/* Copyright (C) 2024 Alessandro Languasco */ /********** ****** COMPUTATION OF OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP ******* ****** and gamma_S in Moree EK-Artin paper (two different ways) ****** ****** and gammaK7, gammaN12, gammaSerre in L.-Moree Euler's constants in AP ****** **********/ \\ Global variables global(CHI_VECTOR, NUM_PRIME_FACTORS_D,P_PRIMES, VALCHI_CONJ_A_MATRIX, VALCHI_P_MATRIX); global(DFACTORS, TWOPII, S5VECTOR, S2VECTOR, GAMMA1VECTOR, LOG_DFACTORS, LOG_P, LOG_P_OVER_P_TO_S, LOG_DER_AT_1, SJCHI_VECTOR); global(SQUARE_FREE_UP_TO_J, NUMPRIMES_UP_TO_P, ONE_OVER_P_MINUS_ONE); global(ONE_OVER_P_D_MINUS_ONE, ORD_CHI_J_MATRIX, CHI_J_MATRIX, ISPRIMEDIVISOR_OF_D, NUMPRIMES_UP_TO_D, PRIMES_UP_TO_D); \\ Routine to compute the value of L'/L(s,chi) when chi is a Dirichlet character (also imprimitive) {L_derlog(L, chi, G, d, s) = local(conductor, Gstar, chistar, corr_chi_imprim, val_chistar_d1, ud1, L_value, L_prime_value, L_derlog_value, d1); L_value = lfun(L, s); \\ value of L at s for the attached primitive character L_prime_value = lfun(L, s, 1); \\ value of L'at s for the attached primitive character L_derlog_value = L_prime_value / L_value; \\ value of logarithmic derivatie at s for the attached primitive character conductor = zncharconductor(G, chi); if (conductor < d, \\ chi is imprimitive \\ computing the correction sum for the logarithmic derivative [Gstar,chistar] = znchartoprimitive(G, chi); \\ chistar is the primitive character such that chi is induced by chistar corr_chi_imprim = 0.; for(i=1, NUM_PRIME_FACTORS_D, d1 = DFACTORS[i]; \\print("d1 = ", d1); if(conductor % d1 <> 0, \\ d1 not divides both d and conductor of chi and conductor <> 1 ud1 = chareval(Gstar, chistar, d1); val_chistar_d1 = exp(TWOPII * ud1); \\ value of chistar(d1) corr_chi_imprim += val_chistar_d1 * LOG_DFACTORS[i] / (d1^s - val_chistar_d1) \\corr_chi_imprim += val_chistar_d1 * log(d1) / (d1^s - val_chistar_d1 ) ; ); ); L_derlog_value += corr_chi_imprim ; ); return(L_derlog_value); } \\ Routine to compute the sum p <= P of chi(p) log(p) / (p^s - chi(p))); to get the truncated log derivative L(s, chi) {chi_sum_fin(P, chi, G, d, s) = local(fin_sum_chi, val_chi_p, up, p); fin_sum_chi = 0.; \\ computation of the truncated sum over chi(p) log(p) / (p^s - chi(p) \\ working on (p,d) == 1 \\i = 1 ; \\forprime (p = 2, d, for (i = 1, NUMPRIMES_UP_TO_D, \\if ( d % p <> 0, \\ p does not divide d if ( ISPRIMEDIVISOR_OF_D[i] == 0, p = PRIMES_UP_TO_D[i]; up = chareval(G, chi , p ); val_chi_p = exp(TWOPII * up); fin_sum_chi += val_chi_p * LOG_P[i] /(p^s - val_chi_p); ); \\i+=1; ); \\i = NUMPRIMES_UP_TO_D + 1 ; \\ working on (p,d) == 1 \\forprime (p = d+1, P, for (i = NUMPRIMES_UP_TO_D + 1, NUMPRIMES_UP_TO_P, p = P_PRIMES[i]; up = chareval(G, chi , p ); val_chi_p = exp(TWOPII * up); fin_sum_chi += val_chi_p * LOG_P[i] /(p^s- val_chi_p); ); return(fin_sum_chi); } {sum_primes_derlog_AP(d, u, s, prec=19) = local(dminusone, A, K, P, err1, G, moebius_vector, Smallprimes_sum, chi, dcoprimes, toterr, t, real_s, resfile, L2, elaptimecomp, seconds, minutes, millisec, ua, Sjchi,num_square_free, Sjkchi, err2, factorp, i, accuracy, phid, J, point, jtimess, jtimesu, aux, sum_chars, numdcoprimes, p, chi_to_j, j, real_u, kjtimess, L2_derlog_value, L2trunc_derlog, fin_sum_chi_j, results); if (d > 100, error("d must be <= 100")); if (d <= 2, error("d must be >= 3")); if (floor(prec)<> prec, prec = floor(prec); print("prec forced to be an integer"); ); if (prec < 5, error("prec must be an integer >= 5")); default(realprecision, prec+10); \\ set working precision; dminusone = d-1; phid = eulerphi(d); resfile = fileopen("sum_primes_derlog_AP-results.csv", "a"); \\filewrite(resfile,"d; a; u; s ; sum_primes_derlog_AP; accuracy"); print("****** COMPUTATION OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP *******"); print("****** WITH A PRECISION OF AT LEAST ", prec," DECIMAL DIGITS *******"); print("d = ", d); print("u = ", u); print("s = ", s); \\ settings of the main parameters for a precision of about 100 decimal digits gettime(); real_s = real(s); real_u = real(u); if (real_s <= real_u + 1, error ("Re(s) must be > Re(u) + 1")); t = imag(s); A = 3200; P = A*d; \\ is P in the file if (P > 9600, P = 9600); accuracy = 10^(-prec-10); K = 2; err1 = P^(1+real_u)*log(P) / real_s * 1.0/(P^(K*real_s)*(P^real_s-1.0)) ; until (err1 < accuracy/2, K += 1; err1 = P^(1+real_u)*log(P) / real_s * 1.0/(P^(K*real_s)*(P^real_s-1.0)) ; ); \\J = 26; J = 2; err2 = P^(2+real_u)/real_s * 1.0/(P^(real_s*(J+1)) -1.0); until (err2 < accuracy/2, J += 1; err2 = P^(2+real_u)/real_s * 1.0/(P^(real_s*(J+1)) -1.0); ); print("-------------------------- "); default(format,e); print ("Accuracy parameters: "); if (prec == 19 , print("default precision is with prec = 19")); print("prec = ", prec, "; A = ", A, "; P = ", P, "; K = ", K, "; J = ", J); print("Accuracy is 10^(-",prec+10,")"); print("err1 = ", err1); print("err2 = ", err2); toterr = err1+err2; print("toterr = ", toterr); print("-------------------------- "); default(format,f); \\ setting the group G = znstar(d, 1); TWOPII = 2*Pi*I; \\ PRECOMPUTATIONS moebius_vector = vector(J); moebius_vector[1] = 1; for (j = 2, J, moebius_vector[j] = moebius(j) * 1.0); num_square_free = hammingweight(moebius_vector); SQUARE_FREE_UP_TO_J = vector(num_square_free); SQUARE_FREE_UP_TO_J[1] = 1; i=2; for (j = 2, J, if (moebius_vector[j] <> 0, SQUARE_FREE_UP_TO_J[i] = j; i+=1 ); ); NUMPRIMES_UP_TO_P = primepi(P); LOG_P = vector(NUMPRIMES_UP_TO_P); LOG_P_OVER_P_TO_S = vector(NUMPRIMES_UP_TO_P); ONE_OVER_P_MINUS_ONE = vector(NUMPRIMES_UP_TO_P); P_PRIMES = vector(NUMPRIMES_UP_TO_P); i=1; forprime ( p=2, P, factorp = p; P_PRIMES[i] = factorp; LOG_P[i] = log(factorp); LOG_P_OVER_P_TO_S[i] = LOG_P[i]/factorp^s; ONE_OVER_P_MINUS_ONE[i] = 1.0/(factorp - 1.0); i += 1 ); \\ generating the list of integers <= d-1 coprime with d dcoprimes = vector(phid); i=1; dcoprimes[1]=1; for(m=2, dminusone, if (gcd(m,d) == 