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ABSTRACT
The Conversational Search (CS) paradigm allows for an intuitive

interaction between the user and the system through natural lan-

guage sentences and it is increasingly being adopted in various

scenarios. However, its widespread experimentation has led to the

birth of a multitude of conversational search systems with custom

implementations and variants of information retrieval models. This

exacerbates the reproducibility crisis already observed in several

research areas, including Information Retrieval (IR). To address this

issue, we propose DECAF: a modular and extensible conversational

search framework designed for fast prototyping and development

of conversational agents. Our framework integrates all the com-

ponents that characterize a modern conversational search system

and allows for the seamless integration of Machine Learning (ML)

and Large Language Models (LLMs)-based techniques. Furthermore,

thanks to its uniform interface, DECAF allows for experiments char-

acterized by a high degree of reproducibility. DECAF contains sev-

eral state-of-the-art components including query rewriting, search

functions under BoW and dense paradigms, and re-ranking func-

tions. Our framework is tested on two well-known conversational

collections: TREC CAsT 2019 and TREC CAsT 2020 and the results

can be used by future practitioners as baselines. Our contributions

include the identification of a series of state-of-the-art components

for the conversational search task and the definition of a modular

framework for its implementation.

CCS CONCEPTS
• Information systems → Search engine architectures and
scalability.
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1 INTRODUCTION
Conversational Search (CS) [3, 56] is an emerging paradigm which

is drastically innovating Information Retrieval (IR) by allowing

users to issue their queries to the system in the form of a con-

versation. This paradigm allows for a very intuitive and seamless

interaction between the human and the system since it is based on

natural language sentences. Nevertheless, it also presents important

challenges due to the presence of complex speech structures in the

utterances, such as anaphoras, ellipses or coreferences. Therefore,

the system needs to address these natural language phenomena by

keeping track of the conversation state.

The advent of Neural Information Retrieval (NIR) models, fueled

by Large Language Models (LLMs), has been helping to overcome

some of these challenges and to foster a capillary adoption of CS in

many different scenarios. Such techniques, given their complexity,

were originally used mostly for re-ranking [17, 46, 53]. With their

improvement both in terms of effectiveness and efficiency, we also

witnessed their adoption as first-stage retrieval systems [14, 47, 58].

The plethora of CS systems that rely on these building blocks allow

for addressing the user’s information need in a number of differ-

ent scenarios. Nevertheless, such a variety made the CS scenario

fragmented from the systems’ design perspective, with hundreds

of ad-hoc custom implementations and variants of IR models and

other components, implemented using a wide range of different

languages and frameworks, often difficult to integrate together, if

not impossible at all. This causes a number of challenges both in the

development of CS systems and in their experimentation. Firstly, it

is difficult to combine various state-of-the-art components together,

since they often come from different and/or incompatible libraries

and packages; in turn, this hampers the development of new and

competitive approaches. Secondly, alternative implementations of a

component often lead to different performance or behavior; in turn,

this hampers the comparability of different end-to-end solutions,

integrating alternative versions of the same components. Thirdly,

it is extremely difficult, if not impossible, to conduct systematic

experiments where different components are combined in all the

possible ways, in a grid-like way [11], in order to break down the

contribution of different components and analyse their interac-

tions [12]. Finally, it hinders the reproducibility of experiments,

exacerbating the already prevalent reproducibility crisis in current

research [5, 10, 19, 52].

To address these issues, we propose DECAF – moDular and
Extensible Conversational seaArch Framework, which is explicitly

designed to allow for fast prototyping and development of CS sys-

tems and to enable their systematic evaluation under the traditional

Cranfield paradigm. The framework is designed to allow the in-

tegration of all the components that characterize a modern CS

https://doi.org/10.1145/3539618.3591913
https://doi.org/10.1145/3539618.3591913
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system, including query rewriting, search – both under the Bag-

of-Words (BoW) and dense paradigms – and re-ranking. While

written primarily in Java to ensure compatibility with traditional IR

libraries, such as Lucene
1
, Terrier [34], and Anserini [23], it also sup-

ports modern Artificial Intelligence (AI), Machine Learning (ML),

and LLM-based techniques thanks to the seamless integration of

Python scripts. The framework already includes multiple state-

of-the-art (sota) components for query rewriting, traditional BoW

similarity functions, NIR approaches – both sparse and dense – and

re-ranking functions. It also allows for the evaluation on reference

collections in the area, such as TREC CAsT 2019 and TREC CAsT

2020. The components implemented in DECAF act as state-of-the-

art baselines for future experiments. They also provide a template

for integrating and designing new components, to extend DECAF

itself. To show the capabilities of this framework, we demonstrate

its application to the TREC CAsT 2019 and TREC CAsT 2020 col-

lections, reporting the results that different pipelines are able to

achieve. Our main contributions are the following:

• Design and develop the DECAF modular and easily extensi-

ble framework, which allows us to seamlessly integrate CS

components and instantiate CS pipelines.

• Provide a series of state-of-the-art components that can be

used to implement a CS pipeline.

• Evaluate several CS pipelines, created using DECAF, on two

well-known and widely adopted conversational collections,

namely TREC CAsT 2019 and TREC CAsT 2020.

