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Abstract. Multiple Sclerosis (MS) and Amyotrophic Lateral Sclerosis
(ALS) are two neurodegenerative diseases that cause progressive or alter-
nating neurological impairments in motor, sensory, visual, and cognitive
functions. Patients affected by these diseases undergo the physical, psy-
chological, and economic burdens of hospital stays and home care while
facing uncertainty. A possible aid to patients and clinicians might come
from AI tools that can preemptively identify the need for intervention
and suggest personalized therapies during the progression of these dis-
eases.
The objective of iDPP@CLEF is to develop automatic approaches based
on AI that can be used to describe the progression of these two neurode-
generative diseases, with the final goal of allowing patient stratification
as well as the prediction of the disease progression, to help clinicians in
assisting patients in the most timely manner.

* These authors contributed equally.
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iDPP@CLEF 2024 follows the two prior editions, iDPP@CLEF 2022 and
2023. iDPP@CLEF 2022 focused on ALS progression prediction and ap-
proaches of explainable AI for the task. iDPP@CLEF 2023 built upon
iDPP@CLEF 2022 by extending the datasets provided during the pre-
vious edition with environmental data. Additionally, the 2023 edition of
iDPP@CLEF introduced a new task focused on the progression predic-
tion of MS. In this edition, we extended the MS dataset of iDPP@CLEF
2023 with environmental data. Furthermore, we introduced two new ALS
tasks, focused on predicting the progression of the disease using data
obtained from wearable devices, making it the first iDPP edition that
uses prospective data collected directly from the patients involved in the
BRAINTEASER project.

1 Introduction

Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS) are two severe
and extremely impactful diseases that cause progressive neurological impairment
in people living with them. Typically, for both diseases, the progression is het-
erogeneous, determining a large variability in several aspects including the treat-
ment of the patients, the outcome, the quality of life, and, in general, their needs.
This variability represents a challenge not only for patients but also for clini-
cians and caregivers alike. Indeed, patients with ALS tend to require, at a certain
point of the progression of their disease, some specific treatment, such as Non-
Invasive Ventilation (NIV) or Percutaneous Endoscopic Gastrostomy (PEG).
Similarly, patients living with MS tend to undergo impairing relapses that may
cause severe drops in their quality of life. Therefore, it would beneficial to know
beforehand the needs of a person affected by one of these diseases. Neverthe-
less, due to their heterogeneity, it is challenging to develop effective prognostic
tools. This motivates the importance of developing automatic tools to aid clini-
cians in their decision-making in all phases of disease progression and facilitate
personalized therapeutic choices. In particular, when developing new automatic
predictive approaches based on Artificial Intelligence (AI), researchers need a
proper framework that allows for designing and evaluating approaches for dif-
ferent tasks, such as:
– stratifying patients according to their phenotype all over the disease evolu-

tion;
– predicting the progression of the disease in a probabilistic, time-dependent

way;
– describing better and in an explainable fashion the mechanisms underlying

MS and ALS diseases.
Nonetheless, it is of uttermost importance that such approaches are based on
shared resources that allow for proper benchmarking and comparable and re-
producible experimentation. The Intelligent Disease Progression Prediction at
CLEF (iDPP@CLEF) lab8 aims to provide an evaluation infrastructure for

8 https://brainteaser.health/open-evaluation-challenges/

https://brainteaser.health/open-evaluation-challenges/
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the development of such AI algorithms. Differently from previous efforts in
this domain, iDPP@CLEF systematically addresses issues related to the ap-
plication of AI in clinical practice for ALS and MS. Apart from defining risk
scores based on the probability of events occurring in the short or long term,
iDPP@CLEF also deals with providing clinicians with structured and under-
standable data. iDPP@CLEF 2024 [2] is the last iteration of an evaluation cycle
of three challenges aimed at fostering reproducible and comparable evaluation
of AI based approaches to predict the progression of ALS and MS. The first
edition, iDPP@CLEF 2022 focused on ALS, asking participants to predict the
probability that patients would incur the need for specific medical treatments
based on their medical history. The second edition iDPP@CLEF 2023 focused on
extending the dataset of iDPP@CLEF 2022 with environmental data, to deter-
mine the impact that the environment might have on the needs of the patients.
Furthermore, a new task based on predicting the risk of worsening of MS pa-
tients was proposed. This final edition extends iDPP@CLEF 2023 by providing
environmental data for patients affected by MS, to measure the impact that
pollution and the external environment can have on the progression of MS. Fur-
thermore, two new tasks have been proposed in iDPP@CLEF 2024. These tasks
required participants to predict the progression of ALS, measured according to
the ALSFRS-R scale, based on the clinical history of the patients, as well as
measurements obtained via wearable devices and sensors.

The paper is organized as follows: Section 2 presents related challenges; Sec-
tion 3 describes its tasks; Section 4 discusses the developed dataset; Section 5
explains the setup of the Lab and introduces the participants; Section 6 intro-
duces the evaluation measures adopted to score the runs; Section 7 analyzes
the experimental results for the different tasks; finally, Section 8 draws some
conclusions and outlooks some future work.

2 Related Challenges

There have been no other labs on this or similar topics within CLEF before the
start of iDPP@CLEF. iDPP@CLEF 2022 and 2023 were the first two iterations
of the Lab and the current is the third.

While no major challenges – besides iDPP@CLEF 2023 – regarding MS have
been carried out yet, more interest has been shown toward ALS. In particular,
three major challenges were organized on this topic: the DREAM 7 ALS Pre-
diction challenge9 in 2012 and the DREAM ALS Stratification challenge10 in
2015 and a Kaggle challenge11 in 2021. The DREAM 7 ALS Prediction chal-
lenge consisted of using 3 months of ALS clinical trial information (months 0–3)
to predict the future progression of the disease (months 3–12), expressed as the
slope of change in ALS Functional Rating Scale Revisited (ALSFRS-R) [4]. Later
on, the DREAM ALS Stratification challenge [9] required participants to stratify

9 https://dreamchallenges.org/dream-7-phil-bowen-als-prediction-prize4life/
10 https://dx.doi.org/10.7303/syn2873386.
11 https://www.kaggle.com/alsgroup/end-als

https://dreamchallenges.org/dream-7-phil-bowen-als-prediction-prize4life/
https://dx.doi.org/10.7303/syn2873386
https://www.kaggle.com/alsgroup/end-als
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ALS into subgroups based on their characteristics, to understand patient profiles
better and provide personalized ALS treatments. Finally, the Kaggle challenge
employed clinical and genomic data to obtain a better understanding of the
mechanisms underlying ALS and determine why some people with ALS tend to
have a faster progression of the disease compared to others.

