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Abstract. Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis
(MS) are chronic diseases that cause progressive or alternating neuro-
logical impairments in motor, sensory, visual, and cognitive functions.
Affected patients must manage hospital stays and home care while fac-
ing uncertainty and significant psychological and economic burdens that
also affect their caregivers. To ease these challenges, clinicians need au-
tomatic tools to support them in all phases of patient treatment, suggest
personalized therapeutic paths, and preemptively indicate urgent inter-
ventions.
iDPP@CLEF aims at developing an evaluation infrastructure for AI al-
gorithms to describe ALS and MS mechanisms, stratify patients based
on their phenotype, and predict disease progression in a probabilistic,
time-dependent manner.
iDPP@CLEF 2022 ran as a pilot lab in CLEF 2022, with tasks related to
predicting ALS progression and explainable AI algorithms for prediction.

* These authors contributed equally.
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iDPP@CLEF 2023 will continue in CLEF 2023, with a focus on predict-
ing MS progression and exploring whether pollution and environmental
data can improve the prediction of ALS progression.

1 Introduction

Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS) are severe
chronic diseases that cause progressive neurological impairment. They exhibit
high heterogeneity in terms of symptoms and disease progression, leading to
differing needs for patients. The heterogeneity of these diseases partly explains
the lack of effective prognostic tools and the current lack of therapies that can
effectively slow or reverse their course. This poses challenges for caregivers and
clinicians alike. Furthermore, the timing of worsening or significant events – such
as the need for Non-Invasive Ventilation (NIV) or Percutaneous Endoscopic Gas-
trostomy (PEG) in the case of ALS – is uncertain and hard to predict. Being able
to preemptively recognize the need for specific medical treatments would have
significant implications for the quality of life of patients. Therefore, it would be of
uttermost importance to devise automatic tools that could aid clinicians in their
decision-making in all phases of disease progression and facilitate personalized
therapeutic choices.

To address these challenges and develop Artificial Intelligence (AI) predictive
algorithms researchers need a framework to design and evaluate approaches to:

– stratify patients according to their phenotype all over the disease evolution;
– predict the progression of the disease in a probabilistic, time-dependent way;
– describe better and in an explainable fashion the mechanisms underlying MS

and ALS diseases.

In this context, it is crucial to develop shared approaches, promote com-
mon benchmarks, and foster experiment comparability and replicability, even
if not yet so common. The Intelligent Disease Progression Prediction at CLEF
(iDPP@CLEF) lab8 aims to provide an evaluation infrastructure for the develop-
ment of such AI algorithms. Unlike previous challenges in the field, iDPP@CLEF
systematically addresses issues related to the application of AI in clinical prac-
tice for ALS and MS. Apart from defining risk scores based on the probability
of events occurring in the short or long term, iDPP@CLEF also deals with pro-
viding clinicians with structured and understandable data.

The paper is organized as follows: Section 2 presents related challenges; Sec-
tion 3 describes its tasks; Section 4 discusses the developed dataset; Section 5
explains the setup of the lab and introduces the participants; Section 6 intro-
duces the evaluation measures adopted to score the runs; Section 7 analyzes
the experimental results for the different tasks; finally, Section 8 draws some
conclusions and outlooks some future work.

8 https://brainteaser.health/open-evaluation-challenges/

https://brainteaser.health/open-evaluation-challenges/
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2 Related Challenges

Within CLEF, there have been no other labs on this or similar topics before the
start of iDPP@CLEF. iDPP@CLEF 2022, whose details are summarized below,
was the first iteration of the lab and the current is the second one.

Outside CLEF, there have been a recent challenge on Kaggle9 in 2021 and
some older ones, the DREAM 7 ALS Prediction challenge10 in 2012 and the
DREAM ALS Stratification challenge11 in 2015. The Kaggle challenge used a
mix of clinical and genomic data to seek insights about the mechanisms of ALS
and the difference between people with ALS who progress faster versus those
who develop it more slowly. The DREAM 7 ALS Prediction challenge [15] asked
to use 3 months of ALS clinical trial information (months 0–3) to predict the fu-
ture progression of the disease (months 3–12), expressed as the slope of change in
ALS Functional Rating Scale Revisited (ALSFRS-R) [5], a functional scale that
ranges between 0 and 40. The DREAM ALS Stratification challenge asked par-
ticipants to stratify ALS patients into meaningful subgroups, to enable better un-
derstanding of patient profiles and application of personalized ALS treatments.
Differently from these previous challenges, iDPP@CLEF focuses on explainable
AI and on temporal progression of the disease.

Finally, when it comes to Multiple Sclerosis (MS), studies are mostly con-
ducted on closed and proprietary datasets and iDPP@CLEF represents one of
the first attempts to create a public and shared dataset.

2.1 iDPP@CLEF 2022

iDPP@CLEF 2022 ran as a pilot lab for the first time in CLEF 202212 [7, 8]
and focused on activities aimed at ALS progression prediction as well as at an
understanding of the challenges and limitations to refine and tune the labs itself
for future iterations. iDPP@CLEF 2022 consisted of the following tasks:

– Pilot Task 1 - Ranking Risk of Impairment: it focused on ranking
patients based on the risk of impairment. We used the ALSFRS-R scale [5]
to monitor speech, swallowing, handwriting, dressing/hygiene, walking and
respiratory ability in time and asked participants to rank patients based on
the time-to-event risk of experiencing impairment in each specific domain.

– Pilot Task 2 - Predicting Time of Impairment: it refined Task 1 by
asking participants to predict when specific impairments will occur (i.e. in
the correct time-window). In this regard, we assessed model calibration in
terms of the ability of the proposed algorithms to estimate a probability of
an event close to the true probability within a specified time-window.

– Position Paper Task 3 - Explainability of AI algorithms: we evaluated
proposals of different frameworks able to explain the multivariate nature of
the data and the model predictions.

9 https://www.kaggle.com/alsgroup/end-als
10 https://dreamchallenges.org/dream-7-phil-bowen-als-prediction-prize4life/
11 https://dx.doi.org/10.7303/syn2873386.
12 https://brainteaser.health/open-evaluation-challenges/idpp-2022/

https://www.kaggle.com/alsgroup/end-als
https://dreamchallenges.org/dream-7-phil-bowen-als-prediction-prize4life/
https://dx.doi.org/10.7303/syn2873386
https://brainteaser.health/open-evaluation-challenges/idpp-2022/
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iDPP@CLEF 2022 created 3 datasets, for the prediction of specific events
related to ALS, consisting of fully anonymized data from 2,250 real patients from
medical institutions in Turin, Italy, and Lisbon, Portugal. The datasets contain
both static data about patients, e.g. age, onset date, gender, . . . and event
data, i.e. 18,512 ALSFRS-R questionnaires and 4,015 spyrometries. 6 groups
participated in iDPP@CLEF 2022 and submitted a total of 120 runs.

3 Tasks

iDPP@CLEF 2023 is the second iteration of the lab, expanding its scope to in-
clude both ALS and MS in the study of disease progression. The activities in
iDPP@CLEF 2023 focus on two objectives: exploring the prediction of MS wors-
ening and conducting a more in-depth analysis of ALS compared to iDPP@CLEF
2022, with the addition of environmental data.