The remainder of this work is organized as follows: Section 2

surveys the current state-of-the-art for CS and IR experimentation

frameworks. Section 3 introduces our framework and its architec-

ture, along with the different CS components implemented out of

the box. Section 4 analyzes a practical application of our frame-

work, focusing on how to set up the configuration files to conduct

experiments. Section 5 reports experiments where we evaluate the

components implemented within DECAF. Finally, Section 6 draws

some conclusions and outlines future extensions of DECAF.

2 RELATEDWORKS
We report in the remainder of this section the main endeavours and

related work concerning three topics: the main efforts in CS, the

principal evaluation campaigns in this setting – used as a reference

point to design DECAF, and the related IR frameworks.

2.1 Conversational Search
Conversational Search (CS) consists of the exchange of natural

language utterances between a user and a conversational agent.

The most peculiar aspect of this scenario is that the system needs to

keep track of the context [36] as the dialogue unfolds. In fact, users

may refer implicitly to entities and topics previously mentioned in

the conversation, ask for more details and clarifications or change

the current topic, thus drifting the trajectory of the exchange [2, 30].

Depending on the task they absolve, conversational agents are

commonly divided into chit-chat bots [48, 55] and task-oriented

systems [4, 16, 35]. The former class of systems is meant to enter-

tain the users, while the latter allows helping the user to achieve a

1
https://lucene.apache.org/

certain goal, such as buying or learning new information, by the

means of a dialogue. A further categorization of task-driven CS

systems, consists in dividing them into approaches used to retrieve

the response within a corpus [16, 41, 45] and systems that con-

struct the response by combining multiple retrieved sources using

summarization approaches such as T5 [37].

The multi-turn conversational task is characterized by the im-

portance given to the “context” [21, 29, 38, 42]. The context consists

in the system’s internal belief concerning the conversation state

while it evolves through time. To keep track of the context, a large

part of the research work has been focused on rewriting utterances,

enriching them with the correct contextual information provided

by the user in previous utterances. In this way, the rewritten ut-

terances become self-explanatory and thus suitable for an IR sys-

tem [22, 26, 30, 43, 49]. Another approach to modelling the context

consists of adopting approaches based on dense retrieval models.

For example, Yu et al. [54] employ the teacher-student framework to

learn a student query encoder to use in conjunction with a standard

ad hoc dense retrieval teacher model, such as ANCE [47], TCT-

ColBERT [25] in the role of the documents encoder. The student

query encoder is trained to replicate the embeddings given by the

teacher model for the oracle reformulated queries. This method

allows the elimination of the explicit query rewriting phase from

the pipeline [54].

2.2 TREC Conversational Assistance Track
The Conversational Assistance Track (CAsT) at the Text Retrieval

Conference (TREC) was held for the first time in 2019 [7] and since

then, at the current time, it has reached its fourth edition. TREC

CAsT has fueled the research in CS domain by providing four large-

scale reusable test collections, comprising conversations, corpora,

and additional annotations, such as the manual rewrites of the

utterances or the canonical response to users’ questions [6].

The main task evaluated in CAsT is passages (in 2019 [7] and

2020 [6]) or documents (since 2021 [8]) retrieval from a corpus

composed of multiple sub-corpora, such as MS-MARCO, TREC

CAR, Wikipedia, and Washington Post corpora.

Since the first edition, the track has evolved towards more natu-

ral and human-like conversations, by considerably expanding both

the amount and the scope of contextual information that is required

by systems to understand a question. For example, in TREC CAsT

2019, user utterances were constructed beforehand by imagining a

conversation on a given topic [7], while, from the second edition

onward [6, 8] conversations take into consideration the responses

given by the system as well. The 2022 edition saw the introduc-

tion of a mixed-initiative [1, 20] sub-task, evaluating the ability of

systems to produce more engaging and effective conversations, by

gaining through feedback questions additional context, details or

clarification about the original user utterance.

2.3 IR Frameworks
Several IR libraries, such as Lucene, Terrier [34], and Anserini [23,

50, 51] allow for extensive and reproducible experimentation with

IR systems. These libraries are open-source and were developed

for full-text indexing and searching. Furthermore, they can rely

on decades of usage, update, and support, as well as flourishing

https://lucene.apache.org/
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communities underneath. With the advent of ML solutions and the

increased popularity of Python, new wrappers around traditional

frameworks were designed, such as Pyserini [24] and PyTerrier [28].

Pyserini [24] is a Python toolkit designed as a self-contained pack-

age providing a reproducible and easy-to-use first-stage retrieval

module within a multi-stage architecture. It supports both sparse

and dense representations. PyTerrier [28] is a Python framework

developed to allow advanced retrieval pipelines to be expressed and

evaluated in a declarative manner. However, none of these frame-

works provides native support for conversational search. Moreover,

Chatty Goose [59] is a Python framework for executing conversa-

tional search experiments, providing reproducible pipelines that

practitioners can build on top of. Despite being modular, Chatty

Goose is bound to use Pyserini and Pygaggle for performing the

first-stage retrieval and the reranking phases, respectively. For this

reason, Chatty Goose is not a general and solution-agnostic CS

framework.

We are interested in developing a solution specifically designed

for CS but capable of exploiting the advantages of the already ex-

isting frameworks. Therefore, we opt for a custom implementation

based on Java as the main language, while also allowing us to ac-

cess external Python scripts. In fact, this allows for easy integration

with other frameworks, such as Lucene and Anserini, as well as

Pyserini and PyTerrier, which are not designed for CS. Furthermore,

using Java’s strong typing we can enforce future components im-

plemented within DECAF to follow a rigid external interface. This,

in turn, will increase standardization, ease extensibility and reduce

the fragmentation in the CS components design.

