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ABSTRACT
Recent advances in Information Retrieval have shown the effec-
tiveness of embedding queries and documents in a latent high-
dimensional space to compute their similarity. While operating on
such high-dimensional spaces is effective, in this paper, we hypoth-
esize that we can improve the retrieval performance by adequately
moving to a query-dependent subspace. More in detail, we formu-
late the Manifold Clustering (MC) Hypothesis: projecting queries
and documents onto a subspace of the original representation space
can improve retrieval effectiveness. To empirically validate our
hypothesis, we define a novel class of Dimension IMportance Es-
timators (DIME). Such models aim to determine how much each
dimension of a high-dimensional representation contributes to the
quality of the final ranking and provide an empirical method to
select a subset of dimensions where to project the query and the
documents. To support our hypothesis, we propose an oracle DIME,
capable of effectively selecting dimensions and almost doubling
the retrieval performance. To show the practical applicability of
our approach, we then propose a set of DIMEs that do not require
any oracular piece of information to estimate the importance of
dimensions. These estimators allow us to carry out a dimensionality
selection that enables performance improvements of up to +11.5%
(moving from 0.675 to 0.752 nDCG@10) compared to the baseline
methods using all dimensions. Finally, we show that, with simple
and realistic active feedback, such as the user’s interaction with a
single relevant document, we can design a highly effective DIME,
allowing us to outperform the baseline by up to +0.224 nDCG@10
points (+58.6%, moving from 0.384 to 0.608).
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1 INTRODUCTION
Information Retrieval (IR) systems have benefited from the emer-
gence of pretrained Large Language Models (LLMs), leading to the
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development of new systems with improved retrieval effectiveness
over the previous state-of-the-art IR systems [10]. These new IR
systems leverage neural networks to acquire a comprehensive un-
derstanding of documents and queries [23]. Among them, the dense
IR systems rely on learning semantic representations for queries
and documents, called contextualised word embeddings. These
repesentations aim at better encoding the relevance of documents
to queries. In dense IR systems, both query and document texts
are embedded into the same latent representation space, charac-
terised by a lower dimensionality yet denser representation than
traditional IR systems. Dense IR systems differ significantly from
traditional IR approaches. Unlike traditional methods like BM25
and query language models, which rely on lexical matching – where
query terms in a document indicate relevance. On the other hand,
dense IR systems utilize signals derived from semantic similarities
in the latent space. This departure allows them to effectively ad-
dress challenges related to synonymity and polysemy thanks to
the underlying LLM [16, 17, 43, 46]. In a dense IR system where
queries and documents are encoded as multidimensional vectors,
the different dimensions of the embeddings represent features that
the model has learned to be important for representing the tex-
tual content in the latent space. Each dimension of the vector may
correspond to a specific aspect; for example, a given dimension
could capture the semantic meaning, the syntactic structure, or
other linguistic features of the encoded text. The values along those
dimensions measure the importance or presence of those features
in a given query or document. Ad hoc retrieval in this setting re-
quires identifying the document embeddings nearest to the query
one in the latent space and subsequently ranking them according
to the specified similarity measure, e.g., dot product, in line with
the clustering hypothesis [41], which posits that documents with
similar meanings tend to be relevant to the same queries,

Bengio et al. [3] formulated the well-known manifold hypoth-
esis on the latent representation spaces for images, stating that
high-dimensional data of interest often lives in an unknown lower-
dimensional manifold embedded in the representation space. There
is strong evidence supporting this hypothesis in image represen-
tations [30], and recently, several works in the natural language
processing and computational linguistics areas have found that
contextualised word embeddings from LLMs lie in low-dimensional
linear subspaces [15, 25] or nonlinear manifolds [5, 6].

We conjecture that both the clustering and themanifold hypothe-
ses hold at the same time for IR and that it is possible to find a
subspace of the original latent space that best represents the query
and the associated relevant documents. However, instead of as-
suming a single low-dimensional subspace for all the queries and
documents, we assume that each query has its low-dimensional
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subspace, i.e., we have multiple low-dimensional subspaces, one
per query, where documents can be projected as well. This aligns
with the clustering hypothesis since we speculate that the subspace
best representing a query topic and its relevant documents depends
on the query itself. Putting everything together, we formulate the
following Manifold Clustering hypothesis (MC hypothesis) for dense
IR systems:

High-dimensional representations of queries and doc-
uments relevant to them often lie in a query-dependent
lower-dimensionalmanifold of the representation space.

If our MC hypothesis holds, there is a query-dependent, low-
dimensional manifold in the latent space where retrieval is more
effective since the query and its relevant documents are closer than
in the original latent space.

While it is possible to imagine both linear and nonlinear sub-
spaces of a given latent space, we further conjecture that not all the
dimensions in the latent space of a dense representation are equally
crucial for determining the relevance of a document to a specific
query. In other terms, we assume it is possible to devise a subset of
the dimensions of the latent space, optimal to represent the query
and the documents and discard the other ones. This assumption
corresponds to restricting ourselves to seek for linear subspaces of
the original latent space, one for each query. As we will see in the
following, this additional assumption, despite possibly being a first
approximation, is highly effective and allows us to formulate sev-
eral efficient heuristics to determine such linear subspaces. Such an
assumption implies that not all the dimensions of the latent space
are needed to optimize retrieval for a given query but some of them
constitute a kind of noise. This is unsurprising when we consider
that the number of dimensions is fixed ahead independently from
queries. During training, learning algorithms globally optimize the
disposal of the embeddings in the latent space. Therefore, they
try to exploit the full dimensionality anyway, making it extremely
unlikely to completely zero-out some dimensions, which, instead,
would produce the best linear subspace for a given query.

To provide the first evidence in support of our hypothesis, we put
ourselves in an ideal case, and we assume that relevant documents
are known beforehand. In this context, we focus on different state-
of-the-art dense IR systems [16, 17, 43] and, by relying on several
TREC collections (Deep Learning 2019, 2020, DL HARD 2021, and
Robust 2004), we show that there exist query-dependent linear
subspaces, i.e., a specific type of manifold where dimensions are
zeroed, where dense IR system performance considerably improve,
moving from 0.140 to 0.308 (+119.6%) in terms of AP and from 0.360
to 0.677 (+87.8%) in terms of nDCG@10. This made us confident
that our hypothesis offers ample room for improving performance.