Following iDPP@CLEF 2022, iDPP@CLEF 2023 targets three tasks:

– Pilot tasks (Task 1 and Task 2) on predicting the progression of the MS,
focusing on its worsening;

– Position papers (Task 3) on the impact that environmental data can have
on the progression of the ALS.

In the remainder of this section, we describe each task more in detail.

3.1 Task 1: Predicting Risk of Disease Worsening (MS)

Task 1 focuses on MS and requires ranking subjects based on the risk of wors-
ening, setting the problem as a survival analysis task. More specifically the risk
of worsening predicted by the algorithm should reflect how early a patient ex-
periences the “worsening” event and should range between 0 and 1.

Worsening is defined on the basis of the Expanded Disability Status Scale
(EDSS) [16], according to clinical standards. In particular, we consider two dif-
ferent definitions of worsening corresponding to two different sub-tasks:

– Task1a: the patient crosses the threshold EDSS ≥ 3 at least twice within a
one-year interval;

– Task1b: the second definition of worsening depends on the first recorded
value, according to current clinical protocols:
• if the baseline is EDSS < 1, then the worsening event occurs when an
increase of EDSS by 1.5 points is first observed;

• if the baseline is 1 ≤ EDSS < 5.5, then the worsening event occurs when
an increase of EDSS by 1 point is first observed;

• if the baseline is EDSS ≥ 5.5, then the worsening event occurs when an
increase of EDSS by 0.5 points is first observed.

For each sub-task, participants are given a dataset containing 2.5 years of
visits, with the occurrence of the worsening event and the time of occurrence
pre-computed by the challenge organizers.
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3.2 Task 2: Predicting Cumulative Probability of Worsening (MS)

Task 2 refines Task 1 by asking participants to explicitly assign the cumulative
probability of worsening at different time windows, i.e., between years 0 and 2,
0 and 4, 0 and 6, 0 and 8, 0 and 10. In particular, as in Task 1, we consider two
different definitions of worsening corresponding to two different sub-tasks:

– Task2a: the patient crosses the threshold EDSS ≥ 3 at least twice within a
one-year interval;

– Task2b: the second definition of worsening depends on the first recorded
value, according to current clinical protocols:
• if the baseline is EDSS < 1, then the worsening event occurs when an
increase of EDSS by 1.5 points is first observed;

• if the baseline is 1 ≤ EDSS < 5.5, then the worsening event occurs when
an increase of EDSS by 1 point is first observed;

• if the baseline is EDSS ≥ 5.5, then worsening event occurs when an
increase of EDSS by 0.5 points is first observed.

For each sub-task, participants are given a dataset containing 2.5 years of
visits, with the occurrence of the worsening event and the time of occurrence
pre-computed by the challenge organizers.

3.3 Task 3: Position Papers on the Impact of Exposition to
Pollutants (ALS)

Participants in Task 3 are required to propose approaches to assess if exposure to
different pollutants is a useful variable to predict time to PEG, NIV, and death
in ALS patients. This task is based on the same design as Task 1 in iDPP@CLEF
2022 and employs the same data as well. Therefore, both training and test data
are available immediately. Compared to iDPP@CLEF 2022, the dataset is com-
plemented with environmental data to investigate the impact of exposition to
pollutants on the prediction of disease progression. The task consists in ranking
subjects based on the risk of early occurrence of:

– Task3a: NIV or (competing event) death, whichever occurs first;
– Task3b: PEG or (competing event) Death, whichever occurs first;
– Task3c: Death.

Since test data were already released at the end of iDPP@CLEF 2022 it is
impossible to produce a fair leaderboard. Therefore, participants are required
to produce position papers in which they describe their approaches and findings
concerning the link between environmental factors and ALS progression.

4 Dataset

For iDPP@CLEF 2023, we provided 5 datasets, two for MS and three for ALS,
using data from three clinical institutions in Turin and Pavia, Italy, and Lisbon,
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Portugal. The datasets are fully anonymized: identifiers and pseudo-identifiers,
e.g. place of birth or city of residence, have been removed; dates are reported as
relative spans in days with respect to a Time 0, i.e., a reference moment in time
that depends on the considered disease. For MS, Time 0 denotes the first visit to
assess EDSS after the patient has received a confirmed diagnosis of MS. In the
context of ALS, Time 0 represents the date of the first ALSFRS-R questionnaire.

4.1 Task 1 and Task 2: MS Datasets

Tasks 1 and 2 share the same datasets – each MS dataset corresponds to a
specific sub-task (a and b). As training features, we provide:

– Static data, containing information on patient’s demographics, diagnostic
delay, and symptoms at the onset;

– Dynamic data (2.5 years), containing information on: relapses, EDSS scores,
evoked potentials, MRIs, and MS course.

The following data are available as ground-truth:

– The worsening occurrence, as defined in Section 3, expressed as a Boolean
variable with 0 meaning “not occurred” and 1 meaning “occurred”.

– The time-of-occurrence, expressed as relative delta with respect to Time 0

in years (also fractions).

Each of dataset contains the following groups of variables:

– static vars., representing static variables associated with a patient. The
complete list of available static variables is available at http://brainteaser.
dei.unipd.it/challenges/idpp2023/assets/other/ms/static-vars.txt.

– MS type, containing information about the MS type and the (relative) date
when the MS type has been observed.

– relapses consisting of the (relative) initial dates of relapses.
– EDSS, containing EDSS scores and the (relative) date when they were recorded.
– evoked potentials, reporting the results of evoked potential tests. The
complete list of variables for each evoked potential test is available at http://
brainteaser.dei.unipd.it/challenges/idpp2023/assets/other/ms/evoked-potentials.
txt.

– MRI, containing the data involving MRIs; e.g., the area on which MRIs
have been performed and the observed lesions. The complete list of vari-
ables about MRIs is available at http://brainteaser.dei.unipd.it/challenges/
idpp2023/assets/other/ms/mri.txt.

– outcomes, detailing the patients’ worsening occurrence, together with the
time of occurrence. More in detail, outcomes contain one record for each
patient where:
– The first column is the patient ID;
– The second column indicates if the worsening occurred (1) or not (0).
– The third column is the time of occurrence, defined as a floating point
number in the range [0,15].

Table 1 reports the number of records for each group of variables for training
and test sets for each sub-task.

http://brainteaser.dei.unipd.it/challenges/idpp2023/assets/other/ms/static-vars.txt
http://brainteaser.dei.unipd.it/challenges/idpp2023/assets/other/ms/static-vars.txt
http://brainteaser.dei.unipd.it/challenges/idpp2023/assets/other/ms/evoked-potentials.txt
http://brainteaser.dei.unipd.it/challenges/idpp2023/assets/other/ms/evoked-potentials.txt
http://brainteaser.dei.unipd.it/challenges/idpp2023/assets/other/ms/evoked-potentials.txt
http://brainteaser.dei.unipd.it/challenges/idpp2023/assets/other/ms/mri.txt
http://brainteaser.dei.unipd.it/challenges/idpp2023/assets/other/ms/mri.txt
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Table 1: Training and test datasets for MS tasks.