3 DECAF ARCHITECTURE
In this section, we provide the overview of DECAF, focusing on,

the principal modules of its architecture, components implemented,

and software requirements.

3.1 Main Modules
DECAF relies on a modular architecture for index and search

pipelines. In practice, to foster extensibility, as well as standard-

ization, each module of DECAF is defined as a Java interface. As

illustrated in Figure 1, the index pipeline revolves around two main

modules: the Corpus Parser and the Indexer. The former processes

the corpus into a stream of documents, which is consumed by the

latter to index them. For the search pipeline, we adopt a multi-stage

architecture which employs the modules that are the most common

for CS systems.

Figure 1 shows the structure of the search pipeline:

• The Topics Parser reads in input a file – e.g., written in TREC

format – and provides parsed conversations and utterances

to be processed by the rest of the framework.

• The Rewriter modifies the text of the utterances by perform-

ing pronoun disambiguation and adding contextual informa-

tion extracted from previous utterances in the conversation.

• The Searcher takes the (possibly rewritten) utterance text as

input, generates the query and retrieves a set of candidate

documents to answer the provided question.

• The ranked list of documents generated as output by the

Searcher is consumed by the Reranker. This module is de-

signed to apply complex and resource-consuming re-ranking

operations upon the Searcher output, boosting the perfor-

mance of the CS pipeline.

Furthermore, we exploit two additional utility models: the Query
Generator and the Run Writer. Both the searcher and the re-ranker

modules exploit the Query Generator to obtain a representation of

the user utterance — possibly by combining it with previous ones

— that is directly used at retrieval and re-ranking time. Finally, the

Run Writer is a utility module meant to write the run on a file, so

that it can be further used or evaluated.

3.2 Components Implemented
Requirements. The core of DECAF has been developed in Java,

with the integration of Python for machine-learning-oriented func-

tionalities. It requires Java Development Kit (JDK) 11 and Python

3.8 for execution. The framework is built upon Lucene 8.8.1
2
.

Every component is expected to implement the Java interface of

the specific module, which defines one or more methods specific to

the performed job. The components implemented with DECAF and

described in the remainder of this section can be used by practi-

tioners both as baselines as well as templates to guide practitioners

in extending DECAF. Every component of the framework has some

configurable parameters, which must be passed through construc-

tor arguments. We also implemented a configuration system, based

on .properties files, that allows the user to specify them in a user-

friendly manner (see Section 4).

3.2.1 Index Pipeline.

Corpus Parser. We implement three components that perform

corpus parsing. The first processes the passages contained within

MS-MARCO version 1
3
dataset. DECAF also supports duplicate

removal: the discarded documents are specified through an input

file. Another parser addresses the paragraph corpus of TREC CAR

v2.0
4
. The third parser processes any corpus based on tab-separated

files using the “ID <tab> Text <newline>” format.

Furthermore, it might be necessary to index documents frommul-

tiple sources with different formats at once. The last corpus parser

component eases this by allowing to instantiate multiple parsers

that are used to parse different corpora. To provide a practical ex-

ample, consider TREC CAsT 2019 where both MS-MARCO and

TREC CAR corpora were used. This fourth corpus parser provides

support in handling this type of scenario, with multiple parsers

combined in a single interface.

Indexer. The framework comes with three distinct indexer com-

ponents a BoW indexer, a SPLADE indexer, and a Dense indexer.

The BoW indexer is a wrapper around Lucene indexing oper-

ations. It provides multi-fielded documents, tokenization and ad-

vanced analysis capabilities. The efficient inverted index imple-

mentation of Lucene makes it suitable for BoW sparse retrieval

models. The BoW indexer component has been extended for the

SPLADE indexer which is specific to the homonyms neural retrieval

2
https://lucene.apache.org/core/8_8_1/index.html

3
https://msmarco.blob.core.windows.net/msmarcoranking/collection.tar.gz

4
https://trec-car.cs.unh.edu/datareleases/v2.0/paragraphCorpus.v2.0.tar.xz

https://lucene.apache.org/core/8_8_1/index.html
https://msmarco.blob.core.windows.net/msmarcoranking/collection.tar.gz
https://trec-car.cs.unh.edu/datareleases/v2.0/paragraphCorpus.v2.0.tar.xz
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Figure 1: Architecture of DECAF.

model
5
. It replaces the standard tokenization and analysis pipeline

performed by Lucene with the SPLADE model inference. We need

a separate interface to operate with SPLADE since it requires com-

puting first the BoW sparse representations. Custom models based

on the same principle, i.e., expanding documents before indexing

them, can be instantiated in the sameway. Finally, the dense indexer

component is specific for dense retrieval models. It is built on top

of two well-known libraries: Transformers [44] and Facebook AI

Similarity Search (FAISS) [18]. The former is an open-source library

providing APIs and tools to download, train and use sota machine-

learning models. The latter is an open-source library developed for

efficient operations, such as clustering, indexing or similarity, on

high-dimensional vector spaces. It is particularly efficient and able

to handle large datasets composed of billions of vectors with fast

query times even in high-dimensional spaces.

