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Abstract. Protecting the privacy of a user querying an Information Re-
trieval (IR) system is of utmost importance. The problem is exacerbated
when the IR system is not cooperative in satisfying the user’s privacy
requirements. To address this, obfuscation techniques split the user’s
sensitive query into multiple non-sensitive ones that can be safely trans-
mitted to the IR system. To generate such queries, current approaches
rely on lexical databases, such as WordNet, or heuristics of word co-
occurrences. At the same time, advances in Natural Language Process-
ing (NLP) have shown the power of Differential Privacy (DP) in releas-
ing privacy-preserving text for completely different purposes, such as
spam detection and sentiment analysis. We investigate for the first time
whether DP mechanisms, originally designed for specific NLP tasks, can
effectively be used in IR to obfuscate queries. We also assess their per-
formance compared to state-of-the-art techniques in IR. Our empirical
evaluation shows that the Vickrey DP mechanism based on the Maha-
lanobis norm with privacy budget ϵ ∈ [10, 12.5] achieves state-of-the-art
privacy protection and improved effectiveness. Furthermore, differently
from previous approaches that are substantially on/off, by changing the
privacy budget ϵ, DP allows users to adjust their desired level of privacy
protection, offering a trade-off between effectiveness and privacy.

1 Introduction

Information Retrieval (IR) systems are a commodity used for many tasks, in-
cluding searching for personal information, such as symptoms and diseases [7],
political opinions, or egosurfing, i.e., searching the own name or social profile,
among others. Such searches can be used to profile the user and can put at risk
their privacy [6]. For example, an insurance company might try to access the
user’s queries to determine if they have any disease, or a malicious employee
of a search engine might access the query log to blackmail them. To allevi-
ate this, proxy obfuscation approaches hide the sensitive information need, by
breaking it down into multiple non-sensitive queries that are less exposing and
can be safely transmitted to the IR system. To this end, some approaches rely
on replacing words with generalizations, i.e., hypernyms [2, 4]. Other strategies
use a local corpus to determine which words, by co-occurring in the documents
with those in the query, induce the same ranked list [3, 5, 19]. We investigate
for the first time whether Differential Privacy (DP) mechanisms, originally de-
signed for specific Natural Language Processing (NLP) tasks, can effectively be
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used in IR to obfuscate queries. DP [15] is a state-of-the-art framework meant
to release privately sensitive information. The general idea is to use a random-
ized mechanism that introduces noise into the computation. Thanks to this, the
user can “plausibly deny” the output: it is impossible to prove that the out-
put corresponds to the input of the user and is not due to the randomness of
the mechanism. DP is particularly effective in the NLP domain. A line of re-
search [18, 37, 45, 46] operationalizes DP to release text by obfuscating each
word individually. Such mechanisms work as follows: i) each word in the text is
mapped to a non-contextual embedding space; ii) the embeddings are perturbed
with noise drawn from a specific distribution; iii) each word is replaced with the
word closest to the noisy embedding. A major advantage of DP is that it allows
setting the privacy budget based on the needs of the user. This is different from
current obfuscation mechanisms in IR, which are either active or not and cannot
be tuned based on the user’s needs.

In this work, we focus on three of such mechanisms: the Calibrated Mul-
tivariate Perturbation (CMP) [18], the Mahalanobis [45] and the Vickrey [46].
These approaches were originally devised and tested for NLP tasks that include
text classification and sentiment analysis. When it comes to the NLP scenario,
the model can be trained directly on the obfuscated documents and this allows
the model itself to learn how to account for the noise within the documents.
However, this is not the case in IR: we assume the IR system to not preserve
user privacy, and to possibly be malicious. In our use case, users are the ones
concerned about their privacy. They don’t want to reveal their real information
needs and prefer to transmit obfuscated queries to the IR system while still re-
trieving relevant documents. Thus, in our use case, the IR system cannot be
trained on obfuscated queries or documents, nor should be aware that an obfus-
cation mechanism has been used. Therefore, to operationalize our mechanism,
we assume each user to locally obfuscate their query and transmit the obfuscated
query, or possibly multiple queries, to the IR system instead of their real query.

Our goal is to determine if the DP mechanisms introduced above can success-
fully obfuscate users’ information needs while still retrieving relevant documents.
More in detail, our research questions are as follows:

RQ1 Privacy Guarantees: How much the original query leaks within queries ob-
fuscated using DP obfuscation approaches, originally developed for NLP?

RQ2 Relevant Documents Retrieved : Is it feasible to exploit such DP mechanisms
to retrieve relevant documents?

RQ3 Comparing DP and non-DP Approaches: What is the equivalent DP level
for the scrambling approaches, which are the current state-of-the-art in IR?