Training

Sub-task Patients Relapses EDSS Evoked Potentials MRIs MS courses

Sub-task a 440 480 2,660 1,210 960 310
Sub-task b 510 552 3,068 1,521 965 324

Test

Sub-task Patients Relapses EDSS Evoked Potentials MRIs MS courses

Sub-task a 110 94 674 277 236 68
Sub-task b 128 124 812 298 265 74

Creation of the datasets To obtain the iDPP@CLEF 2023 MS datasets, we
processed two datasets coming from Turin and Pavia research centres. The source
datasets contained approximately 1,800 records linked to patients, with approx-
imately 6,700 records for relapses, 28,600 records on EDSS, 6,200 on evoked
potentials, 10,300 on MRIs, and 3,700 on MS courses. To remove minor incon-
sistencies and typos present in the original data, we first processed the data
removing records that were likely wrong or did not provide enough information
for AI methods to perform predictions. We removed patients’ records without:

– onset date;
– first visit date;
– functional systems scores and corresponding EDSS scores.

Other records associated with such patients (e.g., EDSS or MRIs) have been
discarded as well. As for relapses, we removed those records where no information
about the relapse was given. We removed MRI records not reporting information
about T1 and T2 lesions. After cleaning, to generate the challenge datasets, we
restricted visits data to a 2.5 years window prior to Time 0.

Split into training and test Each of the two MS datasets underwent a di-
vision into a training set and a test set, with proportions of 80% and 20% re-
spectively. In order to ensure a well-stratified distribution of variables across
the datasets and to avoid any biases during the splitting process, the data were
randomly partitioned 100 times using 100 different random seeds. To assess the
appropriateness of the stratification, a comparison of variable distributions was
conducted for each training/test pair. Statistical tests were performed on each
variable based on its type: the Kruskal-Wallis test [18] was applied to continu-
ous variables, while the Chi-squared test [22] was employed for categorical and
ordinal variables. A variable was considered well-stratified depending on the test
result. For each split, the percentage of well-stratified variables was calculated
using Eq. 1.

percwell−stratified =
number of positive tests

total number of variables
∗ 100 (1)
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To identify the split that achieved the best stratification between those that
achieved the highest percentage, equal to 97%, a visual inspection was then con-
ducted. Density plots were used for continuous variables, bar plots for categorical
and ordinal variables, and Kaplan-Meier curves [20] for the outcome time in the
survival setting. A careful examination of the outcome occurrence and time was
performed to ensure that the models’ performance would not be influenced by
the data splitting. Furthermore, special attention was given to sparsely observed
levels in categorical variables. The splitting process allowed for the possibility
that a rare level might only appear in the training set, but not vice versa.Table
2 and 3 report the comparison of the variables’ distributions in the training and
test sets for sub-task a13. Since the distributions are similar, we concluded that
the training/test split provided to the participants met best-practice quality
standards.

4.2 Task 3: ALS Dataset

The datasets used for Task 3 in iDPP@CLEF 2023 have the same structure
and most of the records as the one used in iDPP@CLEF 2022. There are three
datasets concerning patients affected by ALS, Dataset ALSa, Dataset ALSb,
and Dataset ALSc. Each dataset concerns a specific type of event that might
to patients affected by ALS. Datasets ALSa and ALSb regard respectively the
moment in which a patient undergoes NIV or PEG. While dataset ALSc con-
cerns the death of the patient. For a detailed description of the data, cleaning
procedures, and additional statistics, please refer to [7, 8].

iDPP@CLEF 2023 dataset extends the previous version by providing partic-
ipants with environmental data. Furthermore, due to its release at the end of
iDPP@CLEF 2022, the ground truth is available to the challenge participants
since the beginning of the challenge.

Updates over iDPP@CLEF 2022 In the 2023 version of the dataset, a small
subset of patients (less than 50) has been removed from the dataset used for
iDPP@CLEF 2022. Indeed, such patients were characterized by the absence of
relevant events (i.e., NIV, PEG or death), but did not receive further ALSFRS-R
assessments after the first. Therefore, such patients were annotated with the cen-
soring event happening at time 0 making it impossible to provide a sensible pre-
diction. Such patients were removed from the 2023 version of the iDPP@CLEF
ALS dataset. Table 4 reports the number of removed patients compared to the
original iDPP@CLEF ALS dataset. Notice that, by construction, all the removed
patients were labelled with event NONE. Spyrometries and ALSFRS-R question-
naires associated with dropped patients have been removed as well.

13 A more complete and detailed comparison, including the information for the other
sub-task, is shown in the extended overview [6].
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Table 2: Sub-task a, comparison between training and test populations. Continu-
ous variables are presented as mean (sd); categorical variables as count (percent-
age on available data), for each level. Demographic and onset-related features.

Variable Level Levels train Levels test

static vars.

sex
Female
Male

305 (69.32%)
135 (30.68%)

76 (69.09%)
34 (30.91%)

residence classification

Cities
Rural Area
Towns
NA

120 (27.27%)
100 (22.73%)
208 (47.27%)

12 (2.73%)

32 (29.09%)
18 (16.36%)
54 (49.09%)

6 (5.45%)

ethnicity

Caucasian
Hispanic
Black African
NA

424 (96.36%)
-
-

16 (3.64%)

99 (90.00%)
4 (3.64%)
2 (1.82%)
5(4.55%)

ms in pediatric age
FALSE
TRUE

410 (93.18%)
30 ( 6.82%)

103 (93.64%)
7 ( 6.36%)

age at onset mean (sd) 31 (9.427) 30 (8.775)

diagnostic delay
mean (sd)
NA

1029 (1727.8)
12 (2.73%)

967 (1447.6)
1 (0.91%)

spinal cord symptom
FALSE
TRUE

348 (79.09%)
92 (20.91%)

83 (75.45%)
27 (24.55%)

brainstem symptom
FALSE
TRUE

305 (69.32%)
135 (30.68%)

79 (71.82%)
31 (28.18%)

eye symptom
FALSE
TRUE

318 (72.27%)
122 (27.73%)

82 (74.55%)
28 (25.45%)

supratentorial symptom
FALSE
TRUE

301 (68.41%)
139 (31.59%)

74 (67.27%)
36 (32.73%)

other symptoms

False
RM+
Sensory
Epilepsy

431 (97.95%)
3 ( 0.68%)
4 ( 0.91%)
2 ( 0.45%)

107 (97.27%)
2 ( 1.82%)
1 ( 0.91%)

0 (—)
time since onset mean (sd) 2524 (2448.3) 2446 (2235.9)

MS type
multiple sclerosis type

CIS
RR

99 (32.04%)
210 (67.96%)

18 (26.87%)
49 (73.13%)

delta observation time0 mean (sd) -718 (210.2) -715 (237.6)
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Table 3: Table 2 contd. Dynamical assessments and outcome features.