3.2.2 Search Pipeline.

Conversation and Utterance Components. To provide a unified in-

terface to the data, we define two components, called Utterance and
Conversation. The former is a data structure that provides unified

access to the utterance and subsequent transformations operated

by different components. The latter provides utilities to access the

data and groups together utterances belonging to the same con-

versation. At runtime, each module will extract the needed data

(e.g., the textual content of the utterance, its rewritten version, or

the ranked list associated) from the Utterance component, pass-

ing through the Conversation interface. Upon completion of the

required operations, each module will save the computed results

for a specific utterance (e.g., a new rewriting of the utterance, the

re-ranked run), within the Utterance component, so that the next

module can access it.

The vast majority of implemented components take only two

parameters: the Conversation object containing the data regard-

ing the specific conversation at hand, and the ID of the current

utterance on which we have to operate (e.g., we want to rewrite or

5
https://huggingface.co/naver/efficient-splade-V-large-doc

we are retrieving the documents for). This approach ensures great

flexibility in the design of the components since it is possible to

access the entire data structure for the whole conversation – in

particular to previously issued utterances and retrieved responses.

Furthermore, it allows for easily expanding the framework, since

each component can behave as a black-box building block operating

only on the Conversation and Utterance objects.

Topics Parser. DECAF provides five topic parsers designed explic-
itly to handle TREC CAsT 2019 and TREC CAsT 2020 evaluation

topics. More in detail, for each collection, DECAF has a parser for

each type of utterance – i.e., either manual or automatic utterances.

We design two parsers specifically for the automatic and manual

utterances for TREC CAsT 2019. Moreover, we also implemented

the equivalent ones for TREC CAsT 2020. The fifth parser, instead,

gives the automatically rewritten utterances for the second edition,

which were produced using an automatic method by the organiz-

ers. Notice that, we define such a high number of different topic

parsers components since they also contain specific preprocessing

operations – this allows us to feed directly the original topic files

to DECAF.

This component takes in input the topics file – using, for sim-

plicity and to ease reproducibility, directly those provided by TREC

CAsT organizers – and generates in output a stream of Conver-

sation objects. Each of them is further split into the individual

Utterances that compose it.

Rewriter. In DECAF, we provide two sota rewriting approaches

using off-the-shelf resources, either employing coreference resolu-

tion libraries or pre-trained T5 models.

In implementation terms, there are two library-based compo-

nents that carry out coreference resolution, which differ solely for

the library used to perform the operation. In particular, we im-

plement one component based on AllenNLP framework [15] and

one using Fastcoref. Fastcoref is a coreference resolution utility

based on the LingMess [33] architecture, providing state-of-the-art

coreference accuracy [32]. In Table 1, we dub this approach CR.

https://huggingface.co/naver/efficient-splade-V-large-doc
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For the second approach, we employ a T5 model, which is a

large-scale, unsupervised text-to-text transfer learning model that

relies on the transformer architecture and can be fine-tuned for

various natural language processing tasks, including anaphora and

coreference resolution [37]. The particular instance of T5 used in the

experimental part is publicly available and pre-trained specifically

for conversational search question rewriting
6
.

Tomaintain themodularity of the framework, we also implement

a rewriter which corresponds to the “identity” operation and returns

the original text unchanged. It should be used in all cases where the

utterances have been rewritten externally from the framework or if

the practitioner does not wish to carry out any form of rewriting.

The Rewriter expands the original text of the utterance into the

rewritten text and stores it within the specific Utterance object.

Query Generator. The whole conversation is considered as input

for components implemented within this module, producing as

output a representation of the utterance that embeds the context.

Within DECAF, we provide three different query generator compo-

nents. The FLC query generator takes in input the utterances for a

given conversation and outputs a weighted sum of the rewritten

text of the first (F), last (L) and current (C) utterances. The rationale

behind it is that the first utterance often gives the general topic

of the conversation, while the previous one is the most likely to

be referenced again by the current utterance. The output of this

component is meant to synergize with the rewriter’s effort to bring

contextual information into the current query, especially useful

when the quality of its output is less than ideal. The overall effec-

tiveness of such a simple approach in modeling the context has

been already observed [29]. A second query generator provided

within DECAF considers the concatenation of the rewritten text

for all previous utterances of the current conversation. The final

query generator implemented (dubbed Current in Table 2) consid-

ers only the – possibly rewritten – text of the current utterance,

without taking into account any of the previous ones. To operate,

the query generator access the Utterance object referring to the

current utterance, and possibly to the Utterance objects defined for

previous utterances.

Searcher. The searchers are specular to the indexers used in the

indexing phase, with three different searcher components, one for

BoW Lucene-based similarity functions, one for SPLADE and one

for dense models.

The first Searcher component, the BoW one, by being based on

Lucene, can be instantiated with any of the classical BoW models

already implemented in it, such as BM25 [39], Language Model

(LM) [57] or the Vector Space Model [40]. For example, in the ex-

perimental benchmarking reported in Section 5, we exploit BM25.

BM25 [39] is BoW IR model that ranks documents based on the

occurrence and frequency of terms. Notice that the lexical simi-

larity function used can be set at runtime (see Section 4). The sec-

ond similarity function that we take into consideration is SPLADE.

SPLADE [13, 14] is a sparse NIR model that learns sparse represen-

tation for both queries and documents via the BERT MLM head

and sparse regularization. It is particularly appealing for the first

6
https://huggingface.co/castorini/t5-base-canard

stage retrieval phase, thanks to the simplicity, efficiency, and ex-

plainability of sparse representations. We separate it from the previ-

ous component, even though they are both BoW because SPLADE

requires computing the BoW sparse representation of the query.