At the current time, most of the datasets used to evaluate AI algorithms for
MS are based on closed and proprietary datasets. In this sense iDPP@CLEF
paved the way for a reproducible and effectively open science in the research
domain of the AI used for predicting the progression of MS.

2.1 iDPP@CLEF 2022

iDPP@CLEF 202212 [7, 8] was the first edition of the Lab and concerned exclu-
sively the ALS disease progression prediction. Being the pilot Lab, a large share
of effort was devoted to understanding the challenges and limitations linked to
the shared evaluation campaigns, when it comes to AI applied in the medical
domain. iDPP@CLEF 2022 was organized into 3 tasks:

– Pilot Task 1 - Ranking Risk of Impairment: The focus of the first
task of iDPP@CLEF 2022 was on ranking patients based on the risk of
impairment, defined as the need for specific medical treatments, such as NIV,
PEG, or death. Participants were given information on the motor functioning
of the patients in time, measured according to the ALSFRS-R scale [4], and
were asked to rank patients based on the time-to-event risk of experiencing
impairment in each specific domain.

– Pilot Task 2 - Predicting Time of Impairment: It refined Task 1 by
asking participants to predict when specific impairments will occur (i.e. in
the correct time window). The task focused on assessing model calibration
in terms of the ability of the proposed algorithms to estimate the probability
of an event close to the true probability within a specified time window.

– Position Paper Task 3 - Explainability of AI algorithms: The task
focused on the evaluation and discussion of AI-based explainable frameworks
for intelligent disease progression prediction able to explain the multivariate
nature of the data and the model predictions.

One of the major outputs of iDPP@CLEF 2022 were the three datasets released.
In particular, the datasets contain data for the prediction of specific events re-
lated to ALS. Such datasets are fully anonymized retrospective details about
2250 real patients. The patients were recruited from two medical institutions
in Turin, Italy, and Lisbon, Portugal. The datasets contain static data about
patients (e.g., age, onset date, gender) and event data (i.e. 18,512 ALSFRS-R
questionnaires and 4,015 spyrometries). six groups participated in iDPP@CLEF
2022 and submitted a total of 120 runs.

12 https://brainteaser.health/open-evaluation-challenges/idpp-2022/

https://brainteaser.health/open-evaluation-challenges/idpp-2022/
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2.2 iDPP@CLEF 2023

Similarly to iDPP@CLEF 2022, also iDPP@CLEF 202313 [5, 6] were organized
into three tasks, focusing on either ALS or MS. More in detail, Task 1 and Task 2
of iDPP@CLEF 2023 concerned MS, while Task 3 built upon iDPP@CLEF 2022
and extended the ALS tasks of the previous iteration of the Lab. To summarize
iDPP@CLEF 2023 tasks:

– Task 1: Predicting Risk of Disease Worsening (MS) This task fo-
cused on predicting the probability that, given the history of the patient,
they would undergo a worsening, according to two different definitions of
worsening.

– Task 2: Predicting Cumulative Probability of Worsening (MS) The
second task had a similar objective to Task 1, with the major difference that,
instead of predicting the risk at an absolute level, participants were required
to predict the cumulative probability of worsening over 10 years.

– Task 3: Position Papers on the Impact of Exposition to Pollutants
(ALS) The third task extended the first task of iDPP@CLEF 2022 and
concerned the ranking of the patients based on the risk of impairment. The
major difference to iDPP@CLEF 2022 was that participants were given en-
vironmental data to determine if such data was a good predictor of the risk
of impairment.

iDPP@CLEF 2023 extended the iDPP@CLEF 2022 datasets with two datasets
for MS. In particular, such datasets contained static data about patients, MS-
related details (e.g., the EDSS score, results of MRIs, evoked potentials mea-
sures), and a label indicating if the patient underwent a worsening, based on the
worsening definitions of Task 1 and Task 2. Ten teams submitted a total of 163
runs at the end of iDPP@CLEF 2023.

3 Tasks

In the remainder of this section, we describe each task in more detail.

3.1 Task 1: Predicting ALSFRS-R Score from Sensor Data (ALS)

Task 1 focuses on predicting the twelve scores of the ALSFRS-R (ALS Func-
tional Rating Scale - Revised), assigned by medical doctors roughly every three
months, from the sensor data collected via the app. The ALSFRS-R is a some-
what “subjective” evaluation usually performed by a medical doctor. This task
aims to answer an open question in the research community, i.e., whether the
ALSFRS-R scores can be derived from objective factors.

Participants were given the ALSFRS-R questionnaire at the first visit, includ-
ing the scores for each question and the time (number of days from diagnosis)

13 https://brainteaser.dei.unipd.it/challenges/idpp2023/

https://brainteaser.dei.unipd.it/challenges/idpp2023/
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when the questionnaire was taken; moreover, they were also provided with the
time of the second visit (number of days from diagnosis) and all the sensor data
up to the time of the second visit.

Participants had to predict the values of the ALSFRS-R sub-scores at the
second visit.

3.2 Task 2: Predicting Patient Self-assessment Score from Sensor
Data (ALS)

The second task concerning ALS focuses on predicting the self-assessment scores
assigned by patients from the sensor data collected via the app. Self-assessment
scores correspond to each of the ALSFRS-R scores, but while the latter are
assigned by medical doctors during visits, the self-assessment scores are assigned
by patients themselves using the app.

If the self-assessment performed by patients, which occurs more frequently
than the assessments performed by medical doctors every three months or so,
can be reliably predicted by sensor and app data, we can imagine a proactive
application that monitors the sensor data and alerts the patient if an assessment
is needed.

Participants were given the first set of self-assessed scores along with the
time (number of days from diagnosis) at which the questionnaire was taken;
furthermore, they were also provided with the time of the second auto-evaluation
(number of days from diagnosis) and all the sensor data up to the time of the
second auto-evaluation. Participants had to predict the values of the self-assessed
scores at the second auto-evaluation, which occurs one or two months after the
first one.

3.3 Task 3: Predicting Relapses from EDSS Sub-scores and
Environmental Data (MS)

The third task focuses on predicting a relapse using environmental data and
EDSS (Expanded Disability Status Scale) sub-scores. This task allows us to as-
sess if exposure to different pollutants is a useful variable in predicting a relapse.