Then, since known relevant documents are rarely available ahead
in operational settings, we devise several methods to estimate
which dimensions to retain and which ones to discard, and we
call them Dimension IMportance Estimators (DIMEs). We consider
DIMEs leveraging statistical heuristics to estimate the importance
of each dimension and an estimator that considers some lightweight
form of user feedback to identify which dimensions are more effec-
tive for ranking. Thorough experimentation of the proposed DIMEs
with state-of-the-art dense IR systems on various TREC collections
show impressive performance improvements: up to +0.126 (+52.8%,

moving from 0.238 to 0.364) in AP and +0.224 (+58.6%, moving from
0.384 to 0.608) in nDCG@10.

The paper is organised as follows: Section 2 summarizes the
related work; Section 3 formalizes our methodology and introduces
the different DIMEs used in this paper; Section 4 reports the results
of our extensive and reproducible evaluation; finally, Section 5
draws some conclusions and outlines future work.

2 RELATEDWORK
Classical IR systems are mostly based on exact matching: the pres-
ence of a query term within a document is considered an indicator
of relevance. This approach is particularly affected by the semantic
gap: a concept can be expressed using different synonyms and the
same term might be polysemous, impairing the effectiveness of
exact matching. With the advent of Neural IR and LLMs the focus
shifted from exact term matching to semantic matching. The sys-
tems based on this novel paradigm take a piece of text, i.e., a query
or a document, and project it into a latent space using a neural net-
work. This novel representation can be either sparse, i.e., it contains
as many dimensions as the terms in the vocabulary of the corpus,
as in the case of SPLADE [13], or dense. In this paper, we focus on
IR systems relying on dense representations. Such representations
are typically smaller compared to the vocabulary size, i.e., a few
hundred dimensions, but they are also much denser compared to
sparse ones. Dense IR approaches project first the documents on
the latent space using a projection function called “encoder”. Such
documents are stored efficiently in a specialized metric index, such
as the one offered by FAISS toolkit [18]. At query time, the query
is projected on the latent space as well. The encoder used for the
query can either be the same as the one used for the documents, or
a different one. In this paper, we focus on dense models that use
the same encoder and project the query and the documents on the
same latent space. Indeed, Izacard et al. [17] empirically observed
that using the same encoder improves the robustness when the
model is applied in a zero-shot scenario, i.e., the model is trained
and tested on two different collections, and leaves unchanged the
performances otherwise. Specifically, we focus on three state-of-
the-art dense IR models: ANCE [43], Contriever [17], TAS-B [16].
ANCE is a seminal approach that relies on contrastive learning
with hard negatives: given a training query, the model is trained by
asking it to guess the relevant document between two documents,
a relevant one and a non-relevant one ranked high by BM25 (i.e.,
a hard negative). Contriever is also based on contrastive learning
and differs from ANCE mainly based on how positive and negative
examples are chosen. Topic Aware Sampling Balanced (TAS-B) is a
distillation method based on dual-teacher supervision (teacher mod-
els are BERT Cross-encoder [27] and ColBERT [20]). Furthermore,
when constructing batches, it relies on Topic Aware Sampling so
that batches contain queries on similar topics.

A neighbouring area with our proposal concerns feature selec-
tion for machine learning [19, 22, 34]. The objective of feature se-
lection is to isolate a subset of all available features to improve
a model’s effectiveness while reducing the computational cost.
There are several approaches to the feature selection task. Such ap-
proaches include the usage of ANalisys Of the VAriance (ANOVA)
or the chi-squared statistics to determine the importance of each
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feature [4, 11, 38] and approaches based on correlation or mu-
tual information to determine if some features overlap in terms of
provided information [29, 39, 45]. Furthermore, feature selection
approaches have been successfully applied to the Learning-to-Rank
task [9, 14, 31, 32]. While our DIMEs can be categorised as exam-
ples of feature selection algorithms, the major difference is that
in our case selected features change on a query-per-query basis.
Major feature selection approaches identify instead a set of fea-
tures, regardless of the instance on which to apply the machine
learning model [34]. A second difference is that, in the classical
Learning-to-Rank task, features may have a semantic meaning and
such meaning can be exploited to drive the selection procedure.
In our case, no dimension has an active meaning: the latent se-
mantic meaning is provided by the learning procedure and cannot
be interpreted. Deciding which dimensions to preserve or remove
depends on the underlying representation model and cannot be
done before test time when the query is available. Determining if
and how current feature selection approaches can applied for the
dimension importance estimation task is left as a future work.

Another line of research relevant to our work is related to Pseudo-
Relevance Feedback (PRF) models. These methods have a widely es-
tablished and rich literature, startingwith the Rocchio approach [33].
As a general pattern, PRF approaches operate by introducing ad-
ditional terms to the query. Such terms can be chosen either by
considering statistics of the terms in pseudo-relevant documents
and the corpus [1, 2, 33], or considering the similarity between
the query and the terms in a non-contextualized word-embedding
space [12, 21, 35, 36, 44]. Most of the PRF approaches can be in-
terpreted under a geometric framework. When we introduce new
words in the query, we are implicitly applying a linear transfor-
mation to its representation, to “move” it where it is more likely
that relevant documents are. Similarly, our DIMEs apply a spatial
transformation, i.e., a projection to a linear subspace where rele-
vant documents might be closer to the query. Nevertheless, there
are two major differences: i) PRF relies on linear combinations of
vectors (i.e., scaling and translations in a representation space),
while the MC hypothesis conjectures that projections are the most
effective transformations. ii) PRF operates only on the query rep-
resentation; MC hypothesis is designed to operate the projection
both on queries and documents. At the same time, as shown in Sec-
tion 4, PRF and the MC hypothesis can also synergize. For example,
pseudo-relevant documents can be used to instantiate a DIME that
operates under the MC hypothesis.

3 METHODOLOGY
Relying on our MC hypothesis and on the assumption that finding
linear subspaces is an effective strategy, in Section 3.1 we formalise
the dimension importance estimation framework and introduce our
Dimension IMportance Estimators (DIMEs), i.e., efficient methods to
assign a query-dependent importance score to the dimensions in the
latent representation. These DIMEs allow us to sort the dimensions
in decreasing order of estimated importance and to select the most
important ones, identifying the query-dependent linear subspace at
the basis of our assumption. Specifically, in Section 3.2, we define
an oracle DIME to provide experimental evidence in support of the
MC hypothesis in an ideal scenario where relevance judgments are

known. In Section 3.3, we discuss instead several DIME methods
for practical use, i.e., when relevance judgments are not known.