In our experimental analysis, we use a publicly available set of

weights
7
. Finally, we implement a component for dense retrieval

that can be used with FAISS indexes. In particular, we instantiate

it with BERT, which is a pre-trained LLM and it has been trained

to learn dense representations of words from unlabeled text, by

jointly conditioning on both left and right context [9]. Notice that,

we exploit a publicly available BERT bi-encoder instance fine-tuned

specifically for IR
8
. Components implementing this module invoke

the Query Generator sub-component that provides them with a

searcher-specific query representation directly used for retrieval.

Upon retrieval completion, components within the Searcher module

must save the top-k retrieved document IDs within the Utterance

component.

Reranker. Components implemented within the reranker module

consider the documents included in the ranking list produced by

the Searcher and generate a new relevance score for each of them.

At the current time, DECAF comes with a reranker component:

Transformers. The Transformers reranker employs the Transform-

ers (Hugging Face) [44] library to apply machine-learning models,

such as BERT, to the text of both the rewritten query and of the

documents retrieved by the Searcher, then evaluate the similarity

between them. Notice that, as it will be detailed later in Section 4,

the specific transformers model used can be chosen at runtime, by

specifying it in the properties file. We experiment with BERT, since

several works already observed the effectiveness of BERT for the

re-ranking task in the CS and IR domains [27, 29, 31].

At the run-time, the Transformers component can be customized

depending on the practitioner’s needs. In particular, it is possible

to set different similarity functions enabling to adapt to differ-

ent transformer models. The similarity functions currently imple-

mented are cosine similarity, dot product and Euclidean distance.

This component can optionally perform run fusion between the

newly-generated ranked list with the one given by the Searcher.

There is an option to disable run fusion whether it is not needed.

Finally, we assume that a user might not be interested in re-ranking

documents. In that case, we included the identity reranker which

returns the ranked list of documents generated by the Searcher.

This module must set the final ranked list of documents in the Ut-

terance object. This final ranking is the output of the whole search

pipeline for the current utterance.

RunWriter. This final module can be instantiated into twomodal-

ities. The first component – dubbed Trec Eval – produces a run

using the standard TREC eval format. In particular, it saves inside

the runs sub-folder of the framework a tab-separated file with six

columns: the query id, the Q0 placeholder, the document id and

ranking, the retrieval score, and the user-specified id of the run.

Secondly, to ease the debugging, the “debug” component saves on

7
https://huggingface.co/naver/efficient-splade-V-large-query

8
https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco

https://huggingface.co/castorini/t5-base-canard
https://huggingface.co/naver/efficient-splade-V-large-query
https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco
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(a) Main directory of the repository.

(b) template sub-directory.

Figure 2: Screenshots of the DECAF repository.

file both ranked lists produced by the Searcher and Reranker to-

gether with a file containing the top-𝑘 documents retrieved by the

system to allow for manual inspection and precise failure analysis.

3.3 Git Repository
DECAF is available as open source under the Creative Commons
Attribution-ShareAlike 4.0 International License9 at the following
address: https://github.com/alemarco96/DECAF.

As shown in Figure 2, DECAF comes with extensive documen-

tation and guides to help new users adopt the framework. There

are tutorials dedicated to the installation process and the setup of

the configuration files for conducting experiments. Regarding the

reproducibility of the experiments shown in Section 5, we included

a detailed guide but also, for each of them, both the configuration

file employed as well as the run generated. This data is located

inside the SIGIR-experiments directory.
The framework is organized around several directories, each

with a different purpose. We describe here such directories – to

ease the framework instantiation, they can be found on the template
sub-directory of DECAF repository

10
.

• The config folder contains the properties files defining which
components are instantiated along with their parameters.

• The corpora folder contains the corpora used for indexing.

• The indexes folder contains the indexes created by DECAF,

upon completion of the index pipeline.

• The models folder should be filled by the practitioner with

the machine-learning models employed.

• The runs folder contains the runs produced DECAF upon

completion of th the search pipeline.

• The scripts folder contains the scripts used to execute either

the index or the search pipeline.

• The topics folder contains the evaluation topics files.

• The venv folder contains the Python virtual environments

employed by the components.

To operationalize DECAF, it is first necessary to install it by

compiling the Java code using the Maven project management tool.

Then, if needed, it is necessary to install all the required Python

modules within the venv directory and download the models cho-

sen by the user in the models directory. Finally, it is necessary to

download and place all corpora and topics within the corpora and
topics directories respectively. Notice that, we do not provide any

collection, since most of them require practitioners to accept “Terms

and Conditions”. After that, it is possible to run DECAF, either by

using the properties files already available within the config direc-

tory or define new configuration files. It is possible to use DECAF

by running scripts/index.sh and scripts/search.sh to run

indexing and searching respectively. Output runs will be placed in

the runs directory.

4 DECAF IN ACTION
We describe here the procedure required to configure DECAF in

order to execute them.