Participants were asked to predict the week of the first relapse after the
baseline considering environmental data based on a weekly granularity, given
the status of the patient at the baseline, which is the first visit available in the
considered time span (after January 1, 2013). For each patient, the date of the
baseline will be week 0 and all the other weeks will be relative to it.

Participants were given all the environmental data about a patient, i.e. also
observations which may happen after the relapse to be predicted. All the patients
are guaranteed to experience, at least, one relapse after the baseline.

4 Dataset

For iDPP@CLEF 2024 we release three datasets: two completely new datasets
for ALS and an extension of the iDPP@CLEF 2023 dataset concerning MS. More
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in detail, the two new ALS datasets comprise a common training part with 52
training patients, whose ALSFRS-R scores were both annotated by the clinicians
and self-assessed. Concerning the test sets, 21 and 11 patients were included in
them for Task 1 and Task 2 respectively. Regarding MS, the part of the dataset
concerning static variables and MS-related information is the same as the one
used for iDPP@CLEF 2023. The major improvement regards environmental data
that have been added to the dataset.

4.1 Tasks 1 and 2: ASL Dataset with Clinical or Self-assessed
ALSFRS-R

The datasets for Task 1 and Task 2 were collected from ALS-diagnosed pa-
tients recruited during the BRAINTEASER project from three centers in Lis-
bon, Madrid, and Turin. At recruitment, patients were given a commercial fitness
tracker (the Garmin VivoActive 4 smartwatch), and data from its sensors was
collected during a follow-up period with a median duration of 270 days. Pa-
tients were encouraged to wear the watch as much as they were comfortable
with, ideally all the time, both while awake and sleeping. Each day of data for
each patient was summarized into a vector of 90 statistics related to heart rate
and beat-to-beat interval, respiration rate, and nocturnal pulse oximetry. Sensor
data was not available every day for each patient.

During the same period, disease progression was assessed by their clini-
cian using the ALSFRS-R questionnaire (roughly every three months, follow-
ing standard clinical practice). Patients also used the same questionnaire to
self-assess their progression through a smartphone app developed specifically by
the BRAINTEASER project. They were prompted for the assessment once per
month, though the actual frequency varied and depended on patient compliance.

Creation of the datasets Patients with insufficient data were excluded from
the challenge dataset. Specifically, this included those with less than three months
of follow-up data, those with more than 50% of sensor data missing, and those
without at least two clinical or self-assessed ALSFRS-R evaluations. After ap-
plying these criteria, a dataset of 83 patients was obtained, with a median of 254
days of sensor data per patient. These patients and their data were then divided
into a training group (common to both Tasks 1 and 2) and two task-specific
testing groups.

Split into training and test The patients were split into three groups:

training patients with at least two clinical and two self-assessed ALSFRS-R evalua-
tions;

test-ct patients with at least two clinical but without two self-assessed ALSFRS-R
evaluations;

test-app patients with at least two self-assessed but without two clinical ALSFRS-R
evaluations.
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The training set thus included 52 patients with a median of 3.5 clinical and 5
self-assessed ALSFRS-R evaluations (189 and 301 in total, respectively). The
test-ct set (the test set for Task 1) included 21 patients, whose first clinical
ALSFRS-R evaluations were included as features and the second evaluations
were the prediction target. The test-app set (the test set for Task 2) included
11 patients and was built in the same way using the self-assessed ALSFRS-
R evaluations. The full available sensor data for all patients was included in
both the training and test datasets, while only the clinical (resp. self-assessed)
ALSFRS-R evaluations were included for Task 1 (resp. Task 2).

4.2 Task 3: MS Dataset

The dataset used for Task 3 in iDPP@CLEF 2024 is structured similarly to those
from iDPP@CLEF 2023, though some features (e.g., evoked potentials, MRIs)
were not included, and certain records have been filtered based on the purpose
of the task.

Updates over IDPP@CLEF 2023 In the 2024 dataset, EDSS data after
January 1, 2013 (aligned with the start of environmental data collection), were
filtered, and patients without EDSS follow-ups were removed. Additionally, pa-
tients who did not experience a relapse after their first non-filtered EDSS follow-
up (i.e., the baseline for each patient) were excluded.

The dataset has been expanded to incorporate environmental data, which
includes information on patients’ exposure to various air pollutants identified as
significant public health risks in the latest World Health Organization (WHO)
global air quality guidelines [15], such as particulate matter (PM) - encompassing
both PM2.5 (particles with an aerodynamic diameter of 2.5 micrometers or less)
and PM10 (particles with an aerodynamic diameter of 10 micrometers or less)
- as well as ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon
monoxide (CO), and several weather factors (including wind speed, relative hu-
midity, sea level pressure, global radiation, precipitation, and average, minimum,
and maximum temperatures).

Air pollutant data from public monitoring stations were collected daily from
the European Air Quality Portal using the DiscoMap tool 14. The geographical
coordinates (longitude and latitude) of each monitoring station were matched
to specific postcodes, identifying the nearest station to each patient’s residence
postcode. Instead, weather data were gathered daily from the European Climate
Assessment and Dataset station network, which provides access to the E-OBS
dataset, a daily gridded land-only observational dataset over Europe 15. Each
grid was matched with the nearest monitoring station using Euclidean distance
based on geographical coordinates. This approach ensured that air pollution
and weather data were aligned with the same spatial and temporal granularity.
Daily environmental measurements were aggregated into weekly averages from

14 https://discomap.eea.europa.eu/Index/
15 https://www.ecad.eu/download/ensembles/download.php

https://discomap.eea.europa.eu/Index/
https://www.ecad.eu/download/ensembles/download.php
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each patient’s baseline. As additional features, the number of days per week
spent over the respective WHO recommended air quality guideline levels for
short-term (24 hours) exposure was computed for each air pollutant.

Finally, a subset of 380 MS patients from Turin and Pavia research centers
was selected for Task 3 in iDPP@CLEF 2024, compared to 550 patients for Task
1 and 638 for Task 2 in iDPP@CLEF 2023. The resulting MS dataset16 includes
static variables, with demographic and clinical information, EDSS scores with
corresponding Functional System (FS) sub-scores, environmental measurements,
and the outcome time, representing the week of the first relapse occurrence after
the baseline for each patient. EDSS visits occur between the baseline and the
first relapse, while environmental measurements span from January 1, 2013, to
2023. It is important to note that environmental data may have gaps due to data
availability.