3.1 The Dimension Importance Estimation
Framework

Let q and {d1, ..., } denote a query and a corpus of documents rep-
resented in the latent space R𝑑 by a bi-encoder of a dense neural
model. The IR system ⟨q, {d1, ..., }⟩ takes as input the representa-
tions of the query and the documents and produces a ranked list
of documents as output. Let M

(
⟨q, {d1, ..., }⟩

)
, be an evaluation

measure which assess the performance of the IR system for the
query q. Let𝑊 denote a subspace of R𝑑 . Furthermore, let 𝜋𝑊 be
the projection operator that projects a vector from R𝑑 to𝑊 .

OurMC hypothesis implies that we can look for a query-dependent
subspace𝑊 that maximizes the retrieval effectiveness:

argmax
𝑊 ⊆R𝑑

M
(
⟨𝜋𝑊 (q), {𝜋𝑊 (d1), ..., }⟩

)
, (1)

whereM
(
⟨𝜋𝑊 (q), {𝜋𝑊 (d1), ..., }⟩

)
denotes the evaluation measure

when both the query q and the documents are projected from R𝑑

onto the subspace𝑊 by the corresponding projection operator 𝜋𝑊 .
If eq. (1) finds a subspace𝑊 where retrieval performance improves
over the full latent space in R𝑑 , then our MC hypothesis holds (at
least for the query represented by q).

Exploring any possible linear or nonlinear subspace𝑊 is not
feasible, since the solution space would be infinite; thus, we need
a way to determine a proper subspace by construction. Therefore,
we assume that a linear subspace is a suitable simplification and
that, among all the linear subspaces, we can restrict ourselves to
those obtained by zeroing out one or more dimensions of the rep-
resentations in R𝑑 . As discussed in Section 1, this assumption is
a reasonable first approximation, which might lead to a slightly
suboptimal solution, but at the great benefit of a very clear and
straightforward constructive way to determine𝑊 , as we will fur-
ther discuss in the following.

Therefore, we specialise the projection operator 𝜋𝑊 to 𝜋𝛿 , which
removes the components of a vector in R𝑑 not included in a set of
dimensions 𝛿 ⊆ {1, . . . , 𝑑}, and we rewrite eq. (1) as

argmax
𝛿⊆{1,...,𝑑 }

M
(
⟨𝜋𝛿 (q), {𝜋𝛿 (d1), ..., }⟩

)
. (2)

Even if eq. (2) restricts the infinite solution space of eq. (1) to the
finite solution space of finding the best subset of dimensions𝛿 which
maximizes M, this is still a huge solution space, corresponding to
the power set of the 𝑑 dimensions having cardinality 2𝑑 .

To make the problem computationally tractable, we introduce
an additional assumption by considering the contribution of each
dimension to retrieval effectiveness independent from each other.
Such an assumption allows us to independently choose the dimen-
sions in 𝛿 based on Dimension IMportance Estimators (DIMEs), i.e.,
functions 𝑢𝑞 : 1, ..., 𝑑 → R that associate to each representation
dimension a score estimating its importance for query q. In other
words, we assume that given two dimensions 𝑖 and 𝑗 , 𝑢𝑞 (𝑖) > 𝑢𝑞 ( 𝑗)
implies that for two sets 𝛿𝑖 and 𝛿 𝑗 differing only for the presence
of dimension 𝑖 in 𝛿𝑖 and 𝑗 in 𝛿 𝑗 , M

(
⟨𝜋𝛿𝑖 (q), {𝜋𝛿𝑖 (d1), ..., }⟩

)
>

M
(
⟨𝜋𝛿 𝑗

(q), {𝜋𝛿 𝑗
(d1), ..., }⟩

)
.
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Given the previous assumption, to address the problem in Eq.
2, we can rely on a DIME to score the 𝑑 dimensions for query q
and simply search the solution among the prefixes of the list of
dimensions ordered by decreasing DIME score. To formulate its
importance estimation, a DIME can rely on several possible sources
of information, including the query and document representations.

Using DIMEs has two significant advantages: i) it relaxes the
task, making it practical; ii) it lets us explore the behaviour of the
proposed approaches for a varying number of subspace dimen-
sions. It is worth noting that our DIMEs are query-dependent. Our
objective is not to find a global ordering of the dimensions that
optimizes the effectiveness performance on all queries but to find a
query-dependent ordering in line with the MC hypothesis.

3.2 Oracle DIME
To assess the impact of the MC hypothesis, we propose an estima-
tor that shows the superior retrieval effectiveness achievable by
removing some of the dimensions. This oracle DIME employs all
documents annotated as relevant or not relevant and thus cannot
be used in real scenarios of practical interest. On the other hand,
it is effective in demonstrating that: i) different dimensions have a
diverse degree of importance, i.e., the MC hypothesis is grounded
on the reality; and ii) there is a large margin of improvement in
the effectiveness performance that can be obtained by properly
selecting the correct dimensions in dense IR representations.

Let R be the list of annotated documents for a given query 𝑞. A
relevance label 𝑟 , represented as an integer, is associated with each
document in R. Depending on the collection, the integer label can
be a binary value or a graded relevance assessment. Moreover, let
𝑅 ∈ R𝑑×|R | be a matrix s.t. 𝑅𝑖, 𝑗 = q𝑖 ·R 𝑗

𝑖
. In other terms, the element

in the 𝑖-th row, 𝑗-th column of 𝑅 is the product between the 𝑖-th
component of the query representation q and the 𝑖-th component
of the representation of the 𝑗-th document in R. To assess if a
dimension “correlates” positively with the relevance of documents
in R, we build the relevance vector r ∈ R | R | , where the 𝑗-th element
is the relevance label of the 𝑗-th document in R. For each dimension
𝑖 , our oracle estimator 𝑢𝑜𝑟𝑞 measures the Pearson’s correlation 𝜌

between the 𝑖-th column of 𝑅, 𝑅:,𝑖 , and the relevance vector:

𝑢𝑜𝑟𝑞 (𝑖) = 𝜌 (r, 𝑅:,𝑖 ) . (3)

The oracle DIME associates the maximum importance to the dimen-
sion whose corresponding column in 𝑅 correlates the most with the
relevance labels. Thus, the better a dimension ranks the documents
according to their relevance, the more important it is.

