 0 0 0 0
MDL 0 0 0 0 0 0 0 0
AD 0 0 0 0 0 0 0 0
Bias 4% 4% 3% 3% 3% 3% 3% 6%
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AA 852 874 893 883 890 881 897 864
MAtotal 86 65 79 61 83 62 58 88
MAG 65 43 24 34 27 36 20 53
MAL 21 22 55 27 56 26 38 35
MDtotal 0 0 0 0 0 0 0 0
MDG 0 0 0 0 0 0 0 0
MDL 0 0 0 0 0 0 0 0
AD 0 0 0 0 0 0 0 0
Bias 2% 2% 6% 3% 6% 3% 4% 4%
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) # rels. 2042 2923 3628 2913 3607 2868 3609 2723
AA 890 904 909 909 909 909 907 906
MAtotal 40 29 30 20 31 21 36 32
MAG 27 13 8 8 8 8 10 11
MAL 13 16 22 12 22 13 26 21
MDtotal 0 0 0 0 0 0 0 0
MDG 0 0 0 0 0 0 0 0
MDL 0 0 0 0 0 0 0 0
AD 0 0 0 0 0 0 0 0
Bias 1% 2% 2% 1% 2% 1% 3% 2%

relevant documents to more reliably discriminate among systems,
an area not well explored yet, to the best of our knowledge.

Almost in every case, no method fails in a mixed or active dis-
agreement, i.e. detecting significant differences when there is a
swap. This represents a very important insight from this experi-
ment, since it shows that no method causes a ranking swap between

Table 3: Kendall’s 𝜏 , Precision and Recall (see Section 3) of each ad-
judication method for a varying number of judgements per topic. 10
and 30 are the budget of judgements per topic. Parentheses indicate
the size with respect to the full pool. We used the 66 pooled systems
from DL21. For each column, the best values are bolded and the
worst ones are underlined.

Method
MAP/10 (9%) MAP/30 (26%) NDCG/10 (9%) NDCG/30 (26%)

𝜏 P R 𝜏 P R 𝜏 P R 𝜏 P R

top-𝑘 0.46 0.448 0.445 0.69 0.668 0.833 0.61 0.531 0.554 0.82 0.723 0.832
MTF 0.49 0.611 0.414 0.69 0.687 0.798 0.61 0.632 0.534 0.79 0.734 0.808
MM 0.53 0.566 0.477 0.73 0.764 0.778 0.66 0.628 0.598 0.81 0.772 0.808
MM-NS 0.50 0.517 0.505 0.70 0.654 0.841 0.64 0.593 0.607 0.82 0.725 0.844
TS 0.52 0.554 0.489 0.73 0.761 0.777 0.66 0.624 0.605 0.82 0.780 0.809
TS-NS 0.50 0.509 0.502 0.69 0.642 0.839 0.63 0.589 0.603 0.81 0.715 0.839
Hedge 0.42 0.430 0.419 0.50 0.558 0.603 0.51 0.521 0.484 0.61 0.657 0.674
NTCIR 0.47 0.423 0.560 0.69 0.594 0.871 0.59 0.522 0.621 0.76 0.669 0.827

a pair of systems that were originally significantly different. In other
terms, the drop in Kendall’s 𝜏 is not due to swaps between systems
that are significantly different on the gold qrels but swaps only
happen among not significantly different systems, having a much
lower impact.

Let us now consider MAG and MAL. The former accounts for
significant pairs in the gold qrels which are missed by reduced pools;
thus, it helps mainly to explain drops in Recall. The latter accounts
for significant pairs in a reduced pool which are not present in the
gold qrels; thus, it helps mainly to explain drops in Precision. We
can observe that MAG gets reduced as the budget size increases
up to almost 0, with the exception of top-𝑘 pooling, Hedge and
NTCIR method, consistently with the previous findings in Table 1.
Moreover, MAL is consistently higher than MAG, explaining the
loss in Precision even at very high Recall levels.