The paper is organized as follows: Section 2 reports the main related works
while Section 3 introduces the approaches to text obfuscation developed for IR
and those developed for NLP. Section 4 delineates our experimental methodology
and Section 5 details our findings. Finally, Section 6 draws our conclusion and
outlines the future work.
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2 Related Work

In this work, we assume the user to be interested in querying a search engine,
without disclosing their real interest. Furthermore, the IR system is not cooper-
ative and does not operate toward protecting the privacy of the user. Therefore,
the query needs to be obfuscated on the user side and transmitted to the search
engine so that the latter cannot understand the real user’s interest. Three main
approaches to obfuscate the query from the IR system exist: i) Approaches based
on dummy queries; ii) Approaches based on unlinkability; iii) Approaches based
on proxy queries. Approaches based on dummy queries [14, 16, 44, 47] transmit
to the IR system, along the user’s query, a set of unrelated queries, but syntacti-
cally similar to the user’s query. Approaches based on unlinkability [8, 12, 13, 38]
rely on cryptographic and Private Information Retrieval (PIR) primitives to al-
low a federation of users to exchange the query with each other so that each
user submits the query of someone else and the system cannot profile the user.
Finally, approaches based on proxy queries [2–5, 19] rely on breaking down the
query into multiple non-sensitive queries, whose combined results might provide
an answer to the user’s query. For example, the query “throat cancer” could be
transformed into “neck”, and “tumour”, reducing the information disclosed by
each query. The disadvantage of dummy queries and unlinkability approaches is
that the original query is sent to the IR system. Therefore, approaches based
on dummy queries and unlinkability are vulnerable to machine learning attacks
that aim to identify automatically generated queries: as shown by Khan et al.
[24], Peddinti and Saxena [31, 32] this is relatively easy, with access to a small
number of real user queries. Additionally approaches based on unlinkability move
the problem from the IR system to a different user within the federation. This
vulnerability does not occur with approaches based on proxy queries. The down-
side of approaches based on proxy queries is that there is a physiological decrease
in effectiveness, which does not occur for dummy queries and unlinkability ap-
proaches. Nevertheless, we argue that a user wanting to achieve strong privacy
guarantees should be able to do so, even though this might mean renouncing part
of the effectiveness in favour of privacy. Therefore we focus on the obfuscation
approaches that rely on proxy queries.

The usage of DP in IR involves some efforts to use it to release the lo-
cal updates in the Federated Learning scenario [25, 41] and to release privacy-
preserving query logs [20, 26, 36, 48]. We are not aware of any work employing it
as the framework to obfuscate queries to be sent to the central server. Therefore,
this can be considered the first work using DP for query obfuscation.

3 Approaches

We describe here two approaches designed for IR obfuscation query generation.
We also introduce the DP framework. Finally, we present the DP mechanisms,
designed for privately releasing text, considered in this work.
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3.1 Native IR Approaches

We describe here the two major proxy query obfuscation approaches designed
for IR tasks. Arampatzis et al. [2] propose a obfuscation method based on Word-
Net [29]. For each query term, Arampatzis et al. use WordNet to extract the set
of synonyms, hypernyms, and holonyms. The approach considers sets of terms
that are two steps away on the WordNet hierarchy. The candidate obfuscation
queries are the cartesian product of the term sets. To filter out exposing queries,
a similarity measure between each candidate query and the original query is con-
sidered. The similarity is the average wup similarity [43] between each term of
the obfuscation query with all the terms of the original query. Arampatzis et al.
empirically select obfuscated queries within the range (1., 0.7] of wup similarity.

Fröbe et al. [19] extended the earlier work of Arampatzis et al. [3, 5] and
develop a statistical query obfuscation method. The approach consists of using
a local corpus to select and filter candidate obfuscation queries. Using the user’s
query on the local corpus, Fröbe et al. consider all the possible combinations of
n terms from a sliding window of terms within the top-k documents. To enhance
privacy, all the candidates containing a query term or a synonym, hypernym, or
hyponym, of it are dropped. To decide which candidate queries to submit, the
top-k documents retrieved from the local corpus using the original query are con-
sidered pseudo-relevant. The candidate queries are ranked according to nDCG
achieved in retrieving the pseudo-relevant documents from the local corpus.

3.2 Differential Privacy

Differential Privacy (DP) is considered a state-of-the-art approach for data re-
lease. Assume we have a private dataset D and we wish to compute and release
some statistics f(D), e.g., documents’ scores in response to a query. A “random-
ized mechanism” Mf is a function that takes in input a dataset D and outputs
the privacy-preserving result of f(D), by introducing some noise. Two datasets
D and D′ are defined as “neighbouring” if differ by at most one record. A ran-
domized mechanism Mf satisfies ϵ-DP iff, given a privacy budget ϵ ∈ R+, for
any pair of neighbouring datasets D and D′:

Pr[Mf (D) ∈ S]
Pr[Mf (D′) ∈ S]

≤ exp(ϵ),∀S ⊆ Image(Mf )

The smaller ϵ is, the larger the privacy guarantees, but also the larger the noise
introduced in the data. For a DP mechanism, thanks to the introduced noise,
the output of the mechanism on the two neighbouring datasets is likely similar.

Metric DP To achieve DP in a metric space, an obfuscation mechanism should
have an equal probability of obfuscating any pair of points as the same point,
irrespective of their distance. While this grants the highest level of privacy, it
also requires high levels of noise, decreasing the utility of the data. In the case
of metric spaces, it is often sufficient if the probability of obfuscating two points
with the same one is proportional to the distance between the two points. Or,
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alternatively, the proportion of sampling a certain noise is inversely proportional
to the norm of the noise itself. To this end, a relaxation of DP, called Metric-DP,
has been introduced. Metric-DP [1, 9, 27] is defined as follows: given a privacy
budget ϵ and a distance measure d : Rp×Rp → [0,∞), a randomized mechanism
M : Rp → Rp defined over a geometric space is Metric-DP iff, for any three
points in the space w,w′, ŵ ∈ Rp, the following holds:

Pr{M(w) = ŵ}
Pr{M(w′) = ŵ}

≤ exp(ϵd{w,w′})

If the d{w,w′} is small, w and w′ are more likely to be obfuscated with the same
point. Vice-versa, far apart points might be obfuscated with different points,
without violating privacy constraints.