3.3 DIMEs in Practice
Since the relevance annotations are not available in practice, we
now introduce DIMEs that, differently from oracle DIME of Eq. (3),
do not rely on such information.

Magnitude DIME. In this case, we assume that the information that
allows us to determine the importance of each dimension is already
available from the query representation q itself. Specifically, we
hypothesize that the magnitude of each dimension of the query
describes how important the dimension is for producing a good
ranking. If a dimension is particularly large, it is likely associated
with a latent facet that is of great importance to understanding

the query. On the other hand, dimensions with small magnitudes
are likely to be associated with noise and irrelevant aspects for the
query and, therefore, can be neglected. Our magnitude-based DIME
heuristic 𝑢𝑚𝑎𝑔

𝑞 for dimension 𝑖 is thus simply defined as:

𝑢
𝑚𝑎𝑔
𝑞 (𝑖) = |q𝑖 |, (4)

where q𝑖 denotes the 𝑖-th component of q. Notice that we consider
the absolute value of each element: saying that a query is particu-
larly idiosyncratic toward a specific dimension – even in negative
terms – should be of great importance to describe the query. A fil-
ter based on this heuristic will retain particularly large-magnitude
dimensions and discard small-magnitude dimensions.

PRF DIME. This DIME operates under the assumption that the first
top 𝑘𝑓 documents retrieved are relevant, and the interaction be-
tween such documents and the query can provide effective insights
on how to identify the most effective dimensions.

More in detail, given the representations d1, ..., d𝑘𝑓 of the top
𝑘𝑓 documents retrieved for the query 𝑞, which are assumed to be
pseudo-relevant, we construct the representation p of a generic
pseudo-relevant document as the centroid p of the representations
of the retrieved documents. This allows us to instantiate our PRF
DIME heuristic 𝑢𝑃𝑅𝐹𝑞 for the importance of dimension 𝑖 as follows:

𝑢𝑃𝑅𝐹𝑞 @𝑘𝑓 (𝑖) = q𝑖 · p𝑖 . (5)

PRF DIME approximates the importance of dimension 𝑖 as the prod-
uct between the 𝑖-th dimensions of the query and the centroid of
the representations of top 𝑘𝑓 pseudo-relevant documents. We as-
sume that if the alignment between the query and the archetypal
pseudo-relevant document is particularly prominent on a certain
dimension, then it is more likely that such dimension is effective
for retrieval and therefore should be retained.

LLM DIME. LLMs are the current state of the art for generating
documents. Therefore, given a query 𝑞, we harness their power
to generate an artificial document that can be used to determine
which dimensions of q are the most important. In more detail, we
employ a state-of-the-art LLM to generate an answer in response
to the query. We are not interested in investigating if the answer
returned is correct, as it will not be presented to the user but used
only for computing the DIME. To avoid introducing any form of
bias, we do not perform any prompt engineering: we directly input
the verbatim query to the LLM, without any form of preprocessing,
granting the highest possible reproducibility. Once the text in re-
sponse to the query has been generated by the LLM, we compute
its representation a in the latent space. Then, the DIME based on
LLM feedback 𝑢𝐿𝐿𝑀𝑞 is defined as follows:

𝑢𝐿𝐿𝑀𝑞 (𝑖) = q𝑖 · a𝑖 . (6)

The dimension importance is given by the product of the 𝑖-th di-
mension of the representations of the query and the LLM-generated
answer.

Active-Feedback DIME. This DIME constructs upon the LLM DIME,
by replacing the document generated by the LLM, with an actual,
human-assessed, relevant document. This importance estimator
cannot be a suitable option in an offline scenario, as it requires know-
ing, for each query, at least one relevant document. Nevertheless,



Dimension Importance Estimation for Dense Information Retrieval SIGIR ’24, July 14–18, 2024, Washington, DC, USA

it can be particularly effective when it comes to online situations.
Consider for example the case in which the user has issued a query
to a search engine and has retrieved a set of documents, under the
form of a Search Engine Result Page (SERP). After inspecting it, the
user clicks on a link corresponding to a document they consider
relevant. Such a document can be then used to instantiate a DIME,
reorganizing the SERP according to the active feedback provided by
the user. Let thus us assume to have access to a relevant document
in response to a query and let s be its representation in the latent
space. The DIME based on Active-Feedback is defined as follows:

𝑢𝑟𝑒𝑙𝑞 (𝑖) = q𝑖 · s𝑖 . (7)

In other terms, the weight of each dimension is the product of the
𝑖-th dimension of the relevant document representation and the
𝑖-th dimension of the query representation.

While this DIME has a specific area of application, i.e., real-time
retrieval, it is also effective in showing the power of DIMEs in
identifying the optimal dimensions. In turn, it represents a sort of
middle solution between the superior performance of the oracle
DIME and the performance of the other, more practical DIMEs.

4 EXPERIMENTAL RESULTS
4.1 Operationalizing DIMEs
Our DIMEs produce for each dimension a score that estimates its
expected relevance. Therefore, the higher the DIME score, the more
likely it is that the dimension is relevant and effective in producing
a good-ranked list of documents. We thus use each DIME to rank
dimensions and perform ranked retrieval by considering a lower
number of dimensions, studying the effect that such dimensionality
reduction has on retrieval performance. In this paper, we are inter-
ested in showing that reducing the number of dimensions improves
retrieval performance; we leave the task of determining the optimal
number of dimensions to retain as future work.

Given a generic DIME 𝑢, we compute the projection of the query
on the top 𝑘 dimensions. In practical terms, this corresponds to
setting to 0 the 𝑑 −𝑘 dimensions that are not among the top 𝑘 ones
according to the DIME scores. Finally, we use the novel representa-
tion of the query to rank the documents, by leaving unaltered the
original representations of documents. The zeroing of the query
components assures in fact that only the retained dimensions will
contribute to the final query/document similarity score. This kind
of operationalization of DIMEs allows for their seamless integra-
tion in already deployed retrieval pipelines: there is no need for
re-indexing the collection, but it is sufficient to operate on the query
representations only. Furthermore, it is possible to imagine future
operationalizations where computations on ignored dimensions
are skipped, increasing also retrieval efficiency.