The settings are composed of properties files, one specific for

index and another for search phases, responsible to specify which

components are instantiated together with their parameters. The

proper use of these files allows the execution of each pipeline ac-

cording to the desired experimental setting. The properties is a

9
http://creativecommons.org/licenses/by-sa/4.0/

10
In case of highly customized scenarios, the paths to these directories, as well as

specific files, could also be manually set through the configuration files.

https://github.com/alemarco96/DECAF
http://creativecommons.org/licenses/by-sa/4.0/
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Configuration 1: index.properties
launch.corpus = CAsT1920

# Path to the corpus files

launch.corpus.CAsT1920.msmarco_corpus_filename =

/path/to/location

launch.corpus.CAsT1920.msmarco_duplicate_filename =

/path/to/location

launch.corpus.CAsT1920.treccar_corpus_filename =

/path/to/location

launch.indexer = BoWIndexer

# Path to the directory containing the index

launch.indexer.BoWIndexer.index_directory =

/path/to/location

# Text normalization component

launch.indexer.BoWIndexer.analyzer = English

# Similarity function used and other parameters

launch.indexer.BoWIndexer.similarity = BM25

launch.indexer.BoWIndexer.similarity.BM25.k1 = 0.82

launch.indexer.BoWIndexer.similarity.BM25.b = 0.4

launch.indexer.BoWIndexer.chunks_size = 1000000

launch.num_threads = 8

Figure 3: An example of configuration file snippet that allows
for configuring the indexing phase.

human-readable language commonly used in Java projects for con-

figuration files. Each line represents a key=value pair. Notice that,

the properties file is divided into two parts: the upper part contains

more volatile information (models used, paths, parameters), while

the lower part contains boilerplate and advanced settings that, in a

ready-to-use scenario, can remain unchanged for the basic user.

4.1 Index Phase
The first operation is to index all the documents, which can

be customized using the provided index.properties file located
inside the config sub-folder. Figure 3 presents a minimal working

example of how configuring the index.properties file.
The launch.corpus parameter is responsible for selectingwhich

documents corpus will be indexed. The option CAsT1920 allows

for replicating the results reported in Section 5. Notice that, the

specific component identified by the name CAsT1920 identifies a

specific multiple corpora parser that combines the MS-MARCO

and TREC CAR parsers. With launch.indexer it is possible to

specify the indexer that will perform the indexing operation. There

are some additional parameters to set for this component. The

index_directory is the absolute path to the location on the disk

where all index data is stored. Moreover, the documents are pro-

cessed in chunks of size given by chunks_size parameter. Other

parameters, such as BoW.analyzer, are specific for the specified
indexer. Lastly, launch.num_threads determines the number of

CPU cores used to speed-up the execution of this phase.

4.2 Search Phase

Configuration 2: search.properties
launch.topics = AutCAsT19

launch.rewriter = T5

launch.rewriter.T5.model = t5-base -canard

launch.rewriter.T5.max_tokens = 512

launch.searcher = BoWSearcher

# Path to the directory containing the index

launch.searcher.BoWSearcher.index_directory =

/path/to/location

# Text normalization component

launch.searcher.BoWSearcher.analyzer = English

# Similarity function used and its parameters

launch.searcher.BoWSearcher.similarity = BM25

launch.searcher.BoWSearcher.similarity.BM25.k1 = 0.82

launch.searcher.BoWSearcher.similarity.BM25.b = 0.4

# The query generator component

launch.searcher.BoWSearcher.query = Current

launch.reranker = Transformers

# The model to use with its parameters

launch.reranker.Transformers.model =

distilbert -dot -tas_b -b256 -msmarco

launch.reranker.Transformers.vector_size = 768

launch.reranker.Transformers.max_tokens = 512

launch.reranker.Transformers.similarity = dot

# The query generator and fusion components

launch.reranker.Transformers.query = Current

launch.reranker.Transformers.fusion = No

launch.run_writer = TrecEval

launch.run_writer.TrecEval.run_id = id_of_the_run

launch.num_documents = 100

launch.num_threads = 8

Figure 4: An example of a configuration file snippet that
allows for configuring the search phase.

In this section, we describe how to customize the search phase

operations using the search.properties configuration file. Fig-

ure 4 shows a minimal example of it, performing first stage re-

trieval using BM25 Bag-of-Words model then re-ranking with a

BERT model. The launch.topics allows to choose which evalu-

ation topics are processed. The desired rewriter component can

be picked with the launch.rewriter parameter. Furthermore, the

launch.searcher selects which searcher to use. Note that each

one require that the documents have been already been processed

by the corresponding indexer before attempting execution. The

index_directory sub-parameter specifies the absolute path to the

folder where the index data have been stored. Another important

parameter is query: it allows to customize the query representation

used to perform retrieval. The desired re-ranker can be selected

through the launch.reranker property. The launch.run_writer
component selects how to consume the results produced up to that
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Table 1: Rewriters and corresponding configuration parame-
ters, used in the evaluation of DECAF.

ID Rewriter conf. Description

— rewriter: No No rewriting is applied at all.

CR
rewriter: Fastcoref

model: f-coref

Apply co-reference resolution, replac-

ing most expressions that refer to the

same entity.

T5
rewriter: T5

model: t5-base-canard

T5 model trained specifically for con-

versational search question rewriting.

point; TrecEval options generate a standard run using TREC-Eval

format. The run_id sub-parameter defines the identifier of the run.

In conclusion, launch.num_documents and launch.num_threads
let you pick the maximum number of documents included in the re-

sults for each query and the number of CPU cores used to speed-up

execution, respectively.