When it comes to publication bias, we observe moderate values,
from 7% and below, suggesting that all the methods would not lead
to draw conclusions severely different from the gold qrels. We can
observe that bias quickly decreases as the budget increases and
that adjudication methods are more effective than top-𝑘 pooling,
achieving a bias up to 2-3 times lower than it.

Finally, we can observe that there are not different trends be-
tween the two evaluation metrics employed, AP and NDCG. This
shows that the results presented here are not an artefact of the
metric used, but of the adjudication methods being evaluated.

Additionally, we run experiments on the TREC Deep Learning
(DL) track 2021. We selected this collection as having opposing
characteristics to TREC-8. The DL collection adopts a very shallow
pooling at just depth 10, representing a quite challenging setting for
adjudication methods. We believe that using these two collections
helps in supporting the generalizability of the results presented here.
Table 3 reports the Kendall’s 𝜏 , Precision, and Recall, similarly to
Table 1 for TREC-8; Table 4 reports the agreement counts, similarly
to Table 2 for TREC-8. In general, we observe quite lower and much
more varied performance on DL 2021 than on TREC-8.

Kendall’s 𝜏 is generally low for all the methods with both metrics.
In TREC-8, adjudication methods were able to obtain very strong
results only with a 17% of the original budget, while in this case
no method is able to reach that performance even with a 26%. One
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Table 4: Relevants, agreements and bias of each adjudication method
for a varying number of judgements per topic. Parentheses indicate
the size with respect to the full pool. We used the 66 pooled systems
fromDL21. The top-10 pool includes 3541 relevant documents. There
are a total of 2145 pairwise comparisons, of which 418 are significant
under the gold qrels with MAP (upper half), and 417 with NDCG
(lower half). For each budget, the best values are bolded and the
worst ones are underlined.

Metric
Adjudication method

top-k MTF MM MM-NS TS TS-NS Hedge NTCIR
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AA 186 173 199 211 204 210 175 234
MAtotal 413 345 358 386 361 392 442 464
MAG 214 237 212 201 206 203 235 176
MAL 199 108 146 185 155 189 207 288
MDtotal 48 13 15 19 18 19 33 39
MDG 18 8 7 6 8 6 8 8
MDL 30 5 9 13 10 14 25 31
AD 0 0 0 0 0 0 0 0
Bias 55% 39% 43% 48% 45% 49% 57% 58%
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) # rels. 1186 1327 1359 1289 1345 1267 1352 1337
AA 348 334 325 352 325 351 252 364
MAtotal 243 237 194 251 196 262 355 299
MAG 70 84 93 66 93 67 161 54
MAL 173 152 101 185 103 194 194 245
MDtotal 0 0 0 1 0 1 11 4
MDG 0 0 0 0 0 0 5 0
MDL 0 0 0 1 0 1 6 4
AD 0 0 0 0 0 0 0 0
Bias 33% 31% 24% 35% 24% 36% 44% 41%
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AA 231 223 249 253 252 252 202 259
MAtotal 376 322 314 333 315 337 388 381
MAG 184 193 167 164 165 165 215 158
MAL 192 129 146 170 151 172 173 223
MDtotal 14 3 3 4 3 5 13 14
MDG 2 1 0 0 0 0 0 0
MDL 12 2 2 4 2 5 13 14
AD 0 0 0 0 0 0 0 0
Bias 47% 37% 37% 41% 38% 41% 48% 48%
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) # rels. 1186 1327 1359 1289 1345 1267 1352 1337
AA 347 337 337 352 338 350 281 345
MAtotal 203 203 180 199 175 207 283 243
MAG 70 80 80 65 79 67 136 72
MAL 133 122 101 134 96 140 147 171
MDtotal 0 0 0 0 0 0 0 0
MDG 0 0 0 0 0 0 0 0
MDL 0 0 0 0 0 0 0 0
AD 0 0 0 0 0 0 0 0
Bias 28% 27% 23% 27% 22% 29% 34% 33%

important difference is that, while in TREC-8 top-𝑘 and NTCIR
method were clearly underperforming with respect to the other
methods, in DL 2021 Hedge clearly achieves the worst performance.

