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Abstract. The analysis of an individual’s genetic material may uncover ge-

netic variants, which can be classified as disease-causing (pathogenic) or benign. 

Identifying pathogenic variants among millions of variants relies on the research 

of evidence in support of or against variant pathogenicity, a process regulated by 

the American College of Molecular Genetics (ACMG) guidelines, which lever-

ages data from the scientific literature. Despite recent improvements towards au-

tomation, searching shreds of evidence for pathogenicity in the literature still re-

quires manual curation, a time-consuming process, due to the ever-growing num-

ber of published papers.  

In this work, we built DAVI (Dataset for Automatic Variant Interpretation), a 

reliable, manually curated dataset comprising articles both containing (positive) 

and not containing (negative) evidence activating two opposing ACGM criteria, 

namely PS3 and BS3, for a pool of 41 variants. Moreover, we demonstrated that 

DAVI can be used to train a predictive model that automatically identifies posi-

tive (variant, article) associations.  

DAVI contains 311 (variant, article) pairs: 154 positive and 157 negative as-

sociations. We used three different text representation models combined with a 

logistic regression to efficiently identify positive associations, with an F1-score 

of 0.84. The model’s performance constitutes a clear proof of concept for auto-

matic PS3/BS3 evidence identification. DAVI represents a useful resource to 

train further models. 

Keywords: Clinical Genetics, Variant Interpretation, Natural Language Pro-

cessing. 

1 Introduction 

Deoxyribonucleic acid, more commonly known as DNA, is a complex molecule that 

stores the genetic information needed for the development and functioning of an organ-

ism. The DNA molecule is contained in each of an organism’s cells, which are the basic 

biological building blocks that provide structure to its tissues. The DNA is composed 

of a series of four different smaller molecules, called nucleotides: adenine ("A"), thy-

mine ("T"), guanine ("G"), and cytosine ("C"). In 2003, with the completion of the 
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Human Genome Project [1], the first human genome, i.e. the four-letter sequence en-

coding a person’s DNA, was determined through a laboratory technique called sequenc-

ing. Thereafter, sequencing technologies have become more and more sophisticated 

and widely accessible, enabling the resolution of thousands of genomes and the detec-

tion of small differences among them, known as genetic variants. Variants can be in-

herited from a parent or occur during a person’s lifetime. Identification of genetic var-

iants, which consists in assessing the variants’ positions in the genome and affected 

nucleotides, is crucial as variants are not only responsible for differences in appearance 

among individuals of the same species, but also associated to their health status. For 

example, some variants are located within genes, which are chunks of nucleotides in 

the genome carrying instructions for the synthesis of proteins, complex molecules that 

play many critical roles (signalling, structural support, nutrients storage) in the organ-

ism. Alterations in gene sequences can result in the production of inactive proteins, 

increasing an individual’s susceptibility to a certain disease (pathogenic variants), or 

they can have no impact on the function of the gene/protein (benign variants). 

Recently, sequencing technologies have been increasingly used for personalised 

healthcare, as the identification of a person’s genetic variants and the assessment of 

their benignity/pathogenicity allow clinicians to provide suitable therapies to patients 

[2]. However, a correct variant benignity/pathogenicity assessment, a process also 

known as variant interpretation, does not rely only on information about variant posi-

tion, affected gene, and affected protein, but it requires the clinician to perform a com-

plete variant annotation, gathering all relevant evidence about the nature and the effect 

of the variant from biological databases and the scientific literature [3]. To be mean-

ingful, variant annotation should follow the recommended guidelines defined by the 

American College of Medical Genetics and Genomics (ACMG) in 2015 [4]. These 

guidelines contain 28 criteria, each identified by an evidence code representing evi-

dence in support of variant benignity or pathogenicity. Some criteria are applied to a 

specific variant based on the evidence contained in databases (variant frequencies in 

healthy reference populations, prediction scores based on the probability of damaging 

protein structure, etc.), while others require information contained in the literature (re-

sults of experimental tests carried out on the variant, disease-association studies, etc.). 