3.3 DP Mechanisms Designed for NLP Tasks

In this work, we evaluate if it is possible to adapt to the IR scenario three DP
mechanisms that obfuscate text on a per-word basis, originally developed in the
NLP context. More in detail, these approaches take as input a sequence of words.
Each word is mapped into a non-contextual embedding, such as GloVe [33].
Then, the embedding is obfuscated by adding some appositely sampled noise
to it. To ensure that Metric-DP is achieved, the noise vector z is expected to
be sampled from a distribution f such that the probability of observing z is
f(z) ∝ exp(−ϵ||z||), i.e., the probability of sampling a noise with norm ||z|| is
inversely proportional to ||z||. Finally, the closest word to the noisy embedding
is used to obfuscate the corresponding word in the original text. We propose to
use these approaches in the IR scenario to perturb the queries instead of the
documents, as done for NLP tasks. We chose to use approaches that work on a
per-word basis, and not directly on the actual representation vector used by the
IR system. Indeed, this would require the user to have access to the encoding
procedure of the query (which can be computationally expensive). Moreover,
knowing how such representation vectors are computed, would mean that the
IR system cooperates to protect the user privacy, which is the opposite of our
case. Methods based on encoding the words locally, i.e., Local DP, ensure that
the system will not be aware of the privacy mechanism being in place, as it
will receive just a query composed of terms, as usual. Finally, being transparent
to the IR system, this approach is applicable to any IR system and portable,
avoiding the need to develop ad-hoc solutions for a specific system.

Calibrated Multivariate Perturbation (CMP) Mechanism The obfuscation of a
word according to the CMP mechanism, defined by Feyisetan et al. [18], is based
on sampling a noise vector following an n-dimensional Laplace distribution. Such
sampling works in two phases: i) an n-dimensional unitary vector p ∈ Rn is
sampled uniformly. This vector represents the direction of the perturbation. ii)
the radius of the perturbation r ∈ R+ is sampled from a Gamma distribution. To
sample p, a vector N ∈ Rn is sampled from a multivariate normal distribution,
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with location 0 and identity covariance matrix In: N ∼ N (0, In). Then p =
N/||N ||2. The radius of the noise is sampled from a Gamma distribution with
shape n and scale 1

ϵ as r ∼ Gam(n, 1
ϵ ). It is possible to observe that, the larger

the privacy requirement, i.e., the smaller the ϵ, the bigger the noise. The noise
vector z is such that z = p·r and, as proven by Fernandes et al. [17], z corresponds
to a random vector sampled from a multivariate Laplace distribution with scale
1/ϵ, thus f(z) ∝ exp(−ϵ||z||2). To perturb a word w, the noise vector z, is
added to the original word embedding ϕ(w) ∈ Rn, and the word closest to the
noisy word embedding is used as obfuscation. Feyisetan et al. [18] demonstrate
that for any word sequence W l of length l ≥ 1 and any ϵ > 0, the mechanism
CMP: W l → W l satisfies ϵd-privacy with respect to d, where d is the Euclidean
distance. The CMP mechanism [18] to obfuscate a single word is presented in
Algorithm 1.

Algorithm 1: The CMP mechanism [18]

Data: a string w, privacy parameter ϵ
1 v = ϕ(w);
2 sample z such that f(z) ∝ exp(−ϵ||z||2) as described above;
3 v̂ = v + z;
4 w = argmin ||ϕ(u)− v̂||;
5 return w;

Feyisetan et al. [18] originally employed this mechanism to release documents
for NLP use cases. In the IR scenario, we employ it to perturb the query by
applying Algorithm 1 to each query term.

Mahalanobis Mechanism Xu et al. [45] noticed how the perturbation induced
by CMP mechanism tends to be weak, especially for high ϵ. In particular, they
consider this to be caused by how the direction of the noise is chosen. Their
hypothesis is that sampling the direction of the perturbation on a circumference
(||p||2 = 1) increases the risk of sampling a point on an empty region. If this
occurs, the embedding for the original word remains the closest to the noisy
vector and the word is obfuscated with itself. Therefore, Xu et al. adapt the
CMP mechanism to increase the likelihood that the sampled noise will be toward
the direction where most of the embeddings are. Practically, this corresponds
to transforming the direction of the noise from a circumference to an ellipsis
whose orientation can be set to be towards the other embeddings. To do so, it
is necessary to modify the sampling mechanism, so that, instead of sampling
p such that ||p||2 = 1, p is sampled so that ||p||M = 1 where || · ||M is the
Mahalanobis norm [28]. The Mahalanobis norm || · ||M is defined as follows:
for a positive definite matrix Σ, the Mahalanobis norm of a vector x ∈ Rn is
||x||M =