Split into training and test The dataset was split into a training set (70%)
and a test set (30%), with subjects stratified by outcome time to ensure an even
distribution across both sets. The distribution of static data, including demo-
graphic and clinical information, and EDSS were verified to be similar in both
training and test sets. Additionally, since environmental exposure is considered,
the distribution of patients from the two clinical centres and their residence
classification (Cities, Rural Areas, and Towns) was checked to be balanced.

Statistical tests, including the Kruskal-Wallis test for continuous variables
and the Chi-squared test for categorical and ordinal variables, were performed
to assess the appropriateness of the stratification. Special attention was given to
sparsely observed levels in categorical variables to ensure rare levels appeared
only in the training set if at all. Table1 provides a comparison of variable distri-
butions between the training and test sets, confirming that the split meets the
best-practice quality standards.

5 Lab Setup and Participation

In the remainder of this section, we detail the guidelines the participants had to
comply with to submit their runs and the submissions received by iDPP@CLEF.

5.1 Guidelines

Participating teams should satisfy the following guidelines:

– The runs should be submitted in the textual format described below;

– Each group can submit a maximum of 30 runs for each of Task 1 and Task
2 and Task 3.

16 https://brainteaser.dei.unipd.it/challenges/idpp2024/assets/other/ms/
ms-variables-description.txt

https://brainteaser.dei.unipd.it/challenges/idpp2024/assets/other/ms/ms-variables-description.txt
https://brainteaser.dei.unipd.it/challenges/idpp2024/assets/other/ms/ms-variables-description.txt
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Table 1: Comparison between training and test populations for MS task. Contin-
uous variables are presented as median (interquartile range); categorical variables
as count (percentage on available data), for each level.

Variable Level Levels Training Levels Test

Sex Female 148 (74.37%) 54 (66.67%)
Male 51 (25.63%) 27 (33.33%)

Ethnicity Caucasian 181 (90.96%) 77 (95.06%)
Hispanic 2 (1.00%) -
Black African 2 (1.00%) -
NA 14 (7.04%) 4 (4.94%)

Residence classification Cities 53 (26.63%) 20 (24.69%)
Rural Area 52 (26.13%) 22 (27.16%)
Towns 94 (47.24%) 39 (48.15%)

Centre Pavia 129 (64.82%) 58 (71.61%)
Turin 70 (35.18%) 23 (28.39%)

Occurrence of MS in pediatric age FALSE 176 (88.44%) 77 (95.06%)
TRUE 23 (11.56%) 4 (4.94%)

Age at onset median (IQR) 28 (22-36) 30 (24-34)

Age at baseline median (IQR) 38 (31-47) 38 (33-47)

Diagnostic delay median (IQR) 12 (4-47) 12 (3-28)

Spinal cord symptom FALSE 143 (71.86%) 54 (66.67%)
TRUE 56 (28.14%) 27 (33.33%)

Brainstem symptom FALSE 146 (73.37%) 57 (70.37%)
TRUE 53 (26.63%) 24 (29.63%)

Eye symptom FALSE 148 (74.37%) 59 (72.84%)
TRUE 51 (25.63%) 22 (27.16%)

Supratentorial symptom FALSE 140 (70.35%) 50 (61.73%)
TRUE 59 (29.65%) 31 (38.27%)

Other symptoms FALSE 197 (99.00%) 80 (98.77%)
Sensory 1 (0.50%) 1 (1.23%)
Epilepsy 1 (0.50%) -

EDSS median (IQR) 2.0 (1.5-3.0) 2.0 (1.5-3.5)
NA 3 (0.36%) 0 (0.00%)

Outcome time median (IQR) 59 (24-122) 53 (25-130)

Task 1 Run Format Runs should be submitted as a text file (.txt) with the
following format:

10061925618906738677 1 2 3 4 1 2 3 4 1 2 3 4 upd_T1_myDesc

10160033396142711519 1 2 3 4 1 2 3 4 1 2 3 4 upd_T1_myDesc

10287479530859953248 1 2 3 4 1 2 3 4 1 2 3 4 upd_T1_myDesc

12398828804459792214 1 2 3 4 1 2 3 4 1 2 3 4 upd_T1_myDesc

10038199677222038201 1 2 3 4 1 2 3 4 1 2 3 4 upd_T1_myDesc

...

where:

– Columns are separated by a white space;
– The first column is the patient ID, an hashed version of the original patient

ID (should be considered just as a string);
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– Columns from 2 to 13 represent the predicted ALSFRS-R sub-score. Each
column corresponds to an ALSFRS-R question, e.g. column 2 to Q1, column
3 to Q2, and so on). Each values is expected to be integer in the range [0,
4];

– The last column is the run identifier, according to the format described
below. It must uniquely identify the participating team and the submitted
run.

It is important to include all the columns and have a white space delimiter
between the columns. No specific ordering is expected among patients (rows) in
the submission file.

Task 2 Run Format Runs should be submitted as a text file (.txt) with the
following format:

10061925618906738677 1 2 3 4 1 2 3 4 1 2 3 4 upd_T1_myDesc

10160033396142711519 1 2 3 4 1 2 3 4 1 2 3 4 upd_T1_myDesc

10287479530859953248 1 2 3 4 1 2 3 4 1 2 3 4 upd_T1_myDesc

12398828804459792214 1 2 3 4 1 2 3 4 1 2 3 4 upd_T1_myDesc

10038199677222038201 1 2 3 4 1 2 3 4 1 2 3 4 upd_T1_myDesc

...

where:

– Columns are separated by a white space;
– The first column is the patient ID, an hashed version of the original patient

ID (should be considered just as a string);
– Columns from 2 to 13 represent the predicted self-assessd sub-score. Each

column corresponds to an ALSFRS-R question, e.g. column 2 to Q1, column
3 to Q2, and so on). Each values is expected to be integer in the range [0,
4];

– The last column is the run identifier, according to the format described
below. It must uniquely identify the participating team and the submitted
run.

It is important to include all the columns and have a white space delimiter
between the columns. No specific ordering is expected among patients (rows) in
the submission file.