4.2 Experimental Setup
In our experimental analysis1, we examine three dense retrieval
models: ANCE2 [43], Contriever3 [17], and TAS-B4 [16]. We utilize

1source code available at: https://github.com/guglielmof/DIME-SIGIR-2024
2https://huggingface.co/sentence-transformers/msmarco-roberta-base-ance-firstp
3https://huggingface.co/facebook/contriever
4https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b

model weights that were fine-tuned on the MS-MARCO collec-
tion and are publicly accessible on the Huggingface repository. All
these models operate in 768-dimensional latent spaces. In terms of
datasets, we consider four experimental collections: TREC Deep
Learning ‘19 (DL ‘19) [8], TRECDeep Learning ‘20 (DL ‘20) [7], Deep
Learning Hard (DL HD) [24], and TREC Robust ‘04 (RB ‘04) [42].
The first three focus on ad-hoc passage retrieval, with 43, 54, and 50
annotated queries, respectively, based on the MS MARCO passages
collection [26]. RB ‘04 contains 249 queries and is based on the
TIPSTER disks 4 and 5, minus the congressional records, corpus.
It is important to note that all the dense IR systems have been
fine-tuned on the MS-MARCO passages collection, making them
behave as in-domain IR systems for DL ‘19, DL ‘20, and DL HD.
However, for RB ‘04, it represents a zero-shot application of the
models. To instantiate the DIME based on LLMs, we used GPT4 [28].
To assess whether improvements over the baseline are statistically
significant, we use ANalysis Of the VAriance (ANOVA) [37] and
Tukey’s Honestly Significant Differences (HSD) post-hoc test [40]
with significance level 𝛼 = 0.05.

4.3 Determining if Using Fewer Dimensions is
Beneficial for Ranking

To obtain an upper bound of what could be the improvement in
terms of performance if we were able to perfectly select the optimal
dimensions, we report in Figure 1 the performance of the oracle
DIME, presented in Subsection 3.2. For each possible configuration
of collection/measure, we compute the performance of the dense
IR system when considering only the first 𝑘 dimensions sorted ac-
cording to the DIME, ranging from 10% to 100% of the total, with a
step of 10% (i.e., 10 different cutoffs). For example, given a repre-
sentation in R768, we start with the top 77 dimensions identified
by the DIME, and continue adding 10% of the dimensions at each
step. Of course, using 100% corresponds exactly to using the model
without any form of dimension importance estimation. We notice
that both TAS-B and Contriever have comparable behaviour, while
ANCE presents a widely different pattern across scenarios.

Contriever and TAS-B. For both these systems, the performance
shows a convex pattern, starting low, reaching the maximum when
more dimensions are included, and then decreasing. The oracle
DIME exhibits impressive performance improvement even if only
10% of the dimensions are retained in all scenarios. The only excep-
tion is TAS-B onDL ‘19withAverage Precision (AP) as the evaluation
measure: in this case, the performances are almost identical using
either 10% or 100% of the dimensions. Moving beyond 10% of the
dimensions retained always improves the performance. This indi-
cates that the subsequent dimensions provide the IR system with
additional relevance signals useful for increasing ranking quality.
Then, the pattern observed depends on the scenario. For example,
for the RB ‘04 and DL ‘20, the performance of both Contriever and
TAS-B does not improve by adding subsequent dimensions beyond
the first 20%. In other cases, such as DL ‘19 and DL HD when using
AP as the evaluation measure, the improvement continues until
50% to 60% of the dimensions are retained. Let us now provide some
evidence of the impressive performance boost achieved with our
method based on the oracle DIME. The improvement in AP is up
to +0.234 (+95.8%) for Contriever on RB ‘04 with 40% dimensions.

https://github.com/guglielmof/DIME-SIGIR-2024
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Figure 1: Retrieval performance using our oracle DIME when varying the
fraction of retained dimensions. Horizontal dashed lines correspond to the
performance of baseline models that use all representation dimensions.

Similarly, for nDCG@10, the improvement induced by dimension
pruning can be as big as +0.332 (+73.4%) when using TAS-B for
RB ‘04 queries with 40% dimensions. Moving forward, when more
than 60-70% of the dimensions are retained, we notice a decrease in
performance that continues until the absolute minimum is reached
when 100% of the dimensions are considered (i.e., no DIME method
is used). This indicates not only dimensions are not equally useful
ranking signals but also that approximately 20-30% of the dimen-
sions are even harmful! If we could recognize such dimensions, we
could significantly improve the ranking performance.

ANCE. Interestingly, ANCE exhibits a completely different pat-
tern. In almost all scenarios (with the exclusion of RB ‘04), if we
consider 10% of the dimensions sorted by importance, the achieved
performance is much lower than the baseline given by the original
model using all dimensions. For both DL ‘19 and DL ‘20, the perfor-
mance remains below the baseline until 70-80% of the dimensions
are considered. This indicates that, in general, for ANCE, the infor-
mation about relevance is distributed across different dimensions.
After that, we observe a peak in performance in correspondence

of 90% of the dimensions. Then, the last 10% of the dimensions are
extremely harmful to ANCE, with a severe drop in performance.
Without any dimension importance estimation, such dimensions re-
main diluted within the other dimensions as a form of noise, which
impairs the quality of the model. Despite the different behavior,
even with ANCE the performance improvement of oracle DIME
is astonishing: +0.156 (+48.1%) in nDCG@10 on DL HD; +0.316
(+87.8%) in nDCG@10 on RB ‘04.

DIME on out-of-domain collections. An interesting pattern that
can be observed is the difference between the behaviour of the
models under dimension importance pruning when applied to in-
domain and out-of-domain collections. On the out-of-domain collec-
tion, i.e., the RB ‘04, we observe a bigger performance improvement.
Vice-versa for the in-domain collections, DL ‘19, DL ‘20, and DL HD,
the improvement is variable. The most evident case is with ANCE:
on RB ‘04, ANCE improves its performance over the baseline even
when 10% of the dimensions are considered. When a dense IR model
is applied in a zero-shot fashion on an out-of-domain collection the
least important dimensions (the last 30% for Contriever and TAS-B
and 10% for ANCE), are extremely harmful. While this analysis was
carried out on an oracular DIME that cannot be applied in reality,
it provides a good measure of the phenomenon. By properly se-
lecting the dimensions, we can observe an improvement as high as
+87.8% (in the case of ANCE and RB ‘04). There is no need to train
additional models, reindex the collections, or change the pipeline:
it is enough to identify and set some dimensions to zero to obtain
such an improvement.