An example of two opposing ACMG criteria which are applied based on information 

contained in the literature are PS3 and BS3. These criteria are alternatively assigned to 

a specific variant when an experimental test, in which the variant is injected in the DNA 

of an animal (in vivo) or cell culture (in vitro), proved that the variant has a damaging 

or null effect on protein function, respectively. 

The task of mining for evidence of a variant’s benignity/pathogenicity from the lit-

erature, a process known as manual curation, is extremely complex and time-consum-

ing. It requires highly qualified curators who scan the continuously growing biomedical 

literature in the quest for the required evidence. This typically happens by querying a 

literature search engine with “Variant_Name AND Gene_Name”, where Vari-

ant_Name is a variant’s identification code and Gene_Name is the symbol of the 

gene where the variant is located. Then, curators have to proceed by reading all re-

trieved articles, looking for relevant information in figures, tables, sentences that con-

tain the variant’s identification code, and those nearby (e.g. typically only the previous 



3 

and next sentences) [5]. When curators find a relevant article, they assign the specific 

ACMG criterion to the (variant, article) pair. 

Considering that the number of biomedical publications that contain genetic variants 

grows day by day and that the research community uses multiple forms to refer to ge-

netic variants (variant synonyms), it is increasingly difficult to have enough expert cu-

rators to read all available publications and to find all relevant information about each 

discovered variant [6]. As a result, currently, there is the lack of a complete and con-

stantly updated database containing (variant, article) associations curated following the 

ACMG guidelines for each variant and for each criterion. The only resource of this kind 

is ClinGen [7]: it contains expert-curated assertions regarding variant pathogenicity, as 

well as supporting evidence summaries, and it is used for consultation in clinical deci-

sion-making. However, the number of variants annotated in ClinGen is very limited 

and the information used for variant interpretation is partial: indeed, most of the time, 

ClinGen curators make their statements on variant pathogenicity when they think they 

have collected enough evidence from a restricted number of analysed publications, pos-

sibly missing lots of useful information contained in the remaining overlooked papers. 

Given the abovementioned considerations, there is a need for a tool able to automat-

ically identify the evidence needed for an ACMG-compliant variant interpretation, 

which could be easily applied to any variant at any time. Indeed, several tools have 

been proposed to automatically collect variant annotations [8], [9], but none of them 

performs a comprehensive screening of the extensive and ever-growing literature, nor 

automatically extract the information needed for the activation of ACMG criteria.  

The first aim of this work is to build a high quality manually curated dataset of arti-

cles that either activate, for a specific variant, one of two opposing ACMG criteria, 

namely PS3 and BS3, or that activate neither. This dataset, named DAVI (Dataset for 

Automatic Variant Interpretation), will be available on Zenodo. Besides being a useful 

resource by itself, will be the basis for developing automatic methods for variant anno-

tation. To the best of our knowledge, this is the first type of such dataset available for 

research.  The second aim is to perform a preliminary exploratory analysis of DAVI via 

the development of an automatic, machine-learning-based predictive model to identify 

(variant, article) pairs where either PS3 or BS3 are activated. This can be thought as a 

first step before a second classification step to distinguish between articles that activate 

PS3 vs. those which activate BS3. 

The paper is organized as follows: Section 2 describes the methodology used to cre-

ate DAVI; Section 3 describes the implementation of a predictive model, trained on 

DAVI, that automatically performs identification of (variant, article) associations 

where either PS3 or BS3 are activated; finally, Section 4 draws some conclusions and 

outlooks for future work. 

2 Dataset Construction 

In the following, we call positive articles those articles which activate either the PS3 or 

the BS3 criterion, while we call negative articles those activating neither of them. Typ-

ically, in positive articles, the result of the experimental test is summarised in one or 
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more sentences (positive sentences), which trigger the activation of the PS3 or BS3 

criteria. Positive sentences contain the functional comparison between two analysed 

models, in vivo or in vitro, one carrying the variant (mutant) and the other carrying the 

non-mutated sequence of DNA (wild-type). All other sentences activate neither PS3 

nor BS3 (negative sentences). 