When it comes to the agreements (Table 3), a notable difference
is that, at low budgets (9%), MD appear while they go to (almost)
zero for higher budgets. The MD at 9% budget indicate that the drop

in Kendall’s 𝜏 are also due to swaps in the significantly different
pairs. The problem concerns more MDL, i.e. swaps in significant
pairs detected by a reduced pool but not the gold qrles, than MDG,
i.e. swaps in significant pairs detected by the gold qrels but not a
reduced pool. As a consequence, part of the loss of Precision is due
to swaps in the significant pairs a more severe condition than the
one causing the loss of Precision in TREC-8. This issue impacts more
top-𝑘 and NTCIR than the adjudication methods but, overall, low
budgets and shallow pools do not lead to reliable enough results.

When it comes to AA, differently from TREC-8, they struggle
to get close to the total number of significantly different pairs on
the gold qrels. As in the TREC-8 case, an increase in the number of
relevant documents found does not necessarily lead to an increase
in the AA counts.

On a positive side, AD is always 0, also for DL 2021.
When it comes to MA, we observe two different patterns. Dif-

ferently from TREC-8, MAG is always quite high, motivating the
general lack of Recall. In addition, MAL does not substantially
decrease as the budget increases, explaining the general lack of
Precision.

Publication bias is exceedingly high, especially at low budgets,
ranging between 25% and 50%. Overall, these high values shed a
negative light on the reliability of the conclusions you would draw
when using these methods under shallow pool conditions.

5.2 RQ2: How and where the methods fail
We study how and where, in terms of rank positions, the different
methods fail in detecting significant differences.

We focus our analysis on the cases of mixed agreements (MA),
which have shown to be the main factor for the loss of Precision
and Recall. Figure 1 shows the distribution of the score differences
in systems pairs which belong to MA with respect to their position
in the gold ranking of systems for a budget of 100 assessments (6%).
For each MA pair, we compute the difference between the score of
the best and the worst system in the pair (under the adjudicated
qrels, not the gold ones), recording it with a positive sign for the
best system and a negative one for the worst system. 2 Figure 1 tries
to convey information about the distribution of such differences as a
series of boxplots would do, but in a more compact and reabable way.
The x-axis is the position of each system in the ranking of systems
under the gold qrels, and we consider bins of three rank positions
to make the figure more readable. For example, the first point in
the figure represents the distribution of the mentioned differences
for the first three systems in the gold ranking of systems. The solid
line represents the median of the bin; the shaded area is limited by
the first and third quartiles of the distribution, i.e. it represents the
inter-quartile range; finally, the dashed lines are the maximum and
the minimum. A break in the lines means that no pair of systems
in that range of rank positions is a MA.

We can see some clear trends among all the evaluated methods.
As a general trend for most adjudication methods, the biggest differ-
ences occur between MA systems in the middle of the ranking (we

2For example, if we have the pair of system1 and system2 in mixed agreement, and
system1 has the highest score, and their score difference is 0.15 (with the reduced pool).
Then, for system1 we record 0.15 and for system2 we save −0.15. The mentioned
figure plots the distribution of these differences for each system, according to their
position in the ranking induced with the gold qrels.
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Figure 1: Distribution ofMAP differences between systems inMA for
a budget of 100 assessments (6%). The x-axis represents the systems
sorted by their position in the official ranking. Each data point holds
the distribution of 3 systems. The solid line represents the median
of the bin. The shaded area is limited by the first and third quartiles
of the distribution, i.e. it represents the inter-quartile range. Finally,
the dashed lines are the maximum and the minimum. Breaks in
the lines mean that there was not any mixed agreement for those
systems. We used the 71 pooled systems of TREC-8.