Task 3 Run Format Runs should be submitted as a text file (.txt) with the
following format:

10061925618906738677 10 upd_T3_myDesc

10160033396142711519 47 upd_T3_myDesc

10287479530859953248 13 upd_T3_myDesc

12398828804459792214 1 upd_T3_myDesc

10038199677222038201 9 upd_T3_myDesc

...
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where:

– Columns are separated by a white space;
– The first column is the patient ID, a hashed version of the original patient

ID (should be considered just as a string);
– The second column is the predicted week at which the first relapse after the

baseline happens. The value is expected to be an integer starting from 1;
– The third column is the run identifier, according to the format described

below. It must uniquely identify the participating team and the submitted
run.

It is important to include all the columns and have a white space delimiter
between the columns. No specific ordering is expected among patients (rows) in
the submission file.

Submission Upload Runs should be uploaded to the repository provided by
the organizers. Following the repository structure discussed above, for example,
a run submitted for the first task should be included in submission/task1.

Runs should be uploaded using the following name convention for their iden-
tifiers: <teamname> T<1|2|3> <freefield>, where:

– teamname is the name of the participating team;
– T<1|2|3> is the identifier of the task the run is submitted to, e.g. T1 for

Task 1;
– freefield is a free field that participants can use as they prefer to further

distinguish among their runs. Please, keep it short and informative.

For example, a complete run identifier may look like upd T1 myDesc, where:

– upd is the University of Padua team;
– T1 means that the run is submitted for Task 1;
– myDesc suggests an appropriate description for the run.

The name of the text file containing the run must be the identifier of the run
followed by the txt extension. In the above example upd T1 myDesc.txt

5.2 Participants

A total of 28 teams registered to iDPP@CLEF 2024, out of which 8 teams
were able to submit one run in at least one task. Table 2 reports the details
about teams that managed to submit at least one run. Furthermore, Table 3
outlines in which tasks each team participated in and how many runs they
were able to submit. In total, 97 runs were submitted to iDPP@CLEF 2024.
The most participated task was Task 1 with 59 runs and 6 teams participating.
Subsequently, Task 2 had 31 runs submitted by 6 different teams. Finally, only
two teams participated in task 3, with a total of 7 runs submitted. The most
prolific participant was UNIPD, with a total of 20 runs.
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Table 2: Teams participating in iDPP@CLEF 2024.

Team Name Affiliation Country Repository Paper

BIT.UA IEETA/DETI, LASI,
University of Aveiro

Portugal https://bitbucket.org/
brainteaser-health/
idpp2024-bitua

Silva and
Oliveira [14]

CompBiomedUniTO University of Torino Italy https://bitbucket.org/
brainteaser-health/
idpp2024-compbiomedunito

Barducci et.
al. [1]

FCOOL LASIGE, Faculty of
Sciences, University of
Lisbon

Portugal https://bitbucket.org/
brainteaser-health/
idpp2024-fcool

Martins et. al.
[11]

iDPPExplorers Georgia Institute of
Technology, Atlanta,
GA

United States https://bitbucket.org/
brainteaser-health/
idpp2024-idppexplorers

Metha et.
al. [12]

Mandatory University of Bucharest Romania https://bitbucket.org/
brainteaser-health/
idpp2024-mandatory

—

Stefagroup University of Pavia,
BMI lab ”Mario Ste-
fanelli”

Italy https://bitbucket.org/
brainteaser-health/
idpp2024-stefagroup

Bosoni et. al.
[3]

UBCS University of Botswana Botswana https://bitbucket.org/
brainteaser-health/
idpp2024-ubcs

Okere et. al.
[13]

UNIPD University of Padova Italy https://bitbucket.org/
brainteaser-health/
idpp2024-unipd

Martinello et.
al. [10]

6 Evaluation Measures

In both Tasks 1 and 2, the prediction targets were the future scores of the
ALSFRS-R evaluation, which are integers in the [0-4] range. Since the scores are
discrete, we could have framed the predictive task as a classification problem.
However, we opted for a regression problem to be able to penalize larger errors
more (e.g., with a target score of 3, predicting 1 should be worse than predicting
2). Task 3, where the target was the week of the relapse, was also framed quite
naturally as a regression task for similar reasons. Thus, we evaluated all tasks us-
ing the same two state-of-the-art evaluation measures to assess the performance
of regression models: the Root Mean Square Error (RMSE) and the Mean Ab-
solute Error (MAE). The formulas for RMSE and MAE are shown in Equation
1 and Equation 2, respectively, where n represents the number of observations,
yi is the actual value of the dependent variable for the i-th observation, and ŷi
is the predicted value of the dependent variable for the i-th observation.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (1)

MAE =
1

n

n∑
i=1

|yi − ŷi| (2)

https://bitbucket.org/brainteaser-health/idpp2024-bitua
https://bitbucket.org/brainteaser-health/idpp2024-bitua
https://bitbucket.org/brainteaser-health/idpp2024-bitua
https://bitbucket.org/brainteaser-health/idpp2024-compbiomedunito
https://bitbucket.org/brainteaser-health/idpp2024-compbiomedunito
https://bitbucket.org/brainteaser-health/idpp2024-compbiomedunito
https://bitbucket.org/brainteaser-health/idpp2024-fcool
https://bitbucket.org/brainteaser-health/idpp2024-fcool
https://bitbucket.org/brainteaser-health/idpp2024-fcool
https://bitbucket.org/brainteaser-health/idpp2024-idppexplorers
https://bitbucket.org/brainteaser-health/idpp2024-idppexplorers
https://bitbucket.org/brainteaser-health/idpp2024-idppexplorers
https://bitbucket.org/brainteaser-health/idpp2024-mandatory
https://bitbucket.org/brainteaser-health/idpp2024-mandatory
https://bitbucket.org/brainteaser-health/idpp2024-mandatory
https://bitbucket.org/brainteaser-health/idpp2024-stefagroup
https://bitbucket.org/brainteaser-health/idpp2024-stefagroup
https://bitbucket.org/brainteaser-health/idpp2024-stefagroup
https://bitbucket.org/brainteaser-health/idpp2024-ubcs
https://bitbucket.org/brainteaser-health/idpp2024-ubcs
https://bitbucket.org/brainteaser-health/idpp2024-ubcs
https://bitbucket.org/brainteaser-health/idpp2024-unipd
https://bitbucket.org/brainteaser-health/idpp2024-unipd
https://bitbucket.org/brainteaser-health/idpp2024-unipd
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Table 3: Number of runs submitted by each participant team in iDPP@CLEF
2024

Task 1 (ALS) Task 2 (ALS) Task 3 (MS) Total

BIT.UA 7 7 — 14
CompBiomedUniTO 1 1 — 2

FCOOL 9 9 — 18
iDPPExplorers 15 — — 15

Mandatory 19 — — 19
Stefagroup — — 3 3

UBCS — 6 — 6
UNIPD 8 8 4 20

Total 59 31 7 97

Both metrics can explain the performance of a model in an interpretable man-
ner since their units are the same as the target variable (e.g., weeks); together,
they can provide a comprehensive evaluation of the three prediction tasks, with
smaller values indicating better simulation results.