 

2.1 Article Retrieval 

To build DAVI, we started from downloading the ClinGen Evidence Repository, whose 

rows contain information about 4980 curated genetic variants, distributed across 88 

genes of interest. Each curated variant is reported with its Human Genome Variation 

Society (HGVS) [10] standard nomenclature. According to HGVS, variants (e.g., 

NM_000277.2(PAH): c.472C>T (p.Arg158Trp)) are unambiguously described at the 

DNA level through an accepted reference DNA sequence (e.g., NM_000277.2), also 

called transcript, which is located in a gene (e.g., PAH); the position of the variant (e.g., 

472), calculated with respect to that specific transcript; and replaced and replacing nu-

cleotides (e.g., 472C>T means cytosine becomes thymine in position 472). In addition, 

variants can be described at the protein level, specifying the position of the variant in 

the amino acids sequence (e.g., 158), replaced and replacing amino acids (e.g., 

Arg158Trp means arginine becomes tryptophan in position 158).  

Each variant is associated to a list of ACMG evidence codes assigned by ClinGen 

manual curators on the basis of information contained in databases (e.g., ACMG crite-

rion applied: PM2, source of evidence: ExAC [11]) or one or more scientific papers, 

identified by PubMed [12] identification codes (PMIDs) (e.g., ACMG criterion applied: 

PS3, source of evidence: PMID:24401910).   

We focused only on variant curations where either PS3 or BS3 evidence codes were 

assigned, given that the evidence needed for these assignments is often contained in 

articles’ plain texts (most of times, the manual curator does not need to study tables and 

figures, but only textual information). Therefore, we filtered the ClinGen Evidence Re-

pository for variant curations where either PS3 or BS3 evidence codes were assigned 

(ClinGen variants) and we extracted their corresponding articles’ PMIDs (ClinGen ar-

ticles). As we wanted to analyse the articles’ full-text, we converted the PMIDs, which 

only refer to articles’ abstracts, to PubMed Central [13] identification codes (PMCIDs). 

ClinGen articles with no PMCID were ignored. In this way, we obtained a set of vari-

ants for which ClinGen experts’ manual curation produced at least one positive (vari-

ant, ClinGen article) association. Then, we applied our own manual curation to 

ClinGen variants in order to assess ClinGen’s completeness in reporting positive (var-

iant, article) associations; and to find negative (variant, article) associations for train-

ing a classifier to perform automatic positive evidence identification. We chose Euro-

pePMC1 as our reference literature search engine, for it has a very convenient R inter-

face, provided by the package europepmc [14]. Specifically, the user can define a query 

through the function epmc_search and obtain PMCIDs of retrieved articles. As we 

 
1 https://europepmc.org/ 
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want to mimic the same procedure followed by manual curators, our queries were struc-

tured as “Variant_Name AND Gene_Name AND Keywords”.  

Variant_Name is the variant identifier. Given the variety of formats commonly 

used in publications to refer to genetic variants [6], we used, for each ClinGen variant, 

five different queries in which Variant_Name was respectively represented by:  

i) the nucleotide change in HGVS format (e.g., 1A>G);  

ii) the nucleotide change in a non-HGVS format (e.g., A1G); 

iii) the amino acid change in an HGVS format (e.g., Met1Val);  

iv) the amino acid change in a non-HGVS format (e.g., M1V);  

v) the RefSeq [15] Identification (rsID) code (e.g., rs786204467).  

While i), ii), iii) and iv) can be derived from the ClinGen variant’s HGVS nomenclature 

reported in the ClinGen Evidence Repository, v) was obtained using the VEP [8] REST 

API. Gene_name is the gene identifier. It is needed together with the Vari-

ant_Name to ensure we are referring to the correct variant: two distinct articles might 

contain information about variants with the same variant identifier, but found on two 

different genes. Keywords is a set of 113 words extracted from two resources: Mas-

termind [16], which is a commercial search engine that allows paid users to rank re-

trieved articles according to ACMG relevance through criteria-specific keywords, and 

ClinGen articles. In particular, Mastermind contained 68 keywords for PS3/BS3, while 

the other 45 keywords were words recurrently found in ClinGen articles, which are 

known to be positive for PS3/BS3.  