see wider areas in the middle of the ranking), whereas we see more
narrow distributions in the top-ranked and lowest-ranked methods.
This suggests that the MA, and the consequent loss of Precision,
happen in a region of moderate impact, since mid-rank systems
may receive less interest in any case. Top-𝑘 and NTCIR method
represent two notable exceptions. Indeed, top-𝑘 concentrates most
of the score differences in the top ranks; therefore, top-𝑘 is not
only the less performing method (see Table 1 and Table 2) but it
also fails in the most impactful region of the ranking. This is even
worse for NTCIR, where the biggest differences (of 0.2 points), are
all clustered in the top positions of the ranking.

5.3 RQ3: Evaluation of unseen systems
We investigate the reusability of the judgements produced by a
low-cost method, i.e. their ability to fairly evaluate unseen systems.
Usually, reusability is evaluated by following a leave-one-group-out
approach. This consists in forming pools leaving one participating

Table 5: Kendall’s 𝜏 , Precision and Recall (see Section 3) of each
adjudication method for a varying number of judgements per topic.
100 and 300 are the budget of judgements per topic. Parentheses
indicate the size with respect to the full pool. We used the 58 non-
pooled systems fromTREC-8. For each budget, best values are bolded
and worst ones underlined.

Method
MAP/100 (6%) MAP/300 (17%) NDCG/100 (6%) NDCG/300 (17%)

𝜏 P R 𝜏 P R 𝜏 P R 𝜏 P R

top-𝑘 0.82 0.931 0.903 0.91 0.948 0.966 0.83 0.941 0.880 0.90 0.966 0.943
MTF 0.88 0.934 0.933 0.95 0.968 0.988 0.89 0.941 0.916 0.94 0.980 0.968
MM 0.91 0.967 0.942 0.97 0.976 0.997 0.92 0.955 0.946 0.97 0.983 0.979
MM-NS 0.88 0.948 0.936 0.96 0.966 0.989 0.88 0.952 0.921 0.95 0.978 0.976
TS 0.91 0.969 0.940 0.97 0.973 0.996 0.92 0.956 0.944 0.97 0.979 0.977
TS-NS 0.87 0.945 0.933 0.95 0.966 0.986 0.88 0.952 0.918 0.94 0.979 0.974
Hedge 0.91 0.973 0.929 0.96 0.980 0.982 0.93 0.974 0.946 0.96 0.977 0.977
NTCIR 0.89 0.898 0.931 0.95 0.962 0.984 0.86 0.938 0.911 0.94 0.974 0.977

group each time and using those pools to evaluate the submissions
of the group that was left out. We follow a different approach using
the non-pooled systems of TREC-8. 3 To this aim, we performed
the same experiments as in the previous sections, but using the
non-pooled systems of TREC-8. In this way, we are evaluating
systems that did not participate in the constructions of the pools.
As commented in Section 4, this collection has been repeatedly
acknowledged in the community as a high-quality one to evaluate
unseen systems. Thus, we assume that the TREC-8 gold judgements
are reusable and, if a low-cost method provides the same significant
differences as them, we conclude that it is reusable as well.

Table 5 reports the Kendall’s 𝜏 , Precision and Recall values of
every method, for a varying number of assessments per topic, using
the non-pooled systems. On a positive side, Table 5 shows similar
trends as Table 1, suggesting that there is not a specific bias against
non-pooled systems. On a slightly negative side, we observe that
performance in Table 5 are generally slightly lower than those in
Table 1, especially at the lowest budget, indicating a bit more loss
and some more swaps due to not being pooled.

More in detail, TS, MM and Hedge always have the highest
correlation scores and while MM achieves always the best Recall,
independently from the budget and the metric. This means that if we
were to gather the judgements of a new collection, MM would be the
best option in terms of reusability of the collected assessments. As
before, top-k and NTCIR method lag behind the other methods in all
the cases and for every considered measure. This finding suggests
that other alternative methods might be a better option to gather
assessments when constructing new experimental collections.