The RMSE measures how much, on average, the model’s predictions deviate
from the actual values. By squaring the errors before averaging them, RMSE
gives higher weight to large errors. MAE represents the average absolute differ-
ence between actual and predicted values. Unlike RMSE, MAE treats all errors
equally, regardless of their magnitude. Therefore, it provides a clear represen-
tation of the average error, is less sensitive to outliers, but does not emphasize
large errors as much as RMSE.

7 Results

For each task, we report the analysis of the performance of the runs submitted
by the Lab’s participants according to the measures described in Section 6.

7.1 Task 1: Predicting ALSFRS-R Score from Sensor Data (ALS)

Clinicians monitor ALS progression through frequent visits, typically every two
to three months, to promptly detect any worsening of symptoms. Consequently,
ALSFRS-R scores usually remain fairly stable between these appointments, mak-
ing the most recent score a reliable predictor for the next assessment. While
some deterioration in at least one score is not uncommon, using the last ob-
served value as a predictive measure is both simple and effective, as most scores
will not change. This approach is particularly useful for bulbar and respiratory
scores, which show more stability in the challenge dataset, and where sensor
data might not be as effective in detecting eventual changes.

Four teams - iDPPExplorers, Mandatory, FCOOL, and UNIPD - employed
this strategy in one of their runs for Task 1, achieving the lowest errors with
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Table 4: For both MAE and RMSE, we report the average error across all twelve
ALSFRS-R scores, the average standard deviation (computed by bootstrapping
the test set one thousand times), and their respective rankings

team run MAE RANK(MAE) RMSE RANK(RMSE)

fcool locf 0.20±0.20 1 0.49±0.20 1
idppexplorers naive 0.20±0.22 1 0.49±0.22 1

unipd hold 0.20±0.21 1 0.49±0.21 1
mandatory d1 0.20±0.19 1 0.49±0.19 1

idppexplorers EN 0.22±0.17 2 0.50±0.17 2
CBMUnito RF-MonoWindow 0.23±0.19 3 0.52±0.19 3

bitua ensemble-max 0.25±0.18 4 0.54±0.18 4
bitua temporalAnalysis 0.29±0.24 5 0.61±0.24 6
unipd average 0.33±0.18 6 0.60±0.18 5
unipd logistic-ALSFRS 0.34±0.21 7 0.64±0.21 8
fcool RFClassifier 0.35±0.22 8 0.68±0.22 15
unipd rf 0.36±0.22 9 0.65±0.22 11

idppexplorers voting 0.37±0.15 10 0.65±0.15 10
bitua moremetrics 0.37±0.23 10 0.68±0.23 16

mandatory 12hist14 0.37±0.19 11 0.65±0.19 9
unipd rf-reg 0.37±0.19 12 0.64±0.19 7

mandatory 1hist09 0.38±0.31 13 0.72±0.31 30
bitua median 0.38±0.23 14 0.70±0.23 20
fcool 2nd-best-both-metrics 0.39±0.26 15 0.71±0.26 25
bitua mean 0.39±0.26 15 0.71±0.26 21

mandatory 1hist05 0.39±0.20 16 0.66±0.20 12
unipd ridge 0.39±0.20 17 0.69±0.20 17

idppexplorers gb 0.40±0.18 18 0.69±0.18 18
mandatory 1hist04 0.40±0.26 18 0.66±0.26 13
mandatory 12hist10 0.41±0.23 19 0.67±0.23 14

unipd optrun 0.41±0.19 20 0.71±0.19 22
idppexplorers svm 0.41±0.23 20 0.75±0.23 33

fcool best-both-metrics 0.41±0.22 20 0.71±0.22 26
mandatory 12hist13 0.42±0.24 21 0.72±0.24 28

bitua ensemble-avg 0.42±0.23 22 0.71±0.23 24
idppexplorers lr 0.42±0.20 23 0.73±0.20 32

mandatory 1hist03 0.42±0.24 24 0.69±0.24 19
mandatory 12hist11 0.43±0.28 25 0.72±0.28 27

fcool 3rd-best-both-metrics 0.43±0.26 25 0.78±0.26 39
mandatory d0 0.44±0.14 26 0.72±0.14 29
mandatory 1hist08 0.44±0.26 27 0.71±0.26 23

idppexplorers et 0.44±0.24 27 0.78±0.24 36
idppexplorers dt 0.44±0.22 28 0.72±0.22 31
idppexplorers knn 0.46±0.19 29 0.77±0.19 35

bitua ensemble-min 0.47±0.30 30 0.80±0.30 40
idppexplorers bestModels 0.47±0.24 31 0.81±0.24 42
idppexplorers lstm 0.48±0.27 32 0.82±0.27 43

mandatory 1hist07 0.48±0.21 33 0.75±0.21 34
mandatory 1hist02 0.48±0.32 34 0.78±0.32 37

idppexplorers nn 0.49±0.24 35 0.80±0.24 41
mandatory 1hist06 0.49±0.29 36 0.78±0.29 38

idppexplorers rf 0.51±0.29 37 0.86±0.29 47
fcool LogisticRegression 0.51±0.28 38 0.84±0.28 46

idppexplorers bagging 0.51±0.35 39 0.89±0.35 49
unipd logistic 0.51±0.27 40 0.83±0.27 45
fcool SVC 0.54±0.34 41 0.89±0.34 48
fcool XGBClassifier 0.57±0.15 42 0.83±0.15 44
fcool majority-class 0.66±0.52 43 1.09±0.52 50
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both metrics (0.20 MAE and 0.49 RMSE) and securing joint first place. The full
error scores and rankings for all submitted runs are reported in Table 4.

Note that other runs, which also utilize sensor data, demonstrate perfor-
mance very close to the first place. Due to the small size of the test set, error
estimates exhibit large standard deviations, making it impossible to assert sig-
nificant differences in the top scores.