Variable Level Levels train Levels test

edss
edss as evaluated by clinician

mean (sd)
NA

2 (0.716)
37 (1.39%)

2 (0.655)
3 (0.45%)

delta edss time0 mean (sd) -499 (251.6) -499 (254.4)

evoked
potentials

altered potential

Auditory
Motor
Somatosensory
Visual

280 (23.14%)
101 (8.35%)

482 (39.83%)
347 (28.68%)

58 (20.94%)
19 (6.86%)

111 (40.07%)
89 (32.13%)

potential value mean (sd) 0 (0.401) 0 (0.415)

location

left
lower left
lower right
right
upper left
upper right

311 (25.70%)
126 (10.41%)
136 (11.24%)
316 (26.12%)
156 (12.89%)
165 (13.64%)

73 (26.35%)
29 (10.47%)
31 (11.19%)
74 (26.71%)
34 (12.27%)
36 (13.00%)

delta evoked potential time0 mean (sd) -712 (206.3) -731 (213.3)

relapses delta relapse time0 mean (sd) -561 (286.1) -551 (286.5)

magnetic
resonance
image

mri area label

Brain Stem
Cervical Spinal Cord
Spinal Cord
Thoracic Spinal Cord

681 (71.01%)
62 ( 6.47%)

201 (20.96%)
15 ( 1.56%)

164 (69.79%)
25 (10.64%)
36 (15.32%)
10 ( 4.26%)

lesions T1
FALSE
TRUE
NA

175 (18.25%)
149 (15.54%)
635 (66.21%)

45 (19.15%)
29 (12.34%)

161 (68.51%)

lesions T1 gadolinium
FALSE
TRUE
NA

575 (59.96%)
247 (25.76%)
137 (14.29%)

145 (61.70%)
51 (21.70%)
39 (16.1%)

number of lesions T1 gadolinium
mean (sd)
NA

0 (1.0)
187 (19.5%)

0 (1.0)
48 (20.43%)

new or enlarged lesions T2
FALSE
TRUE
NA

377 (39.31%)
240 (25.03%)
342 (35.66%)

107 (45.53%)
52 (22.13%)
76 (32.34%)

number of new or enlarged lesions T2
mean (sd)
NA

1 (1.486)
349 (36.39%)

1 (1.401)
76 (32.34%)

lesions T2
FALSE
TRUE
NA

55 (5.74%)
275 (28.68%)
629 (65.59%)

10 (4.26%)
62 (26.38%)

163 (69.36%)

number of total lesions T2

0 55 (7.74%) 10 (4.26%)
1-2 66 (6.88%) 14 (5.96%)
>=3 70 (7.30%) 14 (5.96%)
>=9 139 (14.49%) 24 (14.47%)
NA 629 (65.59%) 163 (69.36%)

delta mri time0 mean (sd) -512 (282.0) -534 (275.5)

outcomes
outcome occurred

0
1

367 (83.41%)
73 (16.59%)

93 (84.55%)
17 (15.45%)

outcome time mean (sd) 5 (4.4) 5 (4.1)
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Table 4: Patients removed from the iDPP@CLEF ALS dataset 2023 due to
having an unrealistic censoring event time. Between parentheses the original
number of patients available in the dataset.

Train Test Total

Dataset ALSa 22 (orig. 1454) 4 (orig. 350) 26 (orig. 1806)
Dataset ALSb 36 (orig. 1715) 8 (orig. 430) 44 (orig. 2145)
Dataset ALSc 40 (orig. 1756) 8 (orig. 494) 48 (orig. 2250)

Environmental Data One of the primary objectives of iDPP@CLEF 2023 is
to promote research on the influence of environmental factors on the progres-
sion of ALS disease. Task 3, which specifically focuses on this aspect, requires
participants to submit position papers investigating the impact of exposure to
pollutants.

To address this objective, the iDPP@CLEF 2022 datasets have been ex-
panded to include information about patients’ exposure to environmental agents.
This includes various environmental factors such as daily mean, minimum, and
maximum temperatures, daily precipitation, daily averaged sea level pressure
and relative humidity, daily mean wind speed, and daily mean global radiation.
Additionally, the iDPP@CLEF 2023 ALS datasets also provide information on
the concentration of seven pollutants: PM10, PM25, O3, C6H6, CO, SO2, and
NO2. For each environmental parameter, both the raw observations collected
each day and the calibrated version of the observations, following best prac-
tices [10, 23], are made available.

It is important to note that not all patients have the same amount of environ-
mental information due to varying diagnosis times and data availability. Several
patients could not be associated with environmental data, as their disease pro-
gression occurred before public environmental data repositories were established.
Approximately 20% of the iDPP@CLEF 2023 ALS datasets, corresponding to
434 to 574 patients, are linked to environmental data.

Considering that the impact of environmental factors may occur well before
the diagnosis, we include the maximum amount of available information before
Time 0 for all patients with historical records. Depending on the patient, this
corresponds to a maximum of 4 to 6 years of data. However, no more than 6
months of data after Time 0 are considered. If a patient has more than 180 days
of information after the first ALSFRS-R assessment, the subsequent days are
excluded from the released dataset.

Figure 1 reports the number of patients associated with environmental data
as well as the number of records of environmental observations available. It is
possible to observe that on average, on the training set, there are 732, 799 and 856
days of observations in the case of Datasets ALSa ALSb, and ALSc respectively.
Patients within the test set contain slightly lower numbers of records.

Figure 2 shows the proportion of patients (among those with environmental
data) having observations for a given day in (their) history. For example, it is
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(c) Dataset ALSc

Dataset ALSa Dataset ALSb Dataset ALSc
Train Test Train Test Train Test

n. patients 356 78 444 109 447 127
n. obs. (q3) 318 272 315 352 318 349
n. obs. (median) 588 493 640 547 641 547
n. obs. (q1) 911 655 1017 934 1050 903
n. obs. (mean) 732 550 799 733 856 716

(d) Number of patients with at least one
environmental observation and statistics on
the number of observations per patient.

Fig. 1: Statistics on environmental observations available. The star in the box-
plots indicates the mean.
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Fig. 2: Proportion of patients having environmental observations on a given day
in (their relative) time.
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possible to observe that roughly 80% of the patients have a record of their Time
0, this number grows to approximately 95% if we consider the Time 180, the last
day for which we release information. Going back in time, we observe that, for
roughly 40% of the patients, we have at least 2 years (Time -730) of information
before their Time 0.

5 Lab Setup and Participation

In the remainder of this section, we detail the guidelines the participants had to
comply with to submit their runs and the submissions received by iDPP@CLEF.
In the remainder, we describe the guidelines provided to participating teams.

5.1 Guidelines

– The runs should be submitted in the textual format described below;
– Each group can submit a maximum of 10 runs for each subtask, thus amount-

ing to maximum 20 runs for each of Task 1 and Task 2 and 30 runs for Task
3.

