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Abstract. Over the last few years, Quantum Computing (QC) has cap-
tured the attention of numerous researchers pertaining to different fields
since, due to technological advancements, QC resources have become
more available and also applicable in solving practical problems. In the
current landscape, Information Retrieval (IR) and Recommender Sys-
tems (RS) need to perform computationally intensive operations on mas-
sive and heterogeneous datasets. Therefore, it could be possible to use QC
and especially Quantum Annealing (QA) technologies to boost systems’
performance both in terms of efficiency and effectiveness. The objective
of this work is to present the first edition of the QuantumCLEF lab,
which is composed of two tasks that aim at:
– evaluating QA approaches compared to their traditional counterpart;
– identifying new problem formulations to discover novel methods that

leverage the capabilities of QA for improved solutions;
– establishing collaborations among researchers from different fields to

harness their knowledge and skills to solve the considered challenges
and promote the usage of QA.

This lab will employ the QC resources provided by CINECA, one of
the most important computing centers worldwide. We also describe the
design of our infrastructure which uses Docker and Kubernetes to ensure
scalability, fault tolerance and replicability.

1 Introduction

In the current challenging scenario where Information Retrieval (IR) and Rec-
ommender Systems (RS) systems face ever increasing amounts of data and rely
on computational demanding approaches, Quantum Computing (QC) can be
used to improve their performance. Although QC has already been applied in
several domains, limited work has been done specifically for the IR and RS fields
[6, 10, 13]. Indeed, despite there is an area of IR called Quantum IR [9, 16, 17], it
consists of exploiting the concepts of quantum mechanics to formulate IR models
and problems but it does not deal with implementing IR and RS models and
algorithms via QC technologies.
In this work we focus on Quantum Annealing (QA), which exploits special-
purpose devices able to rapidly find optimal solutions to optimization problems
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by leveraging quantum-mechanical effects. Our goal is to understand if QA can
improve the efficiency and effectiveness of IR and RS systems. So, we present a
new evaluation lab called QuantumCLEF (qCLEF)3 [12], which aims at:

– evaluating the performance of QA with respect to traditional approaches;
– identifying new ways of formulating IR and RS algorithms and methods, so

that they can be solved with QA;
– growing a research community around this new field in order to promote a

wider adoption of QC technologies for IR and RS.

Working with QA does not require particular knowledge about how quantum
physics works underneath it. There are in fact available tools and libraries that
can be easily used to program and solve problems through this paradigm.

The paper is organized as follows: Section 2 introduces related works; Sec-
tion 3 presents the tasks in the qCLEF lab; Section 4 considers some critical
evaluation aspects; Section 5 shows the design of the infrastructure for the lab;
finally, Section 6 draws some conclusions and outlooks some future work.

2 Related Works

What is Quantum Annealing. QA is a QC paradigm that is based on special-
purpose devices (quantum annealers) able to tackle optimization problems. A
quantum annealer represents a problem as the energy of a physical system and
then leverages quantum-mechanical phenomena to let the system find a state of
minimal energy, corresponding to the solution of the original problem.

These problems need to be formulated as minimization ones using theQuadratic
Unconstrained Binary Optimization (QUBO) formulation, defined as follows:

min y = xTQx

where x is a vector of binary decision variables and Q is a matrix of constant
values representing the problem to solve. The QUBO formulation is very general
and can represent many problems [8]. Then, the minor embedding step maps
the QUBO problem into the quantum annealer hardware, accounting for its
topology. This can be done automatically, relying on some heuristics. A QUBO
problem is usually solved by quantum annealers in few milliseconds.

Applications of Quantum Annealing. QA can have practical applications in
several fields due to its ability to tackle NP-Hard integer optimization problems.

QA has been previously applied to tackle IR and RS tasks such as feature
selection [10], showing feasibility and promising improvements in efficiency and
effectiveness. QA has also been applied to Machine Learning (ML) tasks. For ex-
ample, Willsch et al. [19] proposes a formulation of kernel-based Support Vector
Machine (SVM) on a D-Wave 2000Q quantum annealer, while Delilbasic et al.