√
xTΣ−1x. By properly setting the matrix Σ and normalizing x by its

Mahalanobis norm, we can change the orientation and eccentricity of the ellipse
around x. Xu et al. [45] define Σ ∈ Rn×n as the covariance matrix of all the
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word embeddings, divided by the mean of the variances of each embedding so
that the trace of Σ is equal to n. Using Σ defined as above ensures that the
noise is stretched toward the direction that corresponds to the largest variability
in the embedding space: where it is more likely to find other embeddings. Notice
that, the procedure provides a single matrix Σ for all the word embeddings,
regardless of the words we are trying to obfuscate. To ensure that the noise z is
sampled such that its probability distribution is f(z) ∝ exp(−e||z||M ) a vector
N is sampled from the multivariate normal distribution N ∼ N (0, In). Then,
p is such that p = Σ1/2 · (N/||N ||2). The sampling of the norm of the noise r
remains the same as for CMP. The Mahalanobis Mechanism, which we refer to
as Mhl, obfuscates every single word as in Algorithm 1, with the only difference
that, in step 2, z is sampled so that f(z) ∝ exp(−e||z||M ). To obfuscate a query
composed of multiple words, Mhl is applied independently to each word. Xu
et al. [45] demonstrate that, for any ϵ > 0 and for any sequence of words W l of
length l, Mhl satisfies ϵd-privacy with respect to the Mahalanobis distance.

Vickrey Mechanism The Mhl still tends to obfuscate a word with itself for large
ϵ. To reduce the probability of masking a token with itself, Xu et al. [46] defines
the Vickrey [39] DP mechanism (we refer to it as Vkr). The Vickrey mechanism
draws upon the Vickrey auction, a type of auction in which the highest bidder
wins but the price paid is the second-highest bid. Vkr is based on two steps: in
the first step, a noisy vector is sampled using any of the mechanisms described
above – Xu et al. [46] illustrate their approach using Mhl as the instantiating
mechanism (we indicate it with VkrMhl), but the results hold also for CMP
(VkrCMP ). In the second step, with probability Pr the word corresponding to the
closest embedding to the noisy vector is used as the obfuscation word. Vice versa,
with probability 1−Pr the word corresponding to the second closest embedding
is used as obfuscation. The probability Pr is defined as follows. We call ϕ(u1)
and ϕ(u2) respectively the closest and second closest word embeddings to v̂,
the perturbed embedding of w, and t an additional free parameter. Pr(t, v̂) =

(1−t)||ϕ(u2)−v̂||2
t||ϕ(u1)−v̂||2+(1−t)||ϕ(u2)−v̂||2 . If t = 0, then the Vkr mechanism falls back to the

instantiating mechanism. Intermediate values of t allow selecting either the first
or the second nearest neighbour depending on the size of t, but also on the
distance of the second closest neighbour to the noisy vector. We set t = 0.75,
being the most performing according to Xu et al. [46].

4 Evaluation Methodology

We would like to point out that, interpreting the results when it comes to pri-
vacy requires weighing the risk of information leakage and the effectiveness. Full
privacy protection is achieved only by transmitting white noise to the IR sys-
tem while to preserve entirely the effectiveness it is necessary to destroy the
privacy. A privacy-preserving approach is as good as it is capable of reducing
privacy leakage, while still obtaining satisfactory effectiveness, but also according
to how easy it is for the user to tune such tradeoff, based on their needs.
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Answering RQ1 To investigate how effective DP approaches are in protecting
the user information need, we compute the average similarity of the obfusca-
tion queries with respect to the original query. High similarity indicates that
the approach does not protect the user’s privacy, as the information need can be
inferred also by looking at the obfuscation queries. We propose to adopt two sim-
ilarity measures: the Jaccard similarity between the terms of the queries and a
neural sentence similarity approach relying on MiniLM [42]. The former similar-
ity allows us to verify to what extent the terms of the two queries overlap, while
the latter allows us to verify that query terms have not simply been replaced with
synonyms. This second strategy consists of encoding each obfuscation query and
the original query using MiniLM and obtaining an embedding for each query.
then, the average cosine similarity is computed between the embeddings for each
obfuscation query and the one for the original query.

Answering RQ2 We investigate whether DP approaches produce obfuscation
queries that retrieve relevant documents. Using each DP approach, we produce
a set of obfuscation queries and use it to retrieve the documents, we then evaluate
the number of relevant documents for the original user’s query retrieved by at
least one obfuscation query. If this holds, in a real-life scenario, the user interested
in retrieving documents while protecting their privacy can issue the obfuscation
queries in place of the real one, obtain the results and rerank or reindex them
locally to improve the precision, as proposed by Arampatzis et al. [2].

Answering RQ3 We consider obfuscation approaches originally devised explicitly
for the IR task and measure to what level of ϵ they can be considered equivalent.
We take into consideration the seminal work by Arampatzis et al. [2], labelled
AED, and the recent state-of-the-art solution by Fröbe et al. [19], labelled FSH.
We will compare these approaches with the DP mechanisms, based on three
axes: i) the obfuscation measure, which we define as 1 minus the sentence sim-
ilarity computed using the MiniLM representations; ii) the pooled recall; iii)
the nDCG@10 observed if we re-rank the documents pooled by the obfuscation
queries. Upon receiving 100 documents for each obfuscation query, we rerank
them using TAS-B and evaluate the quality of this ranked list. This goes beyond
the current state-of-the-art [2, 19], which does not evaluate the final rank that
the user observes. For each approach, these measures are reported on a radar plot
where, as a rule of thumb, a larger area corresponds to more desirable results.