Task 1 Run Format

Runs should be submitted as a text file (.txt) with the following format:

100619256189067386770484450960632124211 0.897 upd_T1a_survRF

101600333961427115125266345521826407539 0.773 upd_T1a_survRF

102874795308599532461878597137083911508 0.773 upd_T1a_survRF

123988288044597922158182615705447150224 0.615 upd_T1a_survRF

100381996772220382021070974955176218231 0.317 upd_T1a_survRF

...

where:

– Columns are separated by a white space;
– The first column is the patient ID, an hashed version of the original patient

ID (should be considered just as a string);
– The second column is the risk score. It is expected to be a floating point

number in the range [0, 1];
– The third column is the run identifier, according to the format described

below. It must uniquely identify the participating team and the submitted
run.

It is important to include all the columns and have a white space delimiter
between the columns. No specific ordering is expected among patients (rows) in
the submission file.
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Task 2 Run Format

Runs should be submitted as a text file (.txt) with the following format:

10061925618906... 0.221 0.437 0.515 0.817 0.916 upd_T2b_survRF

10160033396142... 0.213 0.617 0.713 0.799 0.822 upd_T2b_survRF

10287479530859... 0.205 0.312 0.418 0.781 0.856 upd_T2b_survRF

12398828804459... 0.197 0.517 0.617 0.921 0.978 upd_T2b_survRF

10038199677222... 0.184 0.197 0.315 0.763 0.901 upd_T2b_survRF

...

where:

– Columns are separated by a white space;
– The first column is the patient ID, a hashed version of the original patient

ID (should be considered just as a string);
– The second column is the cumulative probability of worsening between years

0 and 2. It is expected to be a floating point number in the range [0, 1].
– The third column is the cumulative probability of worsening between years

0 and 4. It is expected to be a floating point number in the range [0, 1].
– The fourth column is the cumulative probability of worsening between years

0 and 6. It is expected to be a floating point number in the range [0, 1].
– The fifth column is the cumulative probability of worsening between years 0

and 8. It is expected to be a floating point number in the range [0, 1].
– The sixth column is the cumulative probability of worsening between years

0 and 10. It is expected to be a floating point number in the range [0, 1].
– The seventh column is the run identifier, according to the format described

below. It must uniquely identify the participating team and the submitted
run.

It is important to include all the columns and have a white space delimiter
between the columns. No specific ordering is expected among patients (rows) in
the submission file.

Task 3 Run Format

Runs should be submitted as a text file (.txt) with the following format:

0x4bed50627d141453da7499a7f6ae84ab 0.897 upd_T3a_EW6_survRF

0x4d0e8370abe97d0fdedbded6787ebcfc 0.773 upd_T3a_EW6_survRF

0x5bbf2927feefd8617b58b5005f75fc0d 0.773 upd_T3a_EW6_survRF

0x814ec836b32264453c04bb989f7825d4 0.615 upd_T3a_EW6_survRF

0x71dabb094f55fab5fc719e348dffc85x 0.317 upd_T3a_EW6_survRF

...

where:

– Columns are separated by a white space;
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– The first column is the patient ID, a 128 bit hex number (should be con-
sidered just as a string);

– The second column is the risk score. It is expected to be a floating point
number in the range [0, 1];

– The third column is the run identifier, according to the format described
below. It must uniquely identify the participating team and the submitted
run.

It is important to include all the columns and have a white space delimiter
between the columns. No specific ordering is expected among patients (rows) in
the submission file. Since different time windows may be considered, participants
are allowed to submit predictions for a variable number of patients. We encourage
participants to submit predictions for as many patients as possible. To avoid
favoring runs that consider only a few patients, submitted runs will be evaluated
based on their correctness as well as the number of patients included. The number
of patients included is also reported in the output of the evaluation scripts.

Submission Upload

Runs should be uploaded in the repository provided by the organizers. Following
the repository structure discussed above, for example, a run submitted for the
first task should be included in submission/task1.

Runs should be uploaded using the following name convention for their iden-
tifiers:

<teamname>_T<1|2|3><a|b|c>_[type_]<freefield>

where:

– teamname is the name of the participating team;
– T<1|2><a|b|c> is the identifier of the task the run is submitted to, e.g. T1b

for Task 1, subtask b;
• type describes the type of run only in the case of Task 3 (it can be
omitted for Task 1 and 2). It should be one among:

• base for a baseline run;
• EW6 when using environmental data in a time window of 6 months before
and after Time 0;

• EWP when using environmental data in a time windows chosen by the
participant; in this case it is suggested to use freefield to provide
information about the adopted time window;

– freefield is a free field that participants can use as they prefer to further
distinguish among their runs. Please, keep it short and informative.

For example, a complete run identifier may look like:

upd_T3a_EW6_survRF

where:
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– upd is the University of Padua team;
– T3a means that the run is submitted for Task 3, subtask a;
– EW6 means that environmental data in a time window of 6 months before

and after Time 0 have been used;
– survRF suggests that participants have used survival random forests as a

prediction method.

The name of the text file containing the run must be the identifier of the run
followed by the .txt extension. In the above example:

upd_T3a_EW6_survRF.txt

Run Scores

Performance scores for the submitted runs will be returned by the organizers in
the score folder, which follows the same structure as the submission folder.

For each submitted run, participants will find a file named

<teamname>_T<1|2|3><a|b|c>_[type_]<freefield>.score.txt

where <teamname> T<1|2|3><a|b|c> [type ]<freefield> matches the corre-
sponding run. The file will contain performance scores for each of the evaluation
measures described below. In the above example:

upd_T3a_EW6_survRF.score.txt

5.2 Participants

Overall, 45 teams registered for participating in iDPP@CLEF but only 10 of
them actually managed to submit runs for at least one of the offered tasks.
Table 5 reports the details about the participating teams.

Table 6 provides breakdown of the number of runs submitted by each par-
ticipant for each task and sub-task. Overall, we have received 163 runs with a
prevalence of submissions for Task 1 (76 runs), followed by Task 2 (48 runs),
and lastly, Task 3 (49 runs).

6 Evaluation Measures

iDPP@CLEF adopted several state-of-the-art evaluation measures to assess the
performance of the prediction algorithms, among which:

– Area Under the ROC Curve (AUC) [11] to show the trade-off between clinical
sensitivity and specificity for every possible cut-off of the risk scores;

– Harrel’s Concordance Index (C-index) [13] to summarize how well a pre-
dicted risk score describes an observed sequence of events.

– O/E ratio to assess whether or not the observed event rates match expected
event rates in subgroups of the model population.