7.2 Task 2: Predicting Patient Self-assessment Score from Sensor
Data (ALS)

Task 2 is very similar to Task 1, with several teams employing the same methods
as they did for Task 1. However, in Task 2, the ALSFRS-R assessments by
patients are less regular in timing and less consistent in scoring compared to
assessments by clinicians, although they are generally more closely spaced.

The predict-the-last-scores approach remains the top performer, albeit with
slightly higher errors (0.29 MAE and 0.58 RMSE), placing the UNIPD and
FCOOL teams in joint first place again. Full results are reported in Table 5.

7.3 Task 3: Predicting Relapses from EDSS Sub-scores and
Environmental Data (MS)

Table 6 displays the RMSE and MAE scores for all submissions made for Task 3,
with consistent scoring positions across both metrics. Additionally, the scatter
plot in Figure 1 offers a visual representation of the performance of all submitted
runs, where the x-axis denotes actual values and the y-axis represents predicted
values. Ideally, perfect predictions would result in points aligning along a straight
line with a slope of 1.

The top-performing strategy is associated with the UNIPV t3 rf run [3],
which employs a Random Forest (RF) model after thorough preprocessing stages.
Regarding the adoption of environmental features, it is notable that all sub-
missions from the UNIPV (Stefagroup) incorporate environmental variables for
relapse predictions. In contrast, the UNIPD team offers both methods with and
without the inclusion of environmental variables, achieving their best results with
the UNIPD t3 ridge noenv run, which excludes environmental variables [10].

7.4 Approaches

In this section, we provide a short summary of the approaches adopted by par-
ticipants in iDPP@CLEF. There are two separate sub-sections, one for Task 1
and 2 – focused on ALS progression prediction – and one for Task 3 – which
concerns the MS relapse prediction, using environmental data.

Tasks 1 and 2 Silva and Oliveira [14] (Team BIT.UA) focus on Tasks 1 and 2.
Their proposed approaches employ machine learning techniques that rely on RF
ensembles. They observed that the most effective solutions are based on temporal



Intelligent Disease Progression Prediction: Overview of iDPP@CLEF 2024 17

Table 5: For both MAE and RMSE, results are reported as the average error
across all twelve ALSFRS-R scores, followed by their average standard deviation
(computed by bootstrapping the test set one thousand times), and their respec-
tive rankings

metric MAE RANK(MAE) RMSE RANK(RMSE)
team run

fcool locf 0.29±0.15 1 0.58±0.15 1
unipd hold 0.29±0.15 1 0.58±0.15 1

CBMUnito RF-MonoWindow 0.31±0.16 2 0.60±0.16 2
bitua ensemble-max 0.33±0.14 3 0.61±0.14 3
bitua moremetrics 0.37±0.17 4 0.65±0.17 4
bitua mean 0.39±0.18 5 0.71±0.18 8
bitua median 0.40±0.21 6 0.69±0.21 5
fcool 2nd-best-both-metrics 0.41±0.15 7 0.71±0.15 6
bitua ensemble-avg 0.42±0.22 8 0.71±0.22 7
bitua idpp2024-bitua 0.43±0.24 9 0.72±0.24 9
unipd average 0.49±0.20 10 0.78±0.20 12
fcool 3rd-best-both-metrics 0.50±0.13 11 0.78±0.13 10
unipd logistic-ALSFRS 0.50±0.19 11 0.85±0.19 18
bitua ensemble-min 0.50±0.24 12 0.82±0.24 14
unipd rf 0.52±0.20 13 0.78±0.20 11
unipd rf-reg 0.52±0.12 14 0.82±0.12 13
fcool best-both-metrics 0.53±0.20 15 0.84±0.20 15
fcool RFClassifier 0.53±0.24 16 0.85±0.24 17
unipd ridge 0.55±0.27 17 0.85±0.27 16
fcool LogisticRegression 0.57±0.21 18 0.89±0.21 19
fcool XGBClassifier 0.59±0.17 19 0.93±0.17 20
unipd optrun 0.61±0.27 20 0.96±0.27 21
unipd logistic 0.66±0.29 21 0.99±0.29 22
fcool SVC 0.67±0.19 22 1.01±0.19 23
ubcs features100 0.82±0.43 23 1.20±0.43 26
ubcs featuresall 0.89±0.41 24 1.25±0.41 27
ubcs features10 0.94±0.49 25 1.33±0.49 28
ubcs features25 0.96±0.21 26 1.14±0.21 24
ubcs features20 1.02±0.24 27 1.18±0.24 25
fcool majority-class 1.03±0.44 28 1.47±0.44 29
ubcs features50 1.11±0.51 29 1.51±0.51 30

analysis, with the maximization strategy being the top-performing approach.
Additionally, they emphasize the importance of proper handling of missing data.
The authors noted inconsistent performance across the two tasks. Specifically,
their approaches tended to be more effective on Task 1, while performance on
Task 2 was less satisfactory. Silva and Oliveira attribute this behavior to the
variability of the underlying data: Task 1 data, produced by clinicians, was more
stable, whereas Task 2 data, produced directly by patients, appeared to be less
stable.

Barducci et. al. [1] (Team CompBiomedUniTO) tested different approaches
to preselect the sensor features to be fed to a RF Classifier. The first solution ex-
ploits the mono window approach, which keeps only sensor data recorded within
7 days before the considered questionnaire. The other approach instead considers
two windows: the first window is the same as before, and the second window in-
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Table 6: RMSE and MAE results for all the submitted runs for Task 3

Team RMSE MAE

UNIPD t3 ridge 89.84 68.59
UNIPD t3 rf reg 79.74 66.63

UNIPD t3 average 79.26 65.80
UNIPD t3 ridge noenv 78.62 61.37

UNIPV t3 lmer last 72.51 47.74
UNIPV t3 lmer first 48.07 28.05

UNIPV t3 rf 41.52 22.49

stead considers sensor data recorded when the previously available questionnaire
occurred. The second approach aims to provide the model with more information
about the changes over time. However, the irregularity of sensor data penalizes
the two-windows approach. Indeed, 20 out of 54 patients did not have two 7-day
periods with a minimum of 3 days of sensor data. As a result, only the model
using the mono window approach was submitted. In general, the results vary
significantly depending on the questionnaire and showed better performance for
the first task. The lower error in Task 1 may be due to the questionnaire being
completed by clinical staff, whose responses are typically more reliable and ob-
jective compared to the subjective opinions provided by patients. To address the
raised issue, data augmentation is proposed as a possibile solution to increase the
number of questionnaires in the training set. In this way, deep learning models
could be tested to improve predictions and leverage longer sensor data sequences.