5 Experimental Results

5.1 Experimental setup

We considered two different collections TREC Robust ‘04 [40] and TREC Deep
Learning (DL ‘19) [10]. The former relies on a corpus of documents: disks 4
and 5 of the TIPSTER collection, minus the congressional records. The latter
is based on the MS MARCO [30] passages corpus. As word embeddings, we
used GloVe [33] with 300 dimensions trained on the Common Crawl. We also
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Table 1: Average Jaccad similarity and MiniLM-based sentence similarity between the original
query and 20 obfuscation queries generated with different approaches.

Robust ‘04 DL ‘19
ϵ 1 5 10 12.5 15 17.5 20 50 No DP 1 5 10 12.5 15 17.5 20 50 No DP

Jaccard Similarity

CMP 0.000 0.006 0.225 0.512 0.772 0.915 0.965 0.988 0.000 0.002 0.109 0.299 0.537 0.731 0.855 0.976
Mhl 0.000 0.005 0.101 0.259 0.470 0.679 0.841 0.988 0.000 0.004 0.051 0.145 0.291 0.475 0.648 0.975

VkrCMP 0.000 0.005 0.096 0.159 0.188 0.196 0.195 0.239 0.000 0.002 0.054 0.099 0.139 0.171 0.167 0.200
VkrMhl 0.000 0.005 0.049 0.096 0.147 0.179 0.186 0.231 0.000 0.002 0.030 0.068 0.103 0.135 0.157 0.194

AED 0.200 0.338
FSH 0.000 0.000

scrambling MiniLM Sentence Similarity

CMP 0.074 0.100 0.396 0.672 0.871 0.961 0.987 0.996 0.024 0.032 0.214 0.458 0.681 0.824 0.903 0.952
Mhl 0.077 0.095 0.244 0.427 0.627 0.794 0.907 0.996 0.020 0.034 0.119 0.241 0.427 0.610 0.750 0.951

VkrCMP 0.077 0.100 0.278 0.412 0.511 0.578 0.622 0.760 0.028 0.032 0.137 0.211 0.308 0.372 0.413 0.565
VkrMhl 0.076 0.096 0.188 0.282 0.382 0.472 0.533 0.746 0.023 0.026 0.084 0.149 0.215 0.284 0.333 0.553

AED 0.487 0.509
FSH 0.203 0.077

experiment with other sizes of vectors, obtaining substantially identical findings,
not reported for space reasons. In terms of retrieval models, we consider two
sparse bag-of-word models, BM25 [34] and Vector Space Model (TF-IDF) [35],
and two dense bi-encoders, TAS-B [21] and Contriever [23]. The choice of using
these retrieval models stems from the fact that BM25 is a widely adopted lexical
method, mostly based on exact matching: by changing the terms in the query we
might end up losing specific terms that allow us to retrieve relevant documents.
Vice versa, both TAS-B and Contriever are dense IR models that project and
compute the similarity of queries and documents in a dense space and thus do
not rely explicitly on the exact matching of terms. Nevertheless, by obfuscating
the query terms, we lose the semantics of the query, and this might impair the
retrieval phase. By using these IR systems, we can observe how the obfuscation
approaches interact with IR systems based on different rationales.

In AED, to avoid bias, i.e., too similar or different queries from the original
one, we select for each query as obfuscation queries the 10 queries above median
wup similarity [43] and the 10 queries below. For FSH we employ the sliding
window candidate generator with a window size of 16 as it is the best performing
as originally observed by Fröbe et al. [19]. We use the parametrization reported
by Fröbe et al. [19], considering the first 10 documents retrieved by TF-IDF from
the local corpus as target documents, obfuscation queries of at most three terms,
and remove queries retrieving less than 100 documents. We use 50,000 documents
randomly sampled from the MS MARCO collection and from the TIPSTER
disks 4 and 5, as local corpora for the Robust ‘04 and DL ‘19 respectively. For
each query, we generate 20 obfuscation queries. The code is publicly available
at: https://github.com/guglielmof/24-ECIR-FF.