To ease the computation and reproducibility of the results, scripts for com-
puting the measures are available in the following repository: https://bitbucket.
org/brainteaser-health/idpp2023-performance-computation.

https://bitbucket.org/brainteaser-health/idpp2023-performance-computation
https://bitbucket.org/brainteaser-health/idpp2023-performance-computation
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Table 5: Teams participating in iDPP@CLEF 2023.
Team Name Description Country Repository Paper

CompBioMed Department of Medical
Sciences, University of
Turin

Italy https://bitbucket.org/
brainteaser-health/
idpp2023-compbiomed

Rossi et al. [21]

FCOOL Faculty of Sciences of
the University of Lis-
bon

Portugal https://bitbucket.org/
brainteaser-health/
idpp2023-fcool

Branco et al. [2,
3]

HULAT-UC3M Polytechnic School
Universidad Carlos III
de Madrid

Spain https://bitbucket.org/
brainteaser-health/
idpp2023-hulat-u3m

Ramos et al. [19]

NeuroTN Independent Re-
searcher, Sfax

Tunisia https://bitbucket.org/
brainteaser-health/
idpp2023-neurotn

Karray [14]

Onto-Med Ontomed Bulgaria https://bitbucket.org/
brainteaser-health/
idpp2023-onto-med

Asamov et al. [1]

SBB University of Padua Italy https://bitbucket.org/
brainteaser-health/
idpp2023-sbb

Guazzo et al. [9]

Stefagroup University of Pavia,
BMI lab “Mario Ste-
fanelli”

Italy https://bitbucket.org/
brainteaser-health/
idpp2023-stefagroup

Buonocore et al.
[4]

SisInfLab AIBio Polytechnic University
of Bari

Italy https://bitbucket.org/
brainteaser-health/
idpp2023-sisinfo-aibio

Lombardi et al.
[17]

UHU-ETSI-1 Universidad de Huelva Spain https://bitbucket.org/
brainteaser-health/
idpp2023-uhu-etsi

Not Submitted

UWB University of West Bo-
hemia

Czech Republic https://bitbucket.org/
brainteaser-health/
idpp2023-uwb

Hanzl and Picek
[12]

6.1 Task 1: Measures to evaluate the Prediction of the Risk of
Disease Worsening (MS)

For Task 1, the effectiveness of the submitted runs is evaluated using Harrell’s
Concordance Index (C-index) [13]. This score quantifies the model’s ability in
ranking pairs of observations based on their predicted outcomes. A C-index value
of 1 indicates perfect concordance, meaning the model can accurately distinguish
between higher and lower-risk individuals. Conversely, a value of 0.5 suggests
random guessing, while values below 0.5 indicate a counter-correlation.

6.2 Task 2:Measures to evaluate the Prediction of the Cumulative
Probability of Worsening (MS)

The effectiveness of the submitted runs is evaluated with the following measures:

– Area Under the ROC curve (AUROC) at each of the time intervals (0-2, 0-4,
0-6, 0-8, 0-10 years);

– O/E Ratio: the ratio of observed to expected events at each of the time
intervals (0-2, 0-4, 0-6, 0-8, 0-10 years).

https://bitbucket.org/brainteaser-health/idpp2023-compbiomed
https://bitbucket.org/brainteaser-health/idpp2023-compbiomed
https://bitbucket.org/brainteaser-health/idpp2023-compbiomed
https://bitbucket.org/brainteaser-health/idpp2023-fcool
https://bitbucket.org/brainteaser-health/idpp2023-fcool
https://bitbucket.org/brainteaser-health/idpp2023-fcool
https://bitbucket.org/brainteaser-health/idpp2023-hulat-u3m
https://bitbucket.org/brainteaser-health/idpp2023-hulat-u3m
https://bitbucket.org/brainteaser-health/idpp2023-hulat-u3m
https://bitbucket.org/brainteaser-health/idpp2023-neurotn
https://bitbucket.org/brainteaser-health/idpp2023-neurotn
https://bitbucket.org/brainteaser-health/idpp2023-neurotn
https://bitbucket.org/brainteaser-health/idpp2023-onto-med
https://bitbucket.org/brainteaser-health/idpp2023-onto-med
https://bitbucket.org/brainteaser-health/idpp2023-onto-med
https://bitbucket.org/brainteaser-health/idpp2023-sbb
https://bitbucket.org/brainteaser-health/idpp2023-sbb
https://bitbucket.org/brainteaser-health/idpp2023-sbb
https://bitbucket.org/brainteaser-health/idpp2023-stefagroup
https://bitbucket.org/brainteaser-health/idpp2023-stefagroup
https://bitbucket.org/brainteaser-health/idpp2023-stefagroup
https://bitbucket.org/brainteaser-health/idpp2023-sisinfo-aibio
https://bitbucket.org/brainteaser-health/idpp2023-sisinfo-aibio
https://bitbucket.org/brainteaser-health/idpp2023-sisinfo-aibio
https://bitbucket.org/brainteaser-health/idpp2023-uhu-etsi
https://bitbucket.org/brainteaser-health/idpp2023-uhu-etsi
https://bitbucket.org/brainteaser-health/idpp2023-uhu-etsi
https://bitbucket.org/brainteaser-health/idpp2023-uwb
https://bitbucket.org/brainteaser-health/idpp2023-uwb
https://bitbucket.org/brainteaser-health/idpp2023-uwb
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Table 6: Break-down of the runs submitted by participants for each task and
sub-task. Participation in Task 3 does not involve submission of runs and it is
marked just with a tick.

Team
Task 1 Task 2 Task 3

Total
a b a b a b c

CompBioMed 3 3 3 2 — — — 11
FCOOL 5 5 — — 9 9 9 37

HULAT-UC3M 2 1 2 1 — — — 6
NeuroTN — — — — 4 4 4 12
Onto-Med 5 4 5 4 — — — 18

SBB 3 3 3 3 — — — 12
SisInfLab AIBio 5 4 5 4 — — — 18

Stefagroup 2 — — — — — — 2
UHU-ETSI-1 6 7 3 3 — — — 19

UWB 9 9 5 5 — — — 28

Total 40 36 26 22 13 13 13 163

The Receiver Operating Characteristic (ROC) curve is a graphical representation
of the model’s true positive rate (sensitivity) against the false positive rate (1 -
specificity) at different classification thresholds. The AUROC ranges from 0 to
1, where a value of 1 indicates a perfect model that can accurately distinguish
between individuals who will experience worsening and those who will not. An
AUROC value of 0.5 suggests a model that performs no better than random
chance. Therefore, a higher AUROC reflects a better ability of the model to
discriminate between different outcomes.

The O/E (Observed-to-Expected) ratio provides a measure of calibration for
the model’s predictions. It compares the actual number of observed worsening
events to the number of events expected based on the model’s predictions. Ideally,
the O/E ratio should be close to 1, indicating good calibration and alignment
between predicted and observed outcomes. A ratio significantly above 1 suggests
an overestimation of the number of worsening events, while a ratio below 1
indicates an underestimation. Monitoring the O/E ratio at each time interval
allows for assessing the model’s calibration performance over time.

To compute the AUROC and O/E Ratio, we applied censoring to the ground
truth values using the following schema. Let A, B, C, and D be four subjects,
where:

– A experienced the outcome at tA;
– B was censored at tA;
– C experienced the outcome at t3;
– D was censored at t3.

The scenario is represented in Figure 3.
Table 7 reports the outcome occurrence label and outcome time for each

possible scenario of censoring time, which we refer to as t1, t2, and t3. When t1



Intelligent Disease Progression Prediction: Overview of iDPP@CLEF 2023 19

A

B

C

D

t1 tA t2 t3

Event Censored

Fig. 3: The set of possible outcomes and censoring time scenarios.