4.4 Assessing DIMEs Requiring or not User
Feedback

Automatic DIMEs not requiring user feedback. Table 1 reports the
performance achieved using 𝑢𝑚𝑎𝑔 to identify the most important
dimensions. We report the results that we achieve in terms of AP
and nDCG@10 when considering a variable number of retained
dimensions, from 20% to 100% (original performance) with a step
of 20%. We do not notice any relevant improvement over the base-
lines with this DIME. When there is an improvement, it occurs on
the third decimal digit and is not statistically significant. These
results suggest that the magnitude of the dimension is not the most
prominent element in determining which dimensions are the most
important. In other words, dimensions might have been weighted
high by the representation model but be not particularly relevant
for the ranking of documents. On the other hand, there might be
dimensions that received a low weight by the encoder but that are
important for the ranking. However, even with this basic DIME we
obtain effectiveness figures comparable with those of the baseline
by using about 60-40% of the representation dimensions. This al-
lows the IR system to directly skip multiplications and additions
necessary for computing the query/document similarity function
on dimensions estimated as unimportant by the DIME. This, in turn,
results in a reduction of 20-40% of the computational cost.

Nevertheless, it is likely that additional external information is
needed beyond the representation of the query to estimate dimen-
sion importance. Such information can be provided either by the list
of retrieved documents, as in 𝑢𝑃𝑅𝐹 , or by using a pseudo-relevant
document generated by a LLM. To demonstrate this, Table 2 re-
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Table 1: Retrieval performance of the considered IR models, when 𝑢𝑚𝑎𝑔 is used to identify the most informative dimensions. While in some cases we observe a
slight improvement over the baseline, such an improvement is never statistically significant.

AP nDCG@10 AP nDCG@10

Retained 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

DL ‘19 DL ‘20

ANCE .047 .241 .319 .354 .361 .143 .533 .620 .644 .643 .106 .281 .357 .389 .392 .217 .520 .604 .638 .644
Contriever .463 .486 .492 .494 .493 .648 .672 .676 .678 .675 .463 .478 .479 .479 .479 .660 .663 .664 .671 .672
TAS-B .450 .466 .472 .476 .476 .693 .710 .714 .719 .718 .440 .465 .472 .475 .475 .658 .678 .688 .685 .684

DL HD RB ‘04

ANCE .021 .126 .164 .180 .181 .068 .284 .322 .326 .325 .027 .086 .124 .138 .141 .093 .260 .326 .351 .362
Contriever .222 .238 .239 .246 .244 .362 .373 .376 .379 .377 .223 .238 .243 .245 .245 .462 .483 .494 .498 .499
TAS-B .211 .228 .232 .236 .236 .335 .377 .375 .374 .376 .189 .206 .211 .212 .212 .418 .444 .450 .454 .453

Table 2: Performance of the DIMEs that do not require explicit user feedback. In bold, the best performance observed for each triple IR system, test collection, and
evaluation measure. Values marked with ∗ are a statistically significant improvement over the baseline using all the dimensions (corresponding to Retained = 1).

AP nDCG@10 AP nDCG@10

Retained 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

DL ‘19 DL ‘20

ANCE

𝑢𝑃𝑅𝐹@1 .033 .255 .342 .372

.361

.082 .559 .644 .658

.643

.083 .288 .366 .390

.392

.175 .549 .616 .648

.644
𝑢𝑃𝑅𝐹@2 .036 .257 .339 .370 .095 .567 .637 .652 .083 .287 .366 .389 .176 .542 .612 .647
𝑢𝑃𝑅𝐹@5 .034 .257 .344 .370 .088 .568 .633 .647 .077 .290 .364 .391 .155 .545 .613 .645
𝑢𝐿𝐿𝑀 .032 .260 .351 .370 .081 .569 .651 .663 .084 .284 .374 .397 .171 .537 .629 .655

Contriever

𝑢𝑃𝑅𝐹@1 .483 .503 .507 .507

.493

.676 .685 .686 .689

.675

.488 .498 .497 .495

.479

.711∗ .703∗ .701∗ .692

.672
𝑢𝑃𝑅𝐹@2 .493 .503 .508 .507 .672 .675 .679 .685 .478 .488 .494 .495 .682 .685 .687 .685
𝑢𝑃𝑅𝐹@5 .491 .503 .511 .509 .646 .664 .680 .681 .490 .495 .497∗ .495 .698∗ .687 .690 .686
𝑢𝐿𝐿𝑀 .516 .528 .534∗ .527 .720 .742∗ .752∗ .750∗ .503∗ .512∗ .511∗ .504∗ .719∗ .722∗ .725∗ .710∗

TAS-B

𝑢𝑃𝑅𝐹@1 .487 .506∗ .505∗ .503

.476

.719 .731 .733 .729

.718

.468 .486 .491 .491

.475

.697 .699 .709 .703

.684
𝑢𝑃𝑅𝐹@2 .491 .507∗ .508∗ .503∗ .718 .733 .731 .726 .466 .481 .488 .487 .684 .698 .710 .707
𝑢𝑃𝑅𝐹@5 .495 .501 .503∗ .502∗ .709 .721 .719 .721 .465 .478 .486 .487 .683 .687 .693 .695
𝑢𝐿𝐿𝑀 .512∗ .529∗ .527∗ .521∗ .747 .749 .760∗ .755∗ .483 .498 .501∗ .500∗ .708 .706 .710 .712

DL HD RB ‘04

ANCE

𝑢𝑃𝑅𝐹@1 .015 .126 .170 .183

.181

.042 .266 .326 .332

.325

.020 .096 .134 .143

.141

.074 .284 .343 .357

.362
𝑢𝑃𝑅𝐹@2 .014 .125 .169 .182 .051 .274 .325 .328 .019 .092 .133 .143 .066 .273 .341 .356
𝑢𝑃𝑅𝐹@5 .019 .125 .174 .183 .054 .274 .330 .330 .017 .090 .131 .144 .058 .263 .334 .359
𝑢𝐿𝐿𝑀 .012 .129 .175 .186 .042 .284 .339 .348 .020 .092 .134 .146 .078 .280 .354 .371