5.2 RQ1: Privacy Guarantees

Table 1 shows, as a proxy of the privacy achieved by the mechanisms, the simi-
larity between the original query and the obfuscation queries generated to hide
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it. As expected from a differential privacy mechanism, the higher the ϵ the higher
the similarity between the queries – with ϵ = 50 for both Robust ‘04 and DL ‘19,
CMP and Mhl achieve a Jaccard similarity higher than 97.5%. This indicates
that overall the generated queries are almost identical to the original ones and
there is no substantial privacy protection. Depending on the collection, CMP
and Mhl obtain Jaccard similarity which falls in the range 20%-30%, with ϵ in
the range [10, 12.5]. This indicates that, on average, 1 in 3 to 5 words remain
equal to the original query. Similar results can also be observed for AED. Inter-
estingly, when it comes to Vkr-based mechanisms, they tend to be much safer,
as they obtain, with ϵ = 50 less than 0.24 of Jaccard similarity on the Robust ‘04
collection, and 0.20 on the DL ‘19, 40.8% less than AED. Notice that, according
to Jaccard similarity, FSH achieves perfect privacy, i.e., zero similarity, thanks
to the fact that the words of the query are removed from the vocabulary of
words that can be used to generate obfuscation queries. However, the approach
based on the Jaccard similarity fails in assessing privacy leakage when synonyms
are used to obfuscate the words of the query. Therefore, we also measure the
similarity between the obfuscation queries and original queries using a more
semantic-oriented approach, as described in Section 4. All the approaches have
a much higher semantic similarity than what was observed for the Jaccard: in
most of the cases, words are replaced with synonyms or highly correlated words.
As for the Jaccard similarity, FSH, which explicitly removes synonyms and hy-
pernyms from the queries, is particularly safe and corresponds to a DP VkrCMP

mechanism with ϵ ∈ [5, 10] or a VkrMhl with ϵ ∈ [10, 12.5] for the Robust ‘04,
and DP VkrCMP and a VkrMhl mechanism with ϵ ∈ [5, 10] for the DL ‘19. As
observed for the Jaccard similarity, the privacy achieved by AED can be achieved
with ϵ in the range [10; 12.5] by CMP and Mhl on both collections. ϵ values that
grant a comparable level of privacy are much higher for Vkr-based mechanisms,
especially VkrMhl, on both collections. As a general observation, privacy is a
trade-off between noise and performance. It is reasonable that privacy is almost
negligible for high values of ϵ and maximized for low values of ϵ. Furthermore, it
is also intuitive that there are ϵ levels for which the DP mechanisms perform bet-
ter, at least in terms of privacy, than any other baseline. We argue that, besides
granting lower similarity at specific ϵ levels, the major advantage of DP is that it
allows to meet the privacy requirements of the user, who can specify the privacy
they would like to obtain and adapt the obfuscation mechanism consequently.

5.3 RQ2: Relevant Documents Retrieved

To assess the effectiveness of approaches based on DP, we measure the number
of relevant documents retrieved, by pooling 100 documents from the 20 obfus-
cation queries representing the same information need. Not retrieving enough
relevant documents would render the obfuscation approach unusable. As a ref-
erence point, we report the recall observed for the top 100 documents retrieved
with the original query. Notice that, the number of used obfuscation queries is
the same for DP-based approaches and for both AED and FSH. Using multiple
obfuscation queries is generally a widely adopted procedure [19? ]. Since the
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Table 2: Mean recall achieved by pooling 100 documents retrieved for each obfuscation query.

Robust ‘04 DL ‘19
ϵ ϵ

model mechanism 1 5 10 12.5 15 17.5 20 50 No DP 1 5 10 12.5 15 17.5 20 50 No DP

CMP 0.020 0.146 0.483 0.510 0.489 0.442 0.421 0.407 0.011 0.135 0.384 0.534 0.517 0.514 0.480 0.444
Mhl 0.032 0.089 0.398 0.500 0.512 0.501 0.466 0.407 0.000 0.118 0.294 0.411 0.515 0.529 0.529 0.444

VkrCMP 0.041 0.152 0.407 0.506 0.548 0.554 0.561 0.518 0.000 0.073 0.282 0.363 0.498 0.539 0.498 0.533
VkrMhl 0.021 0.133 0.304 0.409 0.493 0.544 0.556 0.530 0.016 0.039 0.263 0.286 0.419 0.479 0.514 0.506

AED 0.420 0.445
FSH 0.140 0.231

BM25

Original 0.410 0.454

CMP 0.020 0.146 0.487 0.512 0.491 0.444 0.423 0.408 0.011 0.135 0.386 0.535 0.515 0.515 0.478 0.442
Mhl 0.032 0.089 0.398 0.504 0.516 0.504 0.468 0.408 0.000 0.118 0.295 0.412 0.515 0.530 0.527 0.442

VkrCMP 0.039 0.151 0.407 0.506 0.551 0.557 0.563 0.521 0.000 0.070 0.274 0.363 0.497 0.534 0.499 0.533
VkrMhl 0.021 0.132 0.305 0.411 0.494 0.547 0.559 0.532 0.016 0.039 0.263 0.285 0.419 0.479 0.512 0.505

AED 0.420 0.443
FSH 0.139 0.231

TF-IDF

Original 0.411 0.451

CMP 0.034 0.106 0.469 0.507 0.481 0.433 0.406 0.392 0.000 0.077 0.446 0.615 0.644 0.628 0.576 0.512
Mhl 0.026 0.088 0.345 0.473 0.503 0.497 0.460 0.392 0.000 0.057 0.264 0.476 0.601 0.641 0.650 0.512

VkrCMP 0.038 0.125 0.397 0.486 0.510 0.518 0.520 0.475 0.000 0.010 0.280 0.430 0.537 0.598 0.579 0.608
VkrMhl 0.024 0.094 0.269 0.392 0.462 0.504 0.518 0.481 0.000 0.027 0.254 0.321 0.418 0.522 0.580 0.604