Table 6 reports the agreements for the non-pooled systems, sim-
ilarly to Table 2 for the pooled ones. 4 The results follow the same
trends as with the pooled systems, further supporting the lack of
strong biases against non-pooled systems. These scores confirm
that alternative adjudication methods are more effective than top-𝑘 ,
which, contrary to what we observed in Table 2, now is clearly the
worst method. As before, the more relevant documents found does

3We do not perform these experiments on the DL21 collection since it does not include
non-pooled runs.
4Note that the # rels. row is the same as before since the pools are the same, we are
only changing the systems we are evaluating.
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Table 6: Relevants, agreements and bias of each adjudication method
for a varying number of judgements per topic. Parentheses indicate
the size with respect to the full pool. We used the 58 non-pooled
systems from TREC-8. The top-100 full pool includes 4728 relevant
documents. There are 1653 pairwise comparisons, of which 509 are
significant under the gold qrels with MAP (upper half), and 527 with
NDCG (lower half). For each budget, the best values are bolded and
the worst ones are underlined.

Metric
Adjudication method

top-k MTF MM MM-NS TS TS-NS Hedge NTCIR

M
A
P
(5
09

go
ld

si
gn

ifi
ca
nt
ly

di
ff
er
en

tp
ai
rs
)

B
ud

ge
tp

er
to
pi
c:
10

0
(6
%
) # rels. 1077 1685 2148 1553 2102 1514 2170 1481

AA 460 475 480 477 479 475 473 474
MAtotal 83 68 45 58 45 62 49 89
MAG 49 34 29 32 30 34 36 35
MAL 34 34 16 26 15 28 13 54
MDtotal 0 0 0 0 0 0 0 0
MDG 0 0 0 0 0 0 0 0
MDL 0 0 0 0 0 0 0 0
AD 0 0 0 0 0 0 0 0
Bias 7% 7% 3% 5% 3% 5% 3% 4%

B
ud

ge
tp

er
to
pi
c:
30

0
(1
7%

) # rels. 2042 2923 3628 2913 3607 2868 3609 2723
AA 492 503 508 504 507 502 500 501
MAtotal 44 23 13 23 16 25 19 28
MAG 17 6 1 5 2 7 9 8
MAL 27 17 12 18 14 18 10 20
MDtotal 0 0 0 0 0 0 0 0
MDG 0 0 0 0 0 0 0 0
MDL 0 0 0 0 0 0 0 0
AD 0 0 0 0 0 0 0 0
Bias 5% 3% 2% 3% 3% 3% 2% 4%

N
D
C
G
(5
27

go
ld

si
gn

ifi
ca
nt
ly

di
ff
er
en

tp
ai
rs
)

B
ud

ge
tp

er
to
pi
c:
10

0
(6
%
) # rels. 1077 1685 2148 1553 2102 1514 2170 1481

AA 464 483 499 486 498 484 499 480
MAtotal 92 74 52 65 52 67 41 79
MAG 63 44 28 41 29 43 28 47
MAL 29 30 23 24 23 24 13 32
MDtotal 0 0 0 0 0 0 0 0
MDG 0 0 0 0 0 0 0 0
MDL 0 0 0 0 0 0 0 0
AD 0 0 0 0 0 0 0 0
Bias 6% 6% 4% 5% 4% 5% 3% 6%

B
ud

ge
tp

er
to
pi
c:
30

0
(1
7%

) # rels. 2042 2923 3628 2913 3607 2868 3609 2723
AA 497 510 516 514 515 514 515 515
MAtotal 47 27 19 24 23 24 24 26
MAG 30 17 11 13 12 13 12 12
MAL 17 10 9 11 11 11 12 14
MDtotal 0 0 0 0 0 0 0 0
MDG 0 0 0 0 0 0 0 0
MDL 0 0 0 0 0 0 0 0
AD 0 0 0 0 0 0 0 0
Bias 3% 2% 2% 2% 2% 2% 2% 3%

not necessarily mean the more AA; therefore, not all the relevant
documents are equally discriminative also for non-pooled systems.