Contriever

𝑢𝑃𝑅𝐹@1 .248 .255 .254 .254

.244

.396 .395 .387 .389

.377

.254∗ .267∗ .269∗ .269∗

.245

.512∗ .522∗ .527∗ .523∗

.499
𝑢𝑃𝑅𝐹@2 .253 .261 .261 .264 .395 .391 .394 .399 .257∗ .266∗ .268∗ .267∗ .500 .513∗ .517∗ .515∗
𝑢𝑃𝑅𝐹@5 .247 .255 .253 .252 .379 .385 .383 .387 .257∗ .267∗ .266∗ .265∗ .504 .513∗ .511∗ .512∗
𝑢𝐿𝐿𝑀 .259 .267 .270∗ .270∗ .392 .409 .414∗ .412∗ .257∗ .267∗ .269∗ .265∗ .527∗ .539∗ .539∗ .530∗

TAS-B

𝑢𝑃𝑅𝐹@1 .223 .234 .234 .237

.236

.349 .376 .374 .375

.376

.221∗ .231∗ .232∗ .230∗

.212

.458 .475∗ .475∗ .471∗

.453
𝑢𝑃𝑅𝐹@2 .226 .239 .242 .243 .359 .377 .382 .391 .227∗ .233∗ .234∗ .231∗ .465 .474∗ .476∗ .470∗
𝑢𝑃𝑅𝐹@5 .238 .239 .247 .248 .364 .371 .384 .381 .226∗ .230∗ .230∗ .229∗ .462 .460 .462 .464
𝑢𝐿𝐿𝑀 .243 .254 .258 .250 .385 .397 .401 .397 .217 .233∗ .232∗ .231∗ .462 .487∗ .488∗ .485∗

ports the results in terms of AP and nDCG@10 when filtering the
dimensions using the DIMEs described in Subsections 3.3, namely
the approaches based on PRF and a pseudo-relevant document gen-
erated using a LLM. The patterns follow what was observed for the
oracular DIME. First of all, we notice that regardless of the setup
– the triple IR model, collection, and measure considered – it is
always possible to find at least one DIME that for some fraction
of dimensions retained can remarkably outperform the baseline
using 100% dimensions. The most effective approach is 𝑢𝐿𝐿𝑀 , the
DIME that exploits a pseudo-relevant document generated using an
LLM. The overall improvement depends on multiple factors, such
as which collection is considered, which measure, and which IR

system is used. The improvement for ANCE is generally lower than
for the other systems. With ANCE it is important to use a large frac-
tion of the dimensions to provide an effective ranking. At the same
time, there are a few dimensions, approximately 20%, which are
harmful to the system: including such dimensions severely damage
the ranking. Therefore, the DIME task with ANCE is particularly
challenging as it is necessary to identify exactly the fraction of
dimensions to retain. Specifically, we observe improvements over
the baseline only when 80% of the dimensions are retained and
these improvements are never statistically significant. On the con-
trary, for both Contriever and TAS-B, we can observe an impressive
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improvement over the baseline. Indeed, the improvement for Con-
triever is between +0.023 (+9.55%) (AP for RB ‘04) up to +0.077
(+11.5%) in the case of nDCG@10 for DL ‘19. For TAS-B on the
other hand the improvement is between 0.021 (+8.96%) in the case
of AP for DL HD, to 0.053 (+11.2%) for DL ‘19. If we look at the
results in terms of DIMEs, 𝑢𝑃𝑅𝐹 is typically ineffective when we
consider ANCE. We hypothesize that the top retrieved documents
are not sufficiently relevant to represent effective pseudo-relevant
documents. Vice-versa, in the case of both Contriever and TAS-B,
𝑢𝑃𝑅𝐹 provides an improvement on average, although not always
significant. As a general trend, when it comes to 𝑢𝑃𝑅𝐹 , small values
of 𝑘𝑓 are more effective than large ones. The improvement provided
by 𝑢𝐿𝐿𝑀 on the other hand is always statistically significant for
Contriever and TAS-B, except for TAS-B on the DL HD collection.
As for the oracle DIME, the analysis highlights the large impact of
using DIMEs for zero-shot application of IR models: when it comes
to the RB ‘04 collection, in almost all scenarios there is a significant
improvement over the baseline for both Contriever and TAS-B.

A Specific Use case: When a User Feedback is Available. The pre-
vious experiments show that DIMEs, especially 𝑢𝐿𝐿𝑀 , are – to
various extents – effective in identifying the most important dimen-
sions and thus improve the retrieval in a completely automatic way.
Nevertheless, we can easily imagine a hybrid scenario in which a
user provides some feedback. Consider for example a user clicking
on a relevant document of a SERP. In this case, we receive active
feedback making us aware of a document that the user considers rel-
evant to the query. Can we exploit such information to improve the
retrieval by following our DIME approach? To this end, we use the
active-feedback DIME𝑢𝑟𝑒𝑙 . In particular, for each query, we assume
that the user provides us with feedback on a single document that
is highly relevant to the query. To simulate such feedback, for each
query, we randomly pick a document with maximum relevance
among those annotated for the query. We leave it as future work
determining what happens when partially relevant or non-relevant
documents are used as feedback. For DL ‘19, DL ‘20, and DL HD
we randomly pick a document annotated with relevance “3” – the
maximum – for queries having them, else “2”. For RB ‘04 we sample
among documents annotated with either “2” or “1”, depending on
the maximum relevance of the documents annotated for the query.
Once we have a relevant document for each query, we instantiate
𝑢𝑟𝑒𝑙 and use the products of the weights in each dimension of the
representations of the query and the relevant document to sort
the dimensions in order of importance. Table 3 shows the perfor-
mance achieved if, based on such active-feedback DIME, we retain
a varying fraction of the representation dimensions. To simulate
a real-life scenario, Table 3 reports the results when considering
a single relevant document returned as feedback. First of all, it is
interesting to notice that in all scenarios there is an improvement
over the baseline. In particular, in the case of Contriever and TAS-
B, the improvement is significant (and very large), regardless of
the collection or evaluation measure considered. The maximum
improvement is observed on the DL HD, where Contriever and
TAS-B reach an impressive improvement in nDCG@10 of +0.220
(+57.7%) and +0.225 (+58.6%), respectively. ANCE, on the other hand,
remains the most challenging model, with improvements that are
not significant, although they are quite large in some cases (e.g.,