Table 7: Outcome time/occurrence annotation for the example in Figure 3. ∗

indicates that being the outcome of the subject at censoring time ti unknown,
the subject can not be considered for evaluation at censoring time ti.

t1 t2 t3

A
outcome time t1 tA tA

outcome occurred 0 1 1

B
outcome time t1 NA NA

outcome occurred 0 NA∗ NA∗

C
outcome time t1 t2 t3

outcome occurred 0 0 1

D
outcome time t1 t2 t3

outcome occurred 0 0 0

is considered as censoring time, all four example subjects have yet to experience
the event or be censored, as a result, their outcome occurrence label at this
time is set to 0 as shown in the first column of Table 7. When t2 is considered
to perform censoring (second column of Table 7), instead, only subjects C and
D have yet to experience either the even or the censoring, and their outcome
label is then set to 0. In this scenario, subject A had the event before t2 and
its outcome label is then set to 1. Subject B was censored before t2 and, as
its outcome at this time is unknown, it must be excluded from performance
evaluation. Finally, when t3 is considered to perform censoring (third column of
Table 7), outcome labels of subjects A and B are equal to those considered for
t2 since their situation at this time is unchanged compared to the previous one.
However, subject C experienced the vent at t3 and now its outcome label must
be set to 1 and subject D was censored at t3 and its outcome label is then set
to 0.

6.3 Task 3: Measures to evaluate the Impact of Exposition to
Pollutants (ALS)

The effectiveness of the submitted runs is evaluated with the following measures:
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– AUROC: the area under the receiver operating characteristic curve at each
of the time intervals (6, 12, 18, 24, 30, 36 months);

– C-index.

7 Results

For each task, we report the analysis of the performance of the runs submitted
by the Lab’s participants according to the measures described in Section 6.

7.1 Task 1: Predicting Risk of Disease Worsening (Multiple
Sclerosis)

Figure 4 shows the C-index with its 95% confidence intervals computed for all
runs submitted for Task 1 sub-task a and for the random classifier (last row)14.
Discrimination performance varies across the different submitted runs ranging
from 0.4 to above 0.8. Runs submitted by the UWB team [12] lead the pack (C-
index > 0.8), followed by CompBioMed (CBMUnitTO) [21], and FCOOL [3].
The best-performing approach for UWB and FCOOL and SisInfLab AIBio [17]
are Survival Random Forests. CompBioMed [21], HULAT [19], and SBB [9]
achieve the best performance with Cox regression and CoxNets.

7.2 Task 2: Predicting Cumulative Probability of Worsening
(Multiple Sclerosis)

Table 8 presents the AUROC and the O/E ratios, with their 95% confidence
intervals computed for all runs submitted for task 2 sub-task a. To avoid clutter-
ing, we report the performance obtained for the two-year time window; complete
results for subtask a and the results for sub-task b, are shown in the extended
overview [6]. As highlighted in Table 8, the approach obtaining the best result in
terms of AUCROC corresponds to the run uwb T2a survRFmri, while the best
results for O/E ratio are shown by uwb T2a survGB minVal. In general, survival
Gradient Boosting approaches proposed by UWB achieve good performance in
AUROC, with a good O/E as well.

7.3 Task 3: Position Papers on Impact of Exposition to Pollutants
(Amyotrophic Lateral Sclerosis)

Figure 5 shows the C-index and 95% confidence intervals achieved on Task 1
sub-task a15 by the submitted runs and for the random classifier (last row). As
observed by Karray [14] and Branco et al. [2] runs including environmental data
(runs tagged with EWP and EW6) tend to perform worse than their counterpart
that does not rely on the environmental data. The best-performing approach is
provided by the NeuroTN team [14] and corresponds to the classifier ensemble
(see subsection 7.4).

14 Results for sub-task b are available on the extended overview [6].
15 Results for sub-tasks b and c are available on the extended overview [6].
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Table 8: AUROC and OE ratio for all the submitted runs for task 2 subtask
a, with a two-year time window. We report the measure as well as the 95%
confidence interval.

identifier AUROC O/E ratio

CBMUniTO T2a coxnet 0.890 (0.739, 1.000) 0.443 (-0.018, 0.904)
CBMUniTO T2a cwgbsa 0.841 (0.618, 1.000) 0.467 (-0.007, 0.940)
CBMUniTO T2a evilcox 0.854 (0.655, 1.000) 0.449 (-0.015, 0.913)

HULATUC3M T2a survcoxnet 0.864 (0.770, 0.958) 0.437 (-0.021, 0.895)
HULATUC3M T2a survRF 0.840 (0.710, 0.969) 0.451 (-0.014, 0.917)

onto-med T2a 0.01.1.0e-5.10000.100.adj 0.731 (0.482, 0.980) 0.133 (-0.120, 0.386)
onto-med T2a 0.2.1.0e-5.10000.100 0.696 (0.440, 0.951) 0.269 (-0.090, 0.628)
onto-med T2a 0.2.1.0e-5.10000.200 0.716 (0.446, 0.987) 0.234 (-0.101, 0.570)
onto-med T2a 0.2.1.0e-5.5000.100 0.647 (0.399, 0.896) 0.380 (-0.047, 0.807)
onto-med T2a 0.2.1.0e-5.5000.200 0.590 (0.337, 0.842) 0.358 (-0.057, 0.772)

sbb T2a Cox 0.708 (0.491, 0.926) 0.389 (-0.043, 0.821)
sbb T2a RSF 0.604 (0.386, 0.822) 0.385 (-0.045, 0.815)
sbb T2a SSVM 0.624 (0.461, 0.787) 0.358 (-0.057, 0.772)

sisinflab-aibio T2a GB1 0.677 (0.462, 0.893) 0.000 (0.000, 0.000)
sisinflab-aibio T2a GB2 0.782 (0.618, 0.945) 0.000 (0.000, 0.000)
sisinflab-aibio T2a GB3 0.481 (0.259, 0.703) 0.000 (-0.002, 0.002)
sisinflab-aibio T2a RF1 0.754 (0.537, 0.970) 0.017 (-0.073, 0.107)
sisinflab-aibio T2a RF2 0.569 (0.347, 0.791) 0.010 (-0.060, 0.081)

uhu-etsi-1 T2a 03 0.769 (0.621, 0.916) 0.678 (0.107, 1.248)
uhu-etsi-1 T2a 04 0.812 (0.690, 0.933) 0.713 (0.128, 1.298)
uhu-etsi-1 T2a 05 0.774 (0.636, 0.912) 0.697 (0.119, 1.276)

uwb T2a CGBSA 0.862 (0.731, 0.993) 3.106 (1.885, 4.327)
uwb T2a survGB 0.877 (0.745, 1.000) 0.919 (0.255, 1.583)
uwb T2a survGB minVal 0.894 (0.787, 1.000) 0.946 (0.272, 1.620)
uwb T2a survRF 0.914 (0.784, 1.000) 1.811 (0.879, 2.744)
uwb T2a survRFmri 0.924 (0.800, 1.000) 1.889 (0.937, 2.842)
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uwb_T1a_survRFmri
uwb_T1a_AvgEnsemble
uwb_T1a_AvgEnsemble_minVal
uwb_T1a_survRF
uwb_T1a_survGB_minVal
CBMUniTO_T1a_coxnet
fcool_T1a_RandomSurvivalForest
fcool_T1a_FastKernelSurvivalSVM
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Fig. 4: C-index (with 95% confidence interval) achieved by runs submitted to
Task 1a.