Furthermore, we refined the query syntax by adding the following flags: 

• BODY: query terms were searched within the body of full-text articles. Sections 

such as “References” and “Acknowledgements” were not considered. 

• OPEN_ACCESS: search results were limited to articles that are Open Access in Eu-

ropePMC. This was needed to access their full text. 

• PUB_TYPE: filter by publication type. Only journal articles were considered. 

These customised queries produced five lists of retrieved PMCIDs for each ClinGen 

variant, a list for each Variant_Name synonym. As some ClinGen articles are not 

Open Access in EuropePMC, some ClinGen variant queries did not retrieve any 

ClinGen article and thus they were discarded in the current analysis.  

2.2 Manual Curation 

Manual curation, i.e. manual variant annotation, was needed to distinguish between 

positive (variant, article) associations (assigned to the label 1), i.e., articles that contain 

at least one positive sentence activating either PS3 or BS3 evidence codes for a certain 

variant, and negative (variant, article) associations (assigned to the label 0), which do 

not contain any positive sentence.  

For each article, we selected for manual curation only target sentences, i.e., sen-

tences containing Variant_Name as used in all the five queries related to the same 

ClinGen variant, concatenated to the ones immediately adjacent (the previous and next 
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sentences). In this way, we considered only textual information, easily interpretable for 

an automatic algorithm (tables and figures are excluded, as they would require addi-

tional, specialised modules). Using the R package tidypmc [17], we downloaded the 

articles’ XML code given their PMCIDs and then we performed target sentences ex-

traction. For each ClinGen variant, we read all target sentences extracted from its 

ClinGen articles and, given the burden of human curation in terms of time, from a ran-

dom subset of articles not included in ClinGen articles but retrieved by our queries. 

The number of articles to be curated R for each ClinGen variant was chosen considering 

the total number T of articles retrieved with all of its five queries as follows. 

• If T ≤ 30, then R = T. 

• If 30 < T < 50, then R = 30. 

• If T ≥ 50, then R = 50. 

In this way, we included in DAVI a number of curated articles for each ClinGen 

variant that was representative of its presence in the EuropePMC database. We applied 

the same reasoning to choose the number ri of articles to be curated for each of the five 

queries related to the same ClinGen variant. Considering the number ti of articles re-

trieved with each of the five queries related to the same ClinGen variant, ri was calcu-

lated as follows for i=1, …, 5: 

 𝑟𝑖 =
𝑡𝑖

𝑇
 × 𝑅 (1) 

We performed manual curation considering the following rules and ensuring con-

sistencies with the Genomic Variant Analysis & Clinical Interpretation [6] procedure. 

We assigned to each (variant, article) association the negative label (0) if none of target 

sentences, extracted from the considered article, contained sufficient information for 

assigning PS3 or BS3 (i.e., all target sentences were negative), regardless of the content 

of tables or figures (which might have contained information for assigning PS3 or BS3, 

but whose automated analysis was out-of-scope for this work). Instead, the positive 

label (1) was assigned to (variant, article) associations for which at least one target 

sentence contained information for assigning PS3 or BS3 (i.e., at least one target sen-

tence was positive).  

3 Automatic Variant Annotation 

3.1 Pre-processing  

We trained the automatic classification model on DAVI according to a by-sentence 

perspective, where we considered each target sentence as an independent entry. For 

performance evaluation only, we considered a by-article perspective, distinguishing be-

tween positive and negative (variant, article) associations according to the classifica-

tion of each of their extracted target sentences (association is positive if the article con-

tains at least one positive target sentence). We pre-processed the target sentences in-

cluded in DAVI according to the following typical steps [18]. 



7 

• English stop word removal, using the stop list provided by the package nltk [19]. We 

excluded the word “not”, which is a relevant word in the context of PS3 or BS3 

assignment, and we handled negation by concatenating it to the following word. 