+0.056 of nDCG@10 with DL HD). Table 3 assumes a single rele-
vant document as active feedback, to obtain comparable results.
Nevertheless, we can imagine that different users might click on
different documents. We are thus interested in determining if, when
using different documents as feedback, the user will observe widely
different performances. To this end, we repeat the experiment men-
tioned above 1,000 times: for each query, we pick a random highly
relevant document and use it to instantiate 𝑢𝑟𝑒𝑙 . In this setting, we
carry out retrieval and measure the average performance over the
test queries of DL ‘19. Figure 2 shows the results of this experi-
ment. Specifically, the plots report the distribution of nDCG@10
scores measured by randomly selecting 1,000 times the relevant
document used to instantiate 𝑢𝑟𝑒𝑙 as a function of the fraction of
dimensions retained. In line with Table 3 (but also with the oracle
DIME used in Figure 1) for both Contriever and TAS-B (Figures 2b
and 2c), all the fractions of retained dimensions allows improving
the performance over the baseline (dashed red line). In the case of
Contriever, we see that the settings using 0.4 or 0.2 of the dimen-
sions obtain the best performance, while we achieve slightly lower
nDCG@10 scores with 0.6 and 0.8 even if, also in these cases, we
strongly outperform the baseline. Similarly, for TAS-B, 0.6, 0.4, and
0.2 achieve almost identical top performance, while 0.8 performs
slightly lower even if always better than the baseline. On average,
the choice of the relevant document instantiating the DIME has a
limited impact as the performances are distributed in an interval
of ±0.025 around the mean. For ANCE (Fig. 2a), in line with previ-
ous analyses, the improvement is observed only when 60%/80% of
the dimensions are retained. Even in this case, the improvement is
observed independently of the relevant document considered.

To conclude the analysis of our methodology, it is worth noting
that the 𝑢𝑚𝑎𝑔 , 𝑢𝑃𝑅𝐹 , and 𝑢𝐿𝐿𝑀 were entirely automatic – therefore,
they represent a full-fledged improvement over the current state
of the art. On the contrary, the results of the 𝑢𝑟𝑒𝑙 DIME cannot be
compared with purely automatic ranking strategies, as it requires
some active feedback from the user. Nevertheless, its application is
simple as it requires a single relevant document – we can rely for
example a click of the user. Thus, it can be used online to reduce the
dimensions and retrieve more precise new documents or re-rank
those already retrieved. Finally, it provides a clear view of what are
the achievable improvements using proper DIME techniques.

5 CONCLUSION AND FUTUREWORK
This paper introduces theMC hypothesis for the latent space learned
by dense IR neural models: “high-dimensional representations of
queries and documents relevant to them often lie in a query de-
pendent lower-dimensional manifold of the representation space”.
According to this hypothesis, for a given query there is a subspace
of the learned representation space where the representations of
relevant documents tend to cluster closer around the query repre-
sentation. To ground our hypothesis in empirical reality, we focus
on searching such subspaces by assuming dimension independence
and restricting our search to linear subspaces, i.e., subspaces of the
original space where some dimensions are zeroed. To address this
task practically, we define the problem of Dimension Importance
Estimation. Given a dense IR model and a query, it consists of de-
termining which dimensions of the high dimensional space are the
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Table 3: Performance of the Active-Feedback DIME. Contriever and TAS-B show a significant improvement, regardless of the proportion of retained dimen-
sions.ANCE improves when 60-80% dimensions are retained. Values marked with ∗ are a statistically significant improvement over the baseline using all the
dimensions (corresponding to Retained = 1).

AP nDCG@10 AP nDCG@10

Retained 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

DL ‘19 DL ‘20

ANCE .034 .271 .363 .381 .361 .075 .565 .672 .668 .643 .059 .279 .378 .393 .392 .134 .571 .645 .668 .644
Contriever .553* .568* .563* .552* .493 .779* .781* .771* .761* .675 .517* .530* .531* .523* .479 .789* .782* .774* .745* .672
TAS-B .555* .569* .562* .551* .476 .818* .826* .815* .804* .718 .503* .516* .521* .515* .475 .783* .797* .786* .765* .684

DL HD RB ‘04

ANCE .027 .152 .196 .195 .181 .062 .328 .384 .365 .328 .018 .094 .147 .151 .141 .062 .276 .368 .376 .362
Contriever .360* .370* .359* .343* .245 .590* .601* .574* .542* .381 .289* .312* .319* .317* .245 .621* .650* .647* .639* .499
TAS-B .357* .364* .353* .340* .238 .607* .608* .594* .568* .384 .267* .281* .282* .275* .212 .594* .606* .609* .586* .453
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Figure 2: Distribution of performance on DL ‘19 for 𝑢𝑎𝑐𝑡 when using different relevant documents. The dashed line represents the original performance (i.e.,
100% dimensions retained). Contriever and TAS-B improves always, ANCE only when at least 60% dimensions are retained.The dot corresponds to the performance
reported in Table 3.

most important to induce the optimal document ranking. At the
same time, we define a novel class of models, the Dimension IMpor-
tance Estimators (DIMEs). We propose an oracle DIME which allows
us to show that, by appropriately selecting optimal dimensions, we
improve the original retrieval performance up to 120% (from 0.140
to 0.308). While the oracle DIME effectively highlights that the
MC hypothesis has ground in reality, it relies on the availability
of relevant documents and cannot be used in practice. Therefore,
we propose a set of DIMEs that exploits different heuristics, such
as the magnitude of the dimensions of the query representation,
pseudo-relevant feedback documents, and pseudo-relevant docu-
ments generated by a LLM. Even in this case, the improvement is
impressive, allowing to gain +11.5% in the best scenario, moving
from 0.675 to 0.752 of nDCG@10. Finally, we propose an active-
feedback DIME that, by using a single relevant document provided
as active feedback, is capable of largely improving the retrieval
performance of dense IR models. The improvement in this scenario
is as big as +52.8% (moving from 0.238 to 0.364 of AP) and +58.6%
(moving from 0.384 to 0.608 of nDCG@10). Furthermore, a major ad-
vantage of DIME models is that they can be applied in any existing
dense IR pipeline – either for ranking or re-ranking. It is sufficient
to use a DIME model to identify the per-query subset of dimensions
to retain to obtain a significant performance improvement.

Among future developments, we plan to tackle the automatic
selection of the optimal number of dimensions to be retained. Ad-
ditionally, we plan to explore DIME based on other signals, such as
previous utterances in the conversational search scenario or query
reformulations. Finally, we plan to develop DIMEs based on linear
combinations of the dimensions.
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