7.4 Approaches

In this section, we provide a short summary of the approaches adopted by partic-
ipants in iDPP@CLEF. There are two separate sub-sections, one for Task 1 and
2 – focused on MS worsening prediction – and one for Task 3 – which concerns
the impact of exposition to pollutants on the ALS progression.

Tasks 1 and 2 CompBioMed [21] experiments with CoxNet, Component-wise
Gradient Boosting Survival Analysis (CWGBSA), and a hybrid method where
the most important features selected by CWGBSA are used to build a CoxNet
model (EvilCox). They also test non-linear methods such as Random Survival
Forest and Gradient Boosting Survival Analysis, observing a tendency to over-
fit the training data. To assess the importance of the features, Rossi et al. [21]
perform Permutation-based Feature Importance Analysis. In general, they ob-
serve that Coxnet is the best-performing approach for all tasks and subtasks.
Nevertheless, they also observed that CWGBSA is resistant to over-fitting and
aggressive in eliminating features. CWGBSA cross-validated performance is al-
most on par with that of CoxNet, despite using a smaller set of features.

FCOOL [3] explores several survival prediction methods to rank MS patients
according to the risk of worsening. The considered methods are Random Survival
Forest, Gradient Boosting, Fast Survival SVM, Fast Kernel Survival SVM, and
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Fig. 5: C-index (with 95% confidence interval) achieved by runs submitted to
Task 3a.

the Cox Proportional-Hazards model. A data preprocessing phase is conducted
prior to training to manage the temporal nature of patient data by choosing
relevant features and by computing additional ones – which capture the temporal
progression of the disease. Overall, Random Survival Forest performs best on
subtask 1a, whereas Fast Kernel Survival SVM on subtask 1b. Subtask 1b was
found to be more complex because of the different definition of the worsening
event.

HULAT [19] investigates the effectiveness of Random Survival Forest and Cox
regression with Elastic Net regularization (CoxNet) methods on MS worsening
prediction. As well as other groups, Ramos et al. [19] perform a data preprocess-
ing phase involving data cleaning, format transformation, normalization, and
outliers removal. In particular, the preprocessing step removes all the dynamic
features containing a high number of missing values.

Onto-Med [1] develop a Maximum Likelihood Estimation approach to predict
MS progression. The proposed method relies on patients’ covariates and employs
a multi-layer perceptron to approximate the optimal distribution parameters.
To handle both tasks, Asamov et al. [1] used the whole training data to build
a model and estimate a maximum likelihood distribution for each patient given
their features. The method uses a cumulative probability estimate instead of
coherent risk measures to accommodate the requirements of bot tasks.

SBB [9] develops different machine-learning approaches to predict a worsen-
ing in patient disability caused by MS. Specifically, they consider the following
well-known survival analysis approaches: Cox model, random survival forests,
and survival support machine. They conclude that these approaches achieve
modest performance and that employing non-linear methods does not lead to a
discernible advantage with respect to the gold standard Cox model. Nonethe-
less, they observe that improving data pre-processing may be a key operation
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to perform in order to obtain more relevant input features and augment model
discrimination with the aim of obtaining satisfactory results.

Stefagroup [4] explores two post-hoc model-agnostic XAI methods, namely
SHAP and AraucanaXAI, to provide insights about the most predictive factors
of worsening in MS patients. Buonocore et al. [4] evaluate the proposed XAI
approaches using commonly adopted measures in XAI for healthcare such as
identity, fidelity, separability and time. By leveraging SHAP and AraucanaXAI,
the authors gained a deeper understanding of the shortcomings and limitations
of their classifiers through feature importance and navigable decision trees.

SisInfLab AIBio [17] uses Random Survival Forests, an extension of random
forests specifically designed for survival analysis, and Boosting Machines for
time-to-event analysis. To assess the importance of features for both ML mod-
els, the permutation feature importance is computed as well. Lombardi et al.
[17] observe that, if the definition of worsening is more complex and condition-
dependent (tasks 1b and 2b) significantly lower their approach performs worse
than with a simpler definition of worsening (tasks 1a and 2a).

UWB [12] evaluates various ML methods – such as Random Forest and Gra-
dient Boosting – for survival analysis, as well as a Deep Learning survival analysis
method based on the Transformer architecture: SurfTRACE. Among the differ-
ent methods, the authors report top performance with Random Forest. Hanzl
and Picek [12] observe that three aspects are instrumental to achieving good
performance: (i) data preprocessing, (ii) hyper-parameter tuning, and (iii) vali-
dation.

Task 3 FCOOL [2] investigates four models to assess the importance of en-
vironmental data in predicting the risk of early occurrence of NIV, PEG or
death: Cox Proportional-Hazards, Random Survival Forest, Survival SVM, and
Gradient Boosting. Without the introduction of environmental data, the mod-
els perform reasonably well. Nevertheless, Branco et al. [2] observe an evident
degradation in performance when providing the model with environmental and
clinical data in all three tasks. For task A, they observe an even larger degrada-
tion when unconstrained amounts of environmental data are provided, compared
to what was observed with only 6 months of data. This pattern does not hold
for Tasks B and C, where the amount of data does not harm the results, which
are, in any case, lower than what was observed without environmental data.

NeuroTN [14] Proposes an approach to stratify patients relying on the dis-
ease progression patterns according to features extracted from applying staging
systems on visits data. Clusters of patients are then profiled to determine their
common characteristics: clinical, demographic and environmental. A second clus-
tering procedure is carried on to detect clusters of patients with similar exposure
concentrations to 3 different air pollutants. Then, Karray [14] performs risk pre-
diction on each cluster separately and combines the predictions. In particular
Karray [14] relies on two ensembles of classifiers trained on a different data
representation (data with Environmental Features and data without Environ-
mental Features). Furthermore, they explored also Survival Random Forests. As
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for Branco et al. [2], the introduction of environmental features does not seem
to benefit both models and causes performance deterioration.

8 Conclusions and Future Work

The second iteration of iDPP@CLEF focuses on predicting the temporal pro-
gression of MS and ALS. In particular, iDPP@CLEF 2023 comprises three tasks.
The first two tasks concern MS and participants were provided clinical data and
had the objective of predicting the risk of worsening. The third task centres
around ALS and builds upon the foundation laid by iDPP@CLEF 2022. This
task follows a similar design, involving the prediction of NIV, PEG, or death,
but with the addition of environmental data to explore the impact of pollutant
exposure on the progression of ALS.

We developed 5 datasets, two for MS and three for ALS, based on the
anonymized data provided by three medical institutions in Turin, Lisbon, and
Pavia. Out of 45 registered participants, 10 managed to submit a total of 163
runs with a prevalence of submissions for Tasks 1 and 2. Participants adopted a
range of approaches, such as Survival Random Forests and Coxnets.

The next iteration of iDPP@CLEF will maintain its dual focus on both ALS
and MS. We will extend the amount of available information, by considering also
time-series concerning patients’ vital parameters produced by wearable devices.
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