• Stemming using the snowball stemming algorithm implemented by the package nltk. 

• Removal of words with an absolute frequency less than the 90th percentile of the 

absolute frequency distribution of words in the vocabulary. 

• Exclusion of sentences consisting of less than 3 words 

We split the pre-processed dataset into a training set, a test set and a validation set (70%, 

15%, 15%), making sure that proportions of positive and negative (variant, article) 

associations and target sentences were similar (within a tolerance of ε = 0.01) in the 3 

subsets. Finally, given that we were considering the classification of (variant, article) 

pairs, but we needed to construct a single dataset comprising all target sentences, we 

had to deal with the presence of duplicated target sentences. As duplicated target sen-

tences could cause over-fitting (identical target sentences with concordant labels) or 

bias (identical target sentences with discordant labels), we removed one copy, if con-

cordant, or both, if discordant, of such sentences from the training and validation sets. 

This reasoning was not applied to the test-set, as it was used for performance evaluation 

only: predicted labels were correctly computed considering target sentences extracted 

from articles in (variant, article) pairs. 

3.2 Model Construction 

We applied three different text representation schemes, implemented through the py-

thon package scikit-learn [20], to transform target sentences in the pre-processed DAVI 

into sequences of numbers. 

• Binary Bag Of Words (BBOW) [21], in which each word was represented by 1, if 

the word is present in the target sentence, and 0 otherwise. 

• Bag Of Words (BOW), in which each word was represented by its frequency in the 

target sentence. 

• Term-frequency Inverse Document-Frequency (TF-IDF), in which each word was 

represented by its frequency in the target sentence weighted by how often it appeared 

in all target sentences. 

We performed a preliminary exploratory analysis on automatic PS3/BS3 evidence iden-

tification using a logistic regressor (LR) trained on the three versions of DAVI. For this 

model, we considered a L2 regularisation loss-function with a single hyperparameter, 

the inverse of the regularisation strength C. For each version of the dataset (BBOW, 

BOW, TF-IDF), we performed hyperparameter optimisation considering only the train-

ing set, using a 5-fold cross validation [22] and a random search approach [23] account-

ing for 10000 values of C, randomly sampled from a log uniform distribution ranging 

from 10-4 to 102. We selected the best hyperparameter as the one that led to the mini-

mum average binary cross-entropy across the 5 folds.  

To transform the model from a ranker into a classifier, useable in practice for auto-

matic PS3/BS3 evidence identification, we implemented a thresholding approach by 
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identifying one probability threshold (th) to discriminate between positive (1, if pre-

dicted probability p ≥ th) and negative (0, if p < th) predictions on target sentences. We 

selected the optimal threshold by using each probability value predicted for target sen-

tences in the validation set as a threshold and choosing the one associated to the maxi-

mum geometric mean between true positive and true negative rate in the validation set 

itself. 

3.3 Performance Measures 

In the by-sentence perspective, we evaluated the discrimination performance of the 

model via five measures: area under the receiver operating characteristic (AUROC) and 

area under the precision-recall curve (AUPRC) [24] for the continuous probability out-

put; as well as precision, recall, and F1-score after applying the aforementioned thresh-

olding approach.  

In the by-article perspective, we did not consider AUROC and AUPRC as predicted 

labels were assigned as the logical OR of by-sentence outputs after thresholding and, 

hence, were Boolean in nature. 

4 Results 

4.1 Manual curation results 

DAVI is organised into 6 columns, containing, for each (variant, article) pair, the var-

iant’s HGVS standard nomenclature, variant’s HGVS nomenclature used in query, the 

article’s PMCID, the label assigned to the article, a target sentence extracted from the 

article and, the label assigned to that target sentence. Table 1 shows an example of a 

DAVI entry. 

Table 1. Example of an entry in DAVI 

HGVS  

standard 

nomenclature 

HGVS  

nomenclature 

used in query 

Article 

PMCID 

Article 

Label 
Target Sentence 

Target 

Sentence 

Label 

NM_021133.4 

(RNASEL): 

c.793G>T  

(p. Glu265Ter) 

G793T PMC2361943 0 

All sequence variations 

[…]. […], we discovered 

one protein-truncating var-

iant, nt g793t, […]. This 

point mutation […]. 