AED 0.419 0.497
FSH 0.204 0.204

Contriever

Original 0.392 0.528

CMP 0.027 0.080 0.434 0.477 0.444 0.398 0.369 0.356 0.000 0.063 0.392 0.615 0.636 0.622 0.575 0.498
Mhl 0.028 0.064 0.310 0.438 0.464 0.460 0.423 0.356 0.000 0.042 0.275 0.455 0.584 0.645 0.638 0.499

VkrCMP 0.025 0.086 0.355 0.448 0.483 0.490 0.495 0.446 0.000 0.025 0.245 0.398 0.534 0.585 0.579 0.600
VkrMhl 0.023 0.073 0.237 0.355 0.423 0.476 0.482 0.452 0.000 0.019 0.206 0.267 0.375 0.503 0.553 0.603

AED 0.387 0.491
FSH 0.161 0.238

TAS-B

Original 0.358 0.518

queries are noisy, the adversarial is not able to recognize what was the topic of
interest for the user. In turn, we expect each obfuscation query to return some
relevant documents, most likely in low positions of the ranking, as it is not di-
rectly linkable to the original query. Once the results are available on a secure
machine (e.g., the user’s client) they can be reordered using the original query.

Following what was observed for the similarity, as observable in Table 2, the
effectiveness varies widely over different mechanisms, with CMP and Mhl achiev-
ing higher recall for lower ϵ compared to Vkr-based mechanisms. Interestingly,
the best-pooled recall is seldom achieved with ϵ = 50 – exclusively using Vkr
mechanisms and on the DL ‘19 collection. Moreover, for all the mechanisms,
there is at least one value of ϵ for which the recall is higher than the one ob-
served using the original queries. This is due to the fact that DP approaches with
intermediate levels of ϵ automatically implement query rewriting. The usage of
query variations has a strong impact on the performance of a system [11]: by
automatically changing the words within a query with terms that are correlated
but not identical, we can pool relevant documents that are lost when we use
queries that are almost identical to the original ones, i.e., with ϵ = 50 and CMP
or Mhl mechanisms. By selecting either the closest or the second closest term,
the Vkr-based mechanisms still apply implicit query rewriting also for higher
levels of ϵ. Regardless of the collection considered, we notice that for ϵ rang-
ing between 10 and 17.5, almost all mechanisms are able to overcome the IR
state-of-the-art approaches in terms of recall. In particular, the DP approaches
overcome FSH already with low ϵ, while ϵ ≥ 15 allows for overcoming AED as
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obf

nDCG@10

recall

0.3 0.7

VkrMhl =10
VkrMhl =12.5
VkrMhl =15
AED
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(a) Robust ‘04, BM25

obf

nDCG@10

recall

0.3 0.7

(b) Robust ‘04, Cnt.

obf
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recall

0.3 0.7

(c) DL ‘19, BM25
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nDCG@10

recall

0.3 0.7

(d) DL ‘19, Cnt.

Fig. 1: Performance of different obfuscation mechanisms over three axes: pooled recall, nDCG@10
of the reranked documents, obfuscation (obf), measured as 1-similarity. Cnt. stands for “Contriever”.

well. This suggests that using DP mechanisms that were originally thought to be
used in NLP scenarios, and with additional training of the models, successfully
allows us to obtain satisfactory performance in retrieval.

5.4 RQ3: Comparing DP and non-DP Approaches

As a final analysis, we compare the most promising DP approach, the Vickrey
mechanism based on the Mahalanobis norm, with the current state-of-the-art
approaches in IR. To avoid cluttering, we focus only on BM25 and Contriever
as IR systems. Figure 1 reports the radar plots, showing the performance of dif-
ferent obfuscation approaches over the three axes mentioned above. We notice
that the area corresponding to AED approach (in red) is encompassed within
the area corresponding to VkrMhl with ϵ = 15 (green). In fact, on the Robust
‘04 collection, AED achieves nDCG@10 of 0.410 and 0.424 for BM25 and Con-
triever respectively, recall of 0.420 and 0.419, and obfuscation of 0.513. Vice
versa VkrMhl with ϵ = 15 obtains nDCG@10 of 0.416 and 0.431, recall of 0.493
and 0.462, and obfuscation of 0.618. The exception is DL ‘19 with Contriever as
the IR system, where AED has higher recall than VkrMhl (0.497 against 0.418).
Nevertheless, this larger recall does not correspond to much larger nDCG@10,
indicating that VkrMhl is preferable over AED, as it has comparable nDCG@10
(0.604 for VkrMhl against 0.607 for AED), with improved obfuscation (0.785
against 0.491). When it comes to FSH (purple), the behaviour depends on the
collection. In the DL ‘19, using VkrMhl with ϵ = 10 (blue) provides an edge
over FSH: they have comparable obfuscation (0.916 the former, 0.923 the lat-
ter), but VkrMhl has much larger nDCG@10 (0.254 compared to 0.064). On the
Robust ‘04 collection, to observe an improvement in terms of nDCG@10, it is
necessary to use VkrMhl with ϵ = 12.5 (nDCG@10 of 0.349 and 0.355 for BM25
and Contriever respectively) to overcome FSH in terms of nDCG@10 (0.140 and
0.194). Nevertheless, while VkrMhl with ϵ = 12.5 exhibits nDCG@10 perfor-
mance slightly lower than AED, it also has obfuscation (0.719) relatively close
to FSH, which has obfuscation of 0.797, much closer than AED, with obfuscation
0.513. As a general guideline, our proposal is to use VkrMhl as the obfuscation
mechanism, with ϵ chosen in the interval [10, 15], depending on the optimal
trade-off between privacy and effectiveness, as chosen by the user.
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An important aspect that should be discussed, is whether the user could be
profiled or identified by looking at the documents retrieved. While the list of
documents returned in response to an obfuscated query contains some relevant
documents (see subsection 5.3), it is also true that, as the query is obfuscated,
not all the documents retrieved will be strictly related to the topic of interest.
Therefore, each obfuscated query will contain some “speck of gold”, the relevant
documents, which will be filtered on the user side, so that the adversarial cannot
reconstruct the information need of the user by looking at the retrieved doc-
uments. Similarly, in more search engine-oriented scenarios, we could consider
that the system might profile the user, based on which documents they click. We
argue that, while present, this is an orthogonal problem to the task investigated
here. In fact, there exist approaches, such as TrackMeNot [22], which simulate
user clicks on random or non-relevant documents, to prevent the adversarial from
using the clicks done by the user to profile them.