3 https://qclef.dei.unipd.it/

https://qclef.dei.unipd.it/
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[4] proposes a quantum multiclass SVM formulation aiming to reduce the exe-
cution time for large training sets. Other works explore the application of QA
to clustering; for example, Zaiou et al. [21] applies it to a balanced K-means
method showing better performance according to the Davies-Bouldin Index.

3 Tasks

In the qCLEF lab there are two tasks, each with the following goals:

– find one or more possible QUBO formulations of the problem;
– evaluate the quantum annealer approach compared to a corresponding tra-

ditional approach to assess both its efficiency and its effectiveness.

In general, we expect QA to solve problems more quickly than traditional ap-
proaches, achieving results that are similar better in terms of effectiveness.

3.1 Task 1 - Quantum Feature Selection

This task focuses on formulating the well-known NP-Hard feature selection prob-
lem to solve it with a quantum annealer, similarly to other previous works [6, 10].

Feature selection is a widespread problem for both IR and RS which requires
to identify a subset of the available features (e.g., the most informative, less noisy
etc. ) to train a learning model. This problem is very impacting, since many IR
and RS systems involve the optimization of learning models, and reducing the
dimensionality and noise of the input data can improve their performance.

If the input data has n features, we can enumerate all the possible sets of
input data having a fixed number k of features, thus obtaining

(
n
k

)
possible sub-

sets. Therefore, to find the best subset of k features the learning model should be
trained on all the subsets of features, which is infeasible even for small datasets.
So, in this task we want to understand if QA can be used to solve this problem
more efficiently and effectively. Feature selection fits very well the QUBO formu-
lation: there is one variable x per feature indicating whether it should be selected
or not. The challenge lies in designing the objective function, i.e., matrix Q.

We have identified some possible datasets such as MQ2007 or MQ2008 [15]
and The Movies Dataset4 which have already been used in previous works [6,
10], LETOR4.0 and MSLR-WEB30K [15]. These datasets contain pre-computed
features and the objective is to select a subset of these features to train a learning
model, such as LambdaMART [3] or a content-based RS, and to achieve best
performance according to metrics such as nDCG@10.

3.2 Task 2 - Quantum Clustering

This task focuses on the formulation of the clustering problem to solve it with a
quantum annealer. Clustering is a relevant problem for IR and RS which involves
grouping items together according to their characteristics.

4 https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset

https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset
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Clustering can be helpful for organizing large collections, helping users to
explore a collection and providing similar results to a query. It can also be used
to divide users according to their interests or build user models with the cluster
centroids [20] boosting efficiency or effectiveness for users with limited data.

There are different clustering problem formulations, such as centroid-based
Clustering or Hierarchical Clustering. In this task, each document or user can
be represented as a vector in a similarity space and it is possible to cluster
documents based on the similarity between each other.

Clustering fits very well with a QUBO formulation and various methods have
already been proposed [1, 2, 18]. Most of them use variables x to represent the
associated cluster to a datapoint, hence the number of points and clusters is
the main limitation. There are ways to overcome this issue which can result in
approximate solutions but allow the use of quantum annealers for large datasets.

For this task, we have identified MSMARCO [11] as a possible dataset, but
due to the high number of documents in MSMARCO, we have identified an al-
ternative smaller dataset such as 20 Newsgroups 5 or Wikipedia Movie Plots 6.
From the dataset we will produce embeddings using models such as BERT [5].
The cluster quality will be measured with user queries that undergo the same
embedding process. These queries will match only the most representative em-
beddings of the clusters, avoiding computing similarities on the whole collection.
For the recommendation task, we will generate user and item embeddings using
state-of-the-art collaborative recommendation algorithms such as graph neural
networks, on datasets Yelp and Amazon-Books. The cluster quality will be mea-
sured based on whether the centroids can be used to improve the efficiency and
effectiveness of the user modeling similarly to what done in [20]. In this case
the cluster quality will be measured according to the Silhouette coefficient and
P@10.