0 

 

Overall, DAVI contains the results of manual curation for 41 ClinGen variants, yield-

ing 1239 target sentences extracted from 311 (variant, article) pairs, namely 44 (vari-

ant, ClinGen article) pairs and 267 (variant, non-ClinGen article) pairs.  Table 2 pro-

vides a comparison of the labels assigned to target sentences and (variant, article) pairs 

in ClinGen articles and non-ClinGen articles.  
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Table 2. Comparison of the assigned labels in ClinGen articles and non-ClinGen articles 

  Total Positive Negative 

ClinGen articles 
Target sentences 388 219 169 

(Variant, article) pairs 44 37 7 

Non-ClinGen articles 
Target sentences 851 378 473 

(Variant, article) pairs 267 117 150 

 

DAVI contained almost the same amount of positive and negative target sentences, i.e., 

respectively 597 and 642, and positive and negative (variant, article) pairs, i.e., respec-

tively 154 and 157. The number of target sentences extracted per ClinGen article was 

three times greater than the number of target sentences extracted per non-ClinGen ar-

ticle. Moreover, even though we assumed (variant, ClinGen article) associations to be 

positive, 7 (variant, ClinGen article) pairs were re-classified as negative after manual 

curation (see Section 2.2). 

4.2 Pre-processing results 

Initially, the vocabulary of target sentences contained 7745 words. Following the ap-

proach described in Section 3.1, we removed 733 stop words and 6309 words as they 

had an absolute frequency below the 90th percentile of the absolute frequency distribu-

tion of words in the vocabulary. We removed 2 negative target sentences, as they com-

prised less than 3 words. Lastly, we removed 66 and 22 duplicated concordant target 

sentences from training-set and validation-set, respectively, whereas no duplicated dis-

cordant target sentences were found. Thus, the pre-processed DAVI finally contained 

1149 target sentences. Table 3 provides a comparison of the assigned labels of target 

sentences and (variant, article) pairs in the training, test, and validation sets after pre-

processing. 

Table 3. Comparison of assigned labels in the pre-processed training, test, and validation sets 

  Total Positive Negative 

Training-set 
Target sentences 644 320 324 

(Variant, article) pairs 196 99 97 

Test-set 
Target sentences 302 144 158 

(Variant, article) pairs 52 25 27 

Validation-set 
Target sentences 203 99 104 

(Variant, article) pairs 48 24 24 

 

4.3 Classification results 

This section reports the performance of the models constructed following the approach 

described in Section 3.2 and using the measures introduced in Section 3.3. Results of 

hyperparameter C optimization on the three versions of the training set (BBOW, BOW, 
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TF-IDF), minimizing the score (binary cross entropy) across the 5-folds are reported in 

Table 4. 

Table 4. Hyperparameter C optimization on the BBOW, BOW and TF-IDF versions of DAVI 

Text representation scheme Hyperparameter (C) Best Score  

BBOW 0.103 -0.541 

BOW 0.055 -0.549 

TF-IDF 2.236 -0.557 

 

The combination of TF-IDF text representation model and hyperparameter C = 2.236 

led to the lowest value of binary cross entropy. The performance metrics obtained in 

the by-sentence and by-article perspectives, using BBOW+LR, BOW+LR, and TF-

IDF+LR, are shown in Table 5.  

Table 5. Classification results according to by-sentence and by-article perspectives, using 

BBOW+LR, BOW+LR and TF-IDF+LR 

Perspec-

tive 
Model AUROC AUPRC TP TN FP FN 

Preci-

sion 

Re-

call 

F1-

score 

By-sen-

tence 

BBOW+LR 0.805 0.767 132 81 77 12 0.631 0.917 0.748 

BOW+LR 0.815 0.771 124 108 50 20 0.713 0.861 0.780 

TF-

IDF+LR 
0.819 0.796 121 99 59 23 0.672 0.840 0.747 

By-arti-

cle 

BBOW+LR - - 24 15 12 1 0.667 0.960 0.787 

BOW+LR - - 23 19 8 2 0.742 0.920 0.821 

TF-

IDF+LR 
- - 24 19 8 1 0.750 0.960 0.842 

 

In the by-sentence perspective, the TF-IDF+LR model performed better, yielding an 

AUROC and a AUPRC of 0.819 and 0.796, respectively. However, the BBOW+LR 

model showed a higher recall and, overall, the BOW+LR model had a higher F1-score. 