5 EXPERIMENTAL RESULTS
The framework has been tested on TREC CAsT 2019 and TREC

CAsT 2020 settings, two popular benchmarks for evaluating conver-

sation information-seeking systems. We experiment with multiple

combinations of components and parameters, summarized in Tables

1, 2, and 3. In our experiments, we retrieved and reranked the top 100

documents for each query. Following the procedure used for CAsT

evaluation campaign [6, 7], we report four widely used measures:

Recall (R)@100, Mean Reciprocal Rank (MRR), normalized Dis-

counted Cumulative Gain (nDCG)@3, and nDCG@10, computed

using the trec_eval11 tool. Following the official evaluation set-

tings on TREC CAsT 2020 dataset, we consider documents as rele-

vant if their relevance score is ≥ 2 [6].

5.1 TREC CAsT 2019 Results
Table 4 shows the experimental results on TREC CAsT 2019. The ini-

tial experiment (#1) evaluates the performance of the BM25 model

on automatic utterances: the system performs poorly due to the

lack of contextual information. Results are in line with those ob-

served by [7] with respect to the baseline used for TREC CAsT 2019

(LMs). Experiments #2 and #3 add the Rewriter component to the

pipeline, which brings forward implied substantives into the text

of the utterance, resulting in improved performance. Run #3 em-

ploys T5 and achieves double the performance w.r.t the automatic

baseline across all measures. The FLC variant (used in Experiments

#4 and #5) combines the first, previous and current utterances’ text.

This simple heuristic is beneficial, particularly in cases where the

rewriter fails to correctly expand and disambiguate pronouns with

the relative entity. Again, results are consistent with the observa-

tions made in the TREC CAsT 2019 overview [7]. Experiments #6

to #9 demonstrate that performing an additional re-ranking step

using a BERT model can further improve performance for all ex-

perimental settings. A comparison between experiment #1 and #6

shows that, despite the absence of any form of rewriting, the per-

formance is significantly improved by using BERT as reranker, thus

11
https://github.com/usnistgov/trec_eval

Table 2: Ranking functions and corresponding configuration
parameters, used in the evaluation of DECAF.

ID Ranker conf. Description

BM25 c

Indexer: BoW

Analyzer: English

Similarity: BM25

Query generator: Current

First stage retrieval us-

ing BM25 bag-of-words

model. The query repre-

sentation is built consid-

ering only the rewritten

text of the current utter-

ance.

BM25 flc

Indexer: BoW

Analyzer: English

Similarity: BM25

query generator: FLC

First stage retrieval us-

ing BM25 bag-of-words

model. The query repre-

sentation is built consid-

ering the rewritten text

of the First, Last and Cur-

rent utterances.

BERT c

Indexer: Dense

Model: distilbert-dot-tas_

b-b256-msmarco (BERT)

Similarity: dot product

Query generator: Current

First stage retrieval

using BERT model for

dense retrieval. The

query representation is

built considering only

the rewritten text of the

current utterance.

SPLADE c

Indexer: SPLADE

Model: efficient-splade-V-

large-query

Query generator: Current

First stage retrieval

using SPLADE bag-of-

words model. The query

representation is built

from the rewritten text

of the current utterance.

Table 3: Rerankers and corresponding configuration parame-
ters, used in the evaluation of DECAF.

ID Reranker conf. Description

— reranker: No No re-ranking is applied at all.

BERT

reranker: Transformers

model: distilbert-dot-tas_

b-b256-msmarco (BERT)

similarity: dot product

query generator: Current

fusion: No

Re-ranking is performed using

a BERT model. Each document

is compared against the query,

by applying dot-product sim-

ilarity function between the

embeddings produced by the

model.

alleviating the issues related to the “context representation” intro-

duced by the CS setting. The performance of our implementation

of the BERT-based re-ranking strategy is similar to the average

performance of systems submitted at TREC CAsT 2019 [7]. If the

same BERTmodel is used for first-stage dense retrieval (Experiment

#10), it achieves performance similar to a standard lexical model

such as BM25 (experiment #3). Experiments #11 and #12 evaluate

SPLADE as a first-stage retrieval method. The particular SPLADE

instance employed has been fine-tuned for passage retrieval, uti-

lizing two distinct models for documents and queries. It performs

document expansion by adding a large number of terms not found

in the original text while producing sparser representations for

https://github.com/usnistgov/trec_eval
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Table 4: List of all experiments conducted on TREC CAsT
2019 benchmark. The evaluation measures reported are
R@100, MRR and nDCG with cutoffs 3 and 10.

Topics Rew. Searcher Rer. Rec. MRR nDCG@3 nDCG@10

1

Auto.

— BM25 c — 19.9 32.0 14.2 14.4

2 CR BM25 c — 35.3 51.5 25.9 25.4

3 T5 BM25 c — 42.8 64.0 33.9 32.1

4 — BM25 flc — 23.9 41.0 19.1 18.4

5 T5 BM25 flc — 45.0 65.6 34.4 32.5

6 — BM25 c BERT 19.9 48.0 28.4 24.9

7 T5 BM25 c BERT 42.8 79.3 50.4 45.2

8 — BM25 flc BERT 23.9 51.7 30.9 27.5

9 T5 BM25 flc BERT 45.0 79.4 50.3 46.0

10 T5 BERT c — 43.2 52.3 30.4 33.1

11 — SPLADE c — 24.8 44.8 27.5 26.7

12 T5 SPLADE c — 51.5 79.9 52.3 50.1

Baseline Automatic at TREC CAsT 2019 21.4 31.8 14.8 15.9

Best Automatic Run at TREC CAsT 2019 41.2 71.1 42.4 40.6

13

Man.