3.3 Additional Challenges

Even though State-of-the-art quantum annealers nowadays have thousands of
qubits (e.g., the D-Wave Advantage has ∼ 5000 qubits), one crucial limitation
is that each qubit is physically connected only to a limited number of other
qubits (15-20) in a graph of a certain topology. The process of minor embedding
transforms the QUBO formulation in an equivalent one that fits in the particular
hardware topology. This process may require to use multiple qubits to represent
a single problem variable. Therefore, even if the quantum annealer has ∼ 5000
qubits, in practice it is possible to consider problems with at most hundreds
of variables. If the problem does not fit, hybrid traditional-quantum methods
exist to split the problem in smaller ones that can be solved on the quantum
annealer and then combine the results. This is usually done in a general way,
so a possible further challenge consists in finding better ways to split a prob-
lem in sub-problems exploiting its structure, as well as developing new problem
formulations that account for the limited connectivity of quantum annealers.

5 http://qwone.com/∼jason/20Newsgroups/
6 https://www.kaggle.com/datasets/jrobischon/wikipedia-movie-plots

http://qwone.com/~jason/20Newsgroups/
https://www.kaggle.com/datasets/jrobischon/wikipedia-movie-plots
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Fig. 1: The quantum annealer access time split in several steps.

4 Evaluation of Quantum Annealing

Using a quantum annealer requires several stages:

Formulation: compute the QUBO matrix Q;
Embedding: generate the minor embedding of the QUBO for the hardware;
Data Transfer: transfer the problem and the embedding to the datacenter that

hosts the quantum annealer;
Annealing: run the quantum annealer itself.

Considering effectiveness, there are at least two layers of stochasticity. First,
the embedding phase in which heuristic methods transform the QUBO formu-
lation in an equivalent one that will fit in the hardware. This process is not
deterministic: it could produce different embeddings for the same problem, that
are in principle equivalent but in practice may affect the result. Second, the an-
nealing phase that samples a low-energy solution. In some cases, many samples
might be needed to get a reliable solution. Usually one selects the best solu-
tion found, but this may result in experiments with high variance. Therefore
statistical evaluation measures are essential.

Considering efficiency, while the annealing phase in which the quantum an-
nealer is actually used may last in the range of milliseconds, transferring the
problem on the network introduces large delays and generating the minor em-
bedding may require even minutes for particularly large problems. Furthermore,
the runtime can be split in several phases, see Figure 1: first the device needs to
be programmed for the problem, then the quantum-mechanical annealing pro-
cess is run and lastly the result is read. The annealing process is extremely fast,
requiring few microseconds, but it is repeated multiple times due to the stochas-
tic nature of the device. It is indeed necessary to consider the time requirements
of all the steps involved to measure efficiency.

5 QuantumCLEF Infrastructure

We present our custom infrastructure that is required since participants cannot
have direct access to quantum annealers and we want measurements to be as fair
and reproducible as possible. As depicted in Figure 2, it is composed of several
components with specific purposes:
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Fig. 2: High-level representation of the infrastructure.

– Workspace: each team has its own workspace which is accessible through
the browser by providing the correct credentials. The workspace has a pre-
configured git repository that is fundamental for reproducibility reasons.

– Dispatcher: it manages and keeps track of all the teams’ submissions. It also
holds the secret API Key that is used to submit problems to the quantum
annealer. In this way, participants will never know the secret Key used.

– Web Application: it is the main source of information to the external users
about the ongoing tasks. Moreover, it allows teams to view their quotas
and some statistics through a dashboard. Also organizers have their own
dashboard through which it is possible to manage teams and tasks.

The system can be deployed on cloud making use of different physical machines
to handle several teams working together. Our infrastructure plays for QA a role
similar to others, such as TIRA [14] or TIREx [7], for more general evaluation
purposes. We will use the QC resources provided by CINECA that will make
available D-Wave’s cutting-edge quantum annealers thanks to an agreement al-
ready met.

6 Conclusions and Future Work

In this paper we have discussed the qCLEF lab, a new lab composed of two
practical tasks aiming at evaluating the performance of QA applied to IR and RS.
We have also discussed about the potential benefits that QA can bring to the IR
and RS fields and we have highlighted how the evaluation of both efficiency and
effectiveness should be performed. Finally, we have presented an infrastructure
designed and implemented to satisfy both participants and organizers’ needs.

qCLEF can represent a starting point for many researchers worldwide to
know more about these new cutting-edge technologies that will likely have a
big impact on the future of several research fields. Through this lab it will be
also possible to assess whether QA can be employed to improve the current
state-of-the-art approaches, hopefully delivering new performing solutions.
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