Martins et. al. [11] (Team FCOOL) proposed a methodology consisting of
independent multi-class models, each predicting a distinct ALSFRS-R question.
The authors tested four classification models: Logistic Regression, RF, XG-
Boost, and Support Vector Machine. To manage sensor data, they first derived
static features from the longitudinal data via summarization techniques, and
then reduced the feature set using three methods: top-k selection across ques-
tions, top-k selection by question, and biclustering. In both tasks, RF achieved
top performance among the considered models, but failed to outperform the
Last-Observation Carried Forward (LOCF) baseline, except for a few individual
questions. Moreover, no consensus was found about the best feature selection or
extraction approach. Instead, top-k selection by question was the best approach
in Task 1, while biclustering in Task 2.

Mehta et. al. [12] (Team iDPPExplorers) submitted runs only for Task 1 but
analyze the approaches for Task 2 on their working notes paper. Their work
focuses on handling the temporal aspect of the sensor data, by studying how
to compress it via statistical methods that provide interpretability. Among the
set of approaches tested in their work, Mehta et. al. observe that the optimal
performance is achieved by both a naive baseline and ElasticNet regression.
Nevertheless, the authors also observe that, despite the similar performance,
the ElasticNet model is more robust and allows a better understanding of the
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Fig. 1: Actual versus Predicted values for each run submitted for Task 3

contribution of various features. While they did not take part in Task 2, they
observed that the proposed approach is able to achieve better results on self-
assessed data provided by the patients. Finally, their conclusive remark hints
that, while this preliminary analysis did not highlight any major benefit of using
sensor data, a larger dataset with a more diverse set of patients might lead to
different conclusions.

In Tasks 1 and 2, Martinello et. al. [10] (Team UNIPD) developed a broad set
of predictive models based on different methodological approaches using different
subsets of the provided variables. The aim of their study was to evaluate whether
considering wearable data to predict ALS disability leads to better performance
with respect to models that only consider disease-specific variables collected
during routine visits. They observe that collecting data from wearable devices
can improve the prediction of ALS disability status. However, patients must be
properly trained to use the sensors correctly in order to acquire high-quality data
leading to significant datasets. Otherwise, if the quality of the acquired wearable
data is poor, predicting the next visit ALSFRS-R score by simply holding the
current one seems to be a better approach. This is especially true when predicting
scores that are self-assigned by patients (Task 2), who seem to be more stable
and conservative with respect to their clinician during the disability evaluation
process over time.

Okere et. al. [13] (Team UBCS) explores different deep-learning techniques
to process data, especially to handle missing values. In particular, the authors
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exploit auto-encoders and multiple imputation techniques to handle missing val-
ues and use a RF algorithm to select relevant features. Subsequently, four deep
neural networks, such as Multi-Layer Perceptron (MLP), Feed Forward Neu-
ral Network (FFNN), Recurrent Neural Network (RNN), and Long-Short Term
Memory (LSTM), were trained to perform the two tasks. Experimental results
revealed that ensemble predictive models, such as the XGBoost algorithm, show
better performance than deep learning models. The authors link the low perfor-
mance of the models with the small size of the training data.

Task 3 Bosoni et. al. [3] (Team Stefagroup) used Topological Data Analysis
to compute personal exposure patterns and then employed two predictive ap-
proaches. The former relied on applying Linear Regression, RF, and XGBoost
to the last follow-up data. The latter used Mixed-Effects modeling on longitu-
dinal data from first to last follow-up. The results showed that incorporating
environmental variables provides information statistically significant for predict-
ing relapses. This outcome underlined the need for better methods to compute
personal pollution exposure patterns, thereby enhancing the precision of MS
progression predictions.

In Task 3 Martinello et. al. [10] (Team UNIPD) developed a broad set of
predictive models based on different methodological approaches using differ-
ent subsets of the provided variables. The aim of their study was to evaluate
whether considering environmental data to predict MS relapses leads to better
performance with respect to models that only consider disease-specific variables
collected during routine visits. They observe that environmental data can be
beneficial for predicting the occurrence of MS relapses, however, better solutions
should be explored to refine the data collection and variable extraction process
in order to obtain more precise and focused predictions.

8 Conclusions and Future Work

iDPP@CLEF 2024 is the third and last iteration of the iDPP@CLEF evaluation
campaign. The focus of this evaluation campaign was on developing AI models
capable of preemptively estimating the risks that patients affected by ALS and
MS will need medical support and to describe the progression of their disease,
to foster patient stratification and aid clinicians in providing the due care in the
most effective and rapid way.

iDPP@CLEF 2024 operated in continuation with iDPP@CLEF 2022 and
iDPP@CLEF 2023, expanding previously proposed tasks, but also identifying
novel tasks. In particular, iDPP@CLEF was organized into three tasks. The
first two tasks focused on predicting the ALSFRS-R for patients affected by
ALS, using data collected via environmental sensors and wearable devices. This
makes iDPP@CLEF 2024 the first edition of making use of data collected on
patients currently involved in the BRAINTEASER project. The third task of
iDPP@CLEF 2024 built upon the results of iDPP@CLEF 2023, by focusing on
the prediction of the disease progression of patients affected by MS. More in



Intelligent Disease Progression Prediction: Overview of iDPP@CLEF 2024 21

detail, this task focused on predicting when an MS patient will experience a
relapse. As an improvement over the previous iDPP edition, this year partici-
pants were also provided with environmental data that could have been used to
improve the AI models.

In terms of participation, 28 teams registered in the Lab, suggesting overall
interest in the topic from the research community, and 8 teams were able to
submit their results for a total of 97 submitted runs. The task that received the
most interest was the first, with 59 submissions alone.

While this cycle concludes the evaluation campaign of iDPP@CLEF, we envi-
sion several possible research paths for which iDPP@CLEF paved the way. First
of all, novel and more effective AI approaches can be developed in the future, by
using iDPP@CLEF data as training and evaluation sets. Secondly, iDPP@CLEF
has identified several guidelines and good practices that can be adapted to de-
vise novel shared tasks and evaluation campaigns in the future, either concerning
ALS and MS, other neurological diseases, or the medical domain at large.
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