No method fails in a mixed or active disagreement when evalu-
ating the non-pooled systems. This further supports the fact that
most drops in Kendall’s 𝜏 are due to swaps between systems that
are not significantly different under the gold qrels.

When it comes to the publication bias, we observe similar trends
as in the case of the pooled systems, even with lower values, in-
dicating that published conclusions would not change also in the
case of non-pooled systems.

Finally, we can observe similar trends between the results ob-
tained with AP and those obtained with NDCG, supporting the fact
that the results presented here are generalizable in terms of the
evaluation of unseen systems, and that they are not an artefact of
the evaluation metric used.

6 CONCLUSIONS AND FUTUREWORK
We argued for the need of a more powerful way of evaluating
adjudication methods. In particular, while the current approach
just focuses on how close two alternative methods rank systems,
quantified by Kendall’s 𝜏 , we think that we should focus our at-
tention also on how different methods behave with respect to the
significantly different pairs of systems detected. Indeed, while the
current approach looks for stability in answering the question “is
system A better than B?”, our proposed method looks for stability
in answering the question “is system A significantly better than
B?”, which is the ultimate questions researchers are interested in
to ensure generalizability of results.

To this end, we considered two measures—namely Precision
and Recall—which consider significantly different pairs in isolation,
as well as measures—the agreement/disagreement counts—which
relate them to swaps in the ranking of systems. We also considered
the problem of the publication bias, i.e. the chance of publishing
results/conclusions that would not hold or be the opposite when
using the full pool instead of a reduced one.

To both validate and to showcase our proposed approach, we
conducted a thorough experimentation on TREC-8, a collection
renown for its high quality deep pool, and TREC Deep Learning
2021, a collection adopting a very shallow pool. In this way, we
have shown that our methodology allows us to obtain insights not
possible simply using Kendall’s 𝜏 .

For example, we found that no active disagreements (AD) and
(almost) no mixed disagreements (MD) happen. This means that
observed drops in Kendall’s 𝜏 are mostly due to swaps between not
significantly different systems. Therefore, those drops concerns not
very interesting system pairs, and it might not be worth to strive
for (or to judge a method just by) 1.00 Kendall’s 𝜏 .

We also found that the number of relevant documents detected
by a method does not necessarily increase the number of signifi-
cantly different pairs detected, suggesting that not all the relevant
documents in a pool are equally discriminative. This opens up inter-
esting future investigations on which (relevant) documents would
be optimal for a pool while the current focus has been more on
determining how many and which topics to sample. We believe it
would also be interesting to investigate which factors are the ones
that most influence the number of active agreements obtained with
reduced pools.

We have shown that drops in Precision and Recall are caused
by mixed agreements (MA) which distribute unevenly at different
rank positions and, therefore, they have a quite different impact:
those happening at mid-to-bottom rank positions are less serious
than those happening at the top positions of the ranking.
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Finally, we also found that no adjudication methods induces
strong biases against non-pooled systems, thus further supporting
the use of these methods to construct new test collections for IR
evaluation. Previous work evaluated the reusability of bandit-based
methods using Kendall’s 𝜏 and other swap-based measures, and con-
cluded that the collections built with them were less reusable than
desirable. With the new evaluation approach we have presented
in this paper, we shed some more light on this issue and show
that, when focusing on significance between systems, bandit-based
method are indeed reusable.

Overall, our approach allowed us to show that existing methods
for human assessment adjudication in IR evaluation could preserve
most of the true statistical differences between the pairwise compar-
isons of systems. Besides this, as discussed in detail, our approach
allowed us to pinpoint which adjudication method works better in
specific conditions, why, and how it is different from other methods.
This will thus be a helpful tool and guidance for researchers, when
they have to decide which method to choose in their settings.
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