6 Conclusion and Future Work

In this work, we analyzed for the first time the performance of three DP mecha-
nisms, originally designed for NLP, in the proxy query obfuscation IR task. These
mechanisms are the Calibrated Multivariate Perturbation, the Mahalanobis, and
the Vickrey mechanisms. We evaluated these mechanisms on the IR setting by
considering three aspects: their obfuscation capabilities, their effectiveness in
terms of recall, and their ability in allowing to retrieve highly relevant docu-
ments. To measure the obfuscation, we considered the dissimilarity between the
original query and the obfuscation queries produced by different approaches.
To measure their recall and effectiveness, we generated 20 obfuscation queries
and used them to retrieve documents from Robust ‘04 and DL ‘19. Our find-
ings highlight that the Vickrey mechanism with ϵ ∈ [10, 12.5] achieves higher
privacy guarantees, with improved effectiveness, than current state-of-the-art
approaches. Furthermore, lower or higher levels of ϵ allow for better satisfy the
user, either in terms of privacy or accuracy, depending on their inclinations.
As a future work, we plan to investigate how to perturb dense representations
of the queries and combine them with generative language models to produce
obfuscation queries with the same dense representation, but different terms.
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Indian Journal of Statistics, Series A (2008-), 80:pp. S1–S7, 2018. ISSN
0976836X, 09768378. URL https://www.jstor.org/stable/48723335.

[29] G. A. Miller. Wordnet: A lexical database for english. Commun.
ACM, 38(11):39–41, 1995. https://doi.org/10.1145/219717.219748. URL
https://doi.org/10.1145/219717.219748.

[30] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder,
and L. Deng. MS MARCO: A human generated machine reading com-
prehension dataset. In T. R. Besold, A. Bordes, A. S. d’Avila Garcez, and
G. Wayne, editors, Proceedings of the Workshop on Cognitive Computa-
tion: Integrating neural and symbolic approaches 2016 co-located with the
30th Annual Conference on Neural Information Processing Systems (NIPS
2016), Barcelona, Spain, December 9, 2016, volume 1773 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2016. URL https://ceur-ws.org/Vol-
1773/CoCoNIPS 2016 paper9.pdf.

[31] S. T. Peddinti and N. Saxena. On the Effectiveness of Anonymiz-
ing Networks for Web Search Privacy. In B. S. N. Cheung, L. C. K.
Hui, R. S. Sandhu, and D. S. Wong, editors, Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Se-
curity, ASIACCS 2011, Hong Kong, China, March 22-24, 2011, pages
483–489. ACM, 2011. https://doi.org/10.1145/1966913.1966984. URL
https://doi.org/10.1145/1966913.1966984.

[32] S. T. Peddinti and N. Saxena. Web search query privacy: Evalu-
ating query obfuscation and anonymizing networks. J. Comput. Se-
cur., 22(1):155–199, 2014. https://doi.org/10.3233/JCS-130491. URL
https://doi.org/10.3233/JCS-130491.

[33] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vec-
tors for word representation. In A. Moschitti, B. Pang, and W. Daele-
mans, editors, Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL,
pages 1532–1543. ACL, 2014. https://doi.org/10.3115/v1/d14-1162. URL
https://doi.org/10.3115/v1/d14-1162.

[34] S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gat-
ford. Okapi at TREC-3. In D. K. Harman, editor, Proceedings of The
Third Text REtrieval Conference, TREC 1994, Gaithersburg, Maryland,
USA, November 2-4, 1994, volume 500-225 of NIST Special Publication,
pages 109–126. National Institute of Standards and Technology (NIST),
1994. URL http://trec.nist.gov/pubs/trec3/papers/city.ps.gz.



18 G. Faggioli, N. Ferro

[35] G. Salton, A. Wong, and C. Yang. A vector space
model for automatic indexing. Commun. ACM, 18(11):613–
620, 1975. https://doi.org/10.1145/361219.361220. URL
https://doi.org/10.1145/361219.361220.

[36] D. Sánchez, M. Batet, A. Viejo, M. Rodriguez-Garcia, and J. Castellà-Roca.
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