— BM25 c — 47.8 66.7 35.4 34.5

14 — BM25 c BERT 47.8 82.5 54.4 48.2

15 — BERT c — 46.4 54.3 32.8 35.5

16 — SPLADE c — 54.9 84.3 56.6 53.5

Best Manual Run at TREC CAsT 2019 56.7 88.4 59.3 60.6

Table 5: List of all experiments conducted on TREC CAsT
2020 benchmark. The evaluation measures reported are
R@100, MRR and nDCG with cutoffs 3 and 10.

Topics Rew. Searcher Rer. Rec. MRR nDCG@3 nDCG@10

1

Auto.

T5 BM25 c — 29.6 26.9 16.9 18.0

2 T5 BM25 c BERT 29.6 43.8 31.3 29.5

3 T5 BERT c — 40.4 34.2 23.6 23.5

4 T5 SPLADE c — 46.7 45.6 35.1 32.7

Baseline Automatic at TREC CAsT 2020 27.6 40.8 30.0 27.7

Best Automatic Run at TREC CAsT 2020 54.3 59.3 45.8 44.6

5

Man.

— BM25 c — 41.7 40.3 25.8 26.0

6 — BM25 c BERT 41.7 58.4 43.7 40.7

7 — BERT c — 56.4 50.8 35.6 34.7

8 — SPLADE c — 61.5 62.4 47.8 44.9

Baseline Manual at TREC CAsT 2020 46.3 65.2 47.9 45.0

Best Manual Run at TREC CAsT 2020 58.1 68.4 53.0 47.7

queries. Test #12 shows that SPLADE achieves the best results, out-

performing BM25 with BERT (experiment #9) by 14.4% in terms

of recall, 4.0% for nDCG@3, and 8.9% for nDCG@10 when the T5-

based rewriter is used. It also surpasses all original TREC CAsT

2019 automatic submissions, obtaining an improvement against the

Best Automatic (BA) of respectively 25.0%, 12.4%, 23.3%, and 23.4%

for the four measures considered.

We now focus on the second part of Table 4, where the manu-

ally rewritten utterances are used. Notice that, the performance

observed on this kind of utterance represents an upper bound on

the performance that can be achieved by retrieval systems. In fact,

in a real case scenario, such utterances would not be available. The

performance differences between automatic and manual utterances

are mostly independent of the retrieval model utilized, with aver-

age differences of 8.6% for recall, 4.5% for MRR, 8.0% for nDCG@3

and 6.9% for nDCG@10. These experiments show that T5-based

query rewriting methods are very effective on the TREC CAsT 2019

dataset. The best performance is achieved again using the SPLADE

model, similar to the results observed for the automatic runs. When

comparing our best manual run to the Best Manual (BM) run among

the original submissions, we observe slightly lower scores, espe-

cially for the nDCG@10 measure with a difference of 13.3%.

5.2 TREC CAsT 2020 Results
Table 5 shows the experimental results on TREC CAsT 2020. Due

to space reasons, we consider only the configurations that best

performed on TREC CAsT 2019 and evaluate them on the second

edition of the track. For automatic runs, we test the three searchers

paired with the T5 rewriter. Once again, the dense retrieval ap-

proach gives the lowest overall scores, followed by BM25 with

BERT re-ranking, while SPLADE produces the best results. As ob-

served for TREC CAsT 2019, BM25 is the lowest performingmethod,

followed by BERT in first-stage retrieval. When it comes to using

BERT as reranker, on the other hand, we observe a sensible improve-

ment compared to both BM25 (+69.4% in nDCG@3) and BERT in the

first stage retrieval (+22.8% in nDCG@3). Finally, following what

was noticed on TREC CAsT 2019, SPLADE appears to be overall

the best approach among those implemented. The patterns remain

substantially the same when we switch from automatic to manual

runs. The automatic baseline ranks third for all measures, while the

manual baseline slightly outperforms our best run. Notice that both

baselines are the worst-performing run in their respective cate-

gories when considering the Recall measure. For reference, we also

included the data for the best runs across the original submissions

of TREC CAsT 2020, as reported in the track overview [6].

6 CONCLUSIONS
In this work, we have presented DECAF, a novel resource for con-

ducting experiments within the Conversational Information Seek-

ing (CIS) scenario. This work is motivated by the constantly grow-

ing plethora of heterogeneous CS systems that have been recently

devised thanks to the advent of LLMs. DECAF has been designed to

favour comparability between systems, fast prototyping and repro-

ducibility, and in turn, alleviate the current reproducibility crisis.

Therefore, DECAF has been designed around three key features:

modularity, expandability and reproducibility. DECAF supports the

fundamental building blocks that characterize modern CS systems

and comes with a set of state-of-the-art components already im-

plemented out of the box, including query rewriting, searching

and re-ranking. The framework is also flexible enough to integrate

additional components without much effort. We have evaluated sev-

eral CS pipelines instantiated through DECAF on two well-known

collections, TREC CAsT 2019 and TREC CAsT 2020 .

Future work will concern the extension of DECAF to support

mixed-initiative tasks, such as those offered by TREC CAsT 2022.
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