In the by-article perspective, the best performing model was TF-IDF+LR. As the num-

ber of false negatives was lower than the one of false positives, recall was higher than 

precision. This result suggests that correctly identifying positive sentences and articles 

was slightly more challenging than correctly identifying negative cases. While not di-

rectly comparable, performance was overall better in the by-article setting than in the 

by-sentence one, which was expected as it is easier to obtain a correct classification 

looking at multiple target sentences for each (variant, article) pair rather than classify-

ing each target sentence independently. 
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5 Discussion and Future Work 

The main aim of this work was to build a high quality and manually-curated dataset 

that associates each variant to its PS3/BS3-activating articles (positive associations) 

and non PS3/BS3-activating articles (negative associations), as such resource is critical 

for clinical decision-making and it is currently missing. The second aim was to use such 

dataset to train a predictive model that efficiently performs automatic positive associa-

tions identification.  

We built DAVI, a manually-curated dataset comprising 1239 sentences related to 

311 (variant, article) associations. In order to guarantee a sufficient number of positive 

associations, we included in DAVI 44 (variant, ClinGen article) pairs and, to consider 

a more representative sample of the entire corpus of articles retrieved when querying 

for a specific variant, 267 (variant, non-ClinGen article) pairs. As expected, most (var-

iant, ClinGen articles) pairs were positive, but 7 were reclassified as negative, on the 

basis of textual information only. Overall, about half of the extracted sentences con-

tained sufficient evidence for activating PS3 or BS3 evidence codes, and same for the 

(variant, article) pairs. A positivity offset is given by the fact that we forcedly included 

in DAVI an elevated number of positive sentences extracted from few ClinGen articles, 

but, generally, positive sentences and (variant, article) associations are respectively 

fewer than negative ones (378 vs. 473 sentences extracted from 117 vs. 150 (variant, 

non-ClinGen articles)). However, we found a significant number of positive examples 

in (variant, non-ClinGen articles) pairs (117 out of 267), suggesting that the manually 

curated information contained in ClinGen is incomplete and/or not updated frequently 

enough. As ClinGen has been recognised by the Food and Drug Administration as a 

source of valid scientific evidence for support in clinical decisions, it should be always 

up-to-date, containing all new evidence about all discovered variants.  

ACMG criteria and, specifically, PS3 and BS3, can activate for a (variant, article) 

in relation to multiple specific diseases or through the use of different types of experi-

mental texts, sometimes even at the same time. Therefore, it is crucial to provide to the 

clinician all available positive evidence, even if this implies higher costs for manual 

curation. In order to reduce these costs, automatic models could be integrated in the 

curation pipeline. As an exploratory analysis on the feasibility of this approach, we 

tested the discrimination performances of three predictive models, trained on DAVI, 

for the automatic identification of positive (variant, article) associations. Performance 

was good both in the by-sentence and by-article perspective, with F1-scores well above 

0.70 and 0.80 respectively. This result suggests that reliable tools could be developed 

in support of manual curation, efficiently enriching biological databases with all the 

information needed for a complete and correct variant interpretation. 

Future developments include the further distinction of (PS3 or BS3)-positive exam-

ples into PS3-positive vs. BS3-positive examples. Moreover, the solid manual curation 

procedure described in this work may be applied to variants which are not included in 

ClinGen and expanded to the evaluation of other evidence codes among the 28 covered 

by ACMG guidelines. Lastly, we may focus on the development of more complex ar-

chitectures for text representation and classification, including deep learning ap-

proaches. 
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