1, i+=1; dcoprimes[i]=m ) ); numdcoprimes = #dcoprimes; \\ generating the non-principal Dirichlet characters mod d \\ and the orders of his powers CHI_VECTOR = vector(phid); CHI_J_MATRIX = matrix(phid, J); i=1; foreach(dcoprimes, m, \\ m = 1 corresponds to the principal character mod d CHI_VECTOR[i]=znconreychar(G,m); CHI_J_MATRIX[i,1] = CHI_VECTOR[i]; \\for ( j = 2, J, foreach(SQUARE_FREE_UP_TO_J,j, CHI_J_MATRIX[i,j] = charpow(G, CHI_J_MATRIX[i,1], j); ); i+=1; ); \\ DFACTORS contains the list of prime factors of d \\ it is needed to handle the L functions associated to imprimitive characters DFACTORS=factor(d)[,1]; NUM_PRIME_FACTORS_D = #DFACTORS; \\print(DFACTORS); \\print(NUM_PRIME_FACTORS_D); LOG_DFACTORS = vector(NUM_PRIME_FACTORS_D); ONE_OVER_P_D_MINUS_ONE = vector(NUM_PRIME_FACTORS_D); for(i=1, NUM_PRIME_FACTORS_D, p = DFACTORS[i]; factorp = p*1.0; ONE_OVER_P_D_MINUS_ONE[i] = 1.0/(factorp - 1.0); LOG_DFACTORS[i] = log(factorp); ); \\ ISPRIMEDIVISOR_OF_D contains 1 or 0 depending if p<=d divides d or not NUMPRIMES_UP_TO_D = primepi(d); ISPRIMEDIVISOR_OF_D = vector(NUMPRIMES_UP_TO_D); PRIMES_UP_TO_D = vector(NUMPRIMES_UP_TO_D); i = 1 ; forprime (p = 2, d, PRIMES_UP_TO_D[i] = p; if ( d % p == 0, ISPRIMEDIVISOR_OF_D[i] = 1 ); i+=1 ); \\ S5VECTOR stores the value of the sum over each non trivial character S5VECTOR = vector(numdcoprimes); \\ initialised with zeros SJCHI_VECTOR = vector(phid); for(m=1, phid, \\ we run over the characters chi = CHI_VECTOR[m]; Sjchi = 0; \\for (j=1, J , foreach(SQUARE_FREE_UP_TO_J,j, chi_to_j = CHI_J_MATRIX[m,j]; L2 = lfuncreate([G, chi_to_j]); Sjkchi = 0; jtimess = j*s; jtimesu = j*u; kjtimess = jtimess; for(k = 1 , K, point = kjtimess - jtimesu; fin_sum_chi_j = chi_sum_fin(P, chi_to_j, G, d, point); L2_derlog_value = L_derlog(L2, chi_to_j, G, d, point); L2trunc_derlog = L2_derlog_value + fin_sum_chi_j; Sjkchi += L2trunc_derlog; kjtimess += jtimess; ); Sjchi += moebius_vector[j]* Sjkchi; ); SJCHI_VECTOR[m] = Sjchi; ); VALCHI_CONJ_A_MATRIX = matrix(numdcoprimes,phid); i=0; foreach(dcoprimes, a, i += 1 ; sum_chars = 0; for(m=1, phid, \\ we run over the characters chi = CHI_VECTOR[m]; ua = chareval(G, chi , a ); VALCHI_CONJ_A_MATRIX[i,m] = exp(-TWOPII * ua); \\ conjugate character sum_chars += VALCHI_CONJ_A_MATRIX[i,m]* SJCHI_VECTOR[m]; ); S5VECTOR[i] = -sum_chars/phid; ); S2VECTOR = vector(numdcoprimes); i=0; foreach(dcoprimes, a, i += 1 ; Smallprimes_sum = 0; j = 0; forprimestep(p = 2, P, Mod( a, d), j+=1; Smallprimes_sum += p^u * log(p)/( p^s-1) ; ); S2VECTOR[i] = Smallprimes_sum; ); print(" RESULTS "); elaptimecomp=gettime(); print("-------------------------- "); i=0; results = matrix(numdcoprimes,2); if (u == 0, print("d;a;s"), print("d;a;u;s")); foreach(dcoprimes, a, i += 1 ; aux = S5VECTOR[i] + S2VECTOR[i] ; if (t == 0, aux = real(aux)); results[i,1] = aux; results[i,2] = toterr; print("sum_primes_AP (", d , ";" , a , ";" , u , ";" , s ,") = ", aux); filewrite1(resfile,d); filewrite1(resfile,";"); filewrite1(resfile,a); filewrite1(resfile,";"); filewrite1(resfile,s); filewrite1(resfile,";"); filewrite1(resfile,aux); filewrite1(resfile,";"); default(format,e); default(realprecision,5); filewrite(resfile,toterr); default(format,f); default(realprecision, prec+10); ); print("-------------------------- "); \\fileclose(resfile); print("-------------------------- "); print("****** COMPUTATION TIME ********"); seconds=floor(elaptimecomp/1000)%60; minutes=floor(elaptimecomp/60000); millisec=elaptimecomp - minutes*60000 - seconds*1000; print("Computation time: ", minutes, " min, ", seconds, " sec, ", millisec, " millisec"); print("****** END PROGRAM ********"); return(results); } {gammaK7() = local(ret_val, toterr, prec, class2, class3, class4, class5, results, results_pow3, errors_pow3, err_class2, err_class3, err_class4, err_class5, gamma71, gamma76); prec = 100; default(realprecision, prec+10); \\ set working precision; results = matrix(6,2); results_pow3 = vector(6); errors_pow3 = vector(6); results = sum_primes_derlog_AP(7,0,3,prec); \\ second parameter = 0 : is (-1)*(log der at 3) results_pow3 = results[,1]; errors_pow3 = results[,2]; class2 = results_pow3[2]; class3 = results_pow3[3]; class4 = results_pow3[4]; class5 = results_pow3[5]; err_class2 = errors_pow3[2]; err_class3 = errors_pow3[3]; err_class4 = errors_pow3[4]; err_class5 = errors_pow3[5]; gamma71 = 0.52481504069249735626252234114953328990619486140490967834864672236535655116974342670993724978972138602916219370; gamma76 = 0.39336339395050524247328579386987665754303292490810610600748306027135634682241512916893364947514410015989585045; ret_val = -log(7)/6 + 3*gamma71 + 3*gamma76 - 3*(class2+class3+class4+class5); toterr = 3*(err_class2 + err_class3 + err_class4 + err_class5); print(" ***************************"); print("gammaK7 = ", ret_val); default(format,e); print("toterr = ", toterr); default(format,f); \\ verification d = 7; G = znstar(d, 1); phid = eulerphi(7); dminusone = d-1; dcoprimes = vector(phid); i=1; dcoprimes[1]=1; for(m=2, dminusone, if (gcd(m,d) == 1, i+=1; dcoprimes[i]=m ) ); S = 0; foreach(dcoprimes, m, \\ m = 1 corresponds to the principal character mod d if ( m > 1, chi = znconreychar(G,m); if (zncharisodd(G, chi) == 0, L = lfuncreate([G, chi]); S+= lfun(L,1,1)/lfun(L,1); ); ); ); verif = Euler + S; print("verification K7 = ", verif); } {gammaS_ver() = local(class1,class2,class3,class4,corr_class1,gamma54, gammaS, prec, results, results_pow2, results_pow3, results_pow4, results_pow5, toterr, errors_pow2, errors_pow3, errors_pow4, errors_pow5, err_class1,err_class2,err_class3,err_class4); \\ using gamma(5,4) from Euler constants for primes in AP prec = 100; default(realprecision, prec+10); results= matrix(4,2); results_pow4 = vector(4); errors_pow4 = vector(4); results = sum_primes_derlog_AP(5,0,4,prec); results_pow4 = results[,1]; errors_pow4 = results[,2]; results_pow5 = vector(4); errors_pow5 = vector(4); results = sum_primes_derlog_AP(5,0,5,prec); results_pow5 = results[,1]; errors_pow5 = results[,2]; results_pow3 = vector(4); errors_pow3 = vector(4); results = sum_primes_derlog_AP(5,0,3,prec); results_pow3 = results[,1]; errors_pow3 = results[,2]; results_pow2 = vector(4); errors_pow2 = vector(4); results = sum_primes_derlog_AP(5,0,2,prec); results_pow2 = results[,1]; errors_pow2 = results[,2]; class1 = 4*results_pow4[1] - 5*results_pow5[1]; err_class1 = 4*errors_pow4[1] + 5*errors_pow5[1]; corr_class1 = -(4*log(11)/(11^4-1) -5*log(11)/(11^5-1)); class2 = 3*results_pow3[2]-4*results_pow4[2]; err_class2 = 3*errors_pow3[2] + 4*errors_pow4[2]; class3 = 3*results_pow3[3]-4*results_pow4[3]; err_class3 = 3*errors_pow3[3] + 4*errors_pow4[3]; B1 = class1 + corr_class1 + class2 + class3; class4 = -2*results_pow2[4]; err_class4 = 2*errors_pow2[4]; B2 = - class4; gamma54 = 0.75093255582908325836434166257848050997541691176698326316531897994046526250473123739850379507613130955547404848; toterr = err_class1+ err_class2+ err_class3 + err_class4; gammaS = Euler - gamma54 + class1 + corr_class1 + class2 + class3 +class4; \\ gammaS = Euler - gamma54 + B1 - B2; print(" ***************************"); print("gammaS verification using gamma(5,4) =", gammaS); print("B1 = ", B1); print("B2 = ", B2); print("B = ", B1-B2); \\print("gammaS verification using gamma(5,4) =", Euler - gamma54 + B1 - B2); default(format,e); print("toterr = ", toterr); } {gammaS_ver_alt() = local(class1,class2,class3,class4,corr_class1,prec, gammaK1, gammaK2, several_gammas, corr_summand, gammaS, Aplusminusone, Aplusminustwo, results, results_pow2, results_pow3, results_pow4, results_pow5, toterr, errors_pow2, errors_pow3, errors_pow4, errors_pow5, err_Aplusminusone, err_Aplusminustwo, err_class1,err_class2,err_class3,err_class4); \\ using EK for cyclotomic zeta_5 and Q(sqrt(5)) prec = 100; default(realprecision, prec+10); \\ gammaK_2(5) = 1.404895141617037748597559079759776077796023288614892553451082518014620888343781526587951824425696490; \\ EK(5) = 1.720624212513404761695728788649107298352195374910267779571623964233579926129987185729663334641543216; \\--------- \\ output of gamma_K_div(5,5,110) \\ into gammaK-divisors.gp for CLM \\ EK(5) = 1.7206242125134047616957287886491072983521953749102677795716239642335799261299871857296633346415432163620997662; \\ gammaK_2(5) = 1.4048951416170377485975590797597760777960232886148925534510825180146208883437815265879518244256964898942433246; \\ ------------------------------------ gammaK2 = 1.4048951416170377485975590797597760777960232886148925534510825180146208883437815265879518244256964898942433246; gammaK1 = 1.7206242125134047616957287886491072983521953749102677795716239642335799261299871857296633346415432163620997662; results= matrix(4,2); results_pow4 = vector(4); errors_pow4 = vector(4); results = sum_primes_derlog_AP(5,0,4,prec); results_pow4 = results[,1]; errors_pow4 = results[,2]; results_pow5 = vector(4); errors_pow5 = vector(4); results = sum_primes_derlog_AP(5,0,5,prec); results_pow5 = results[,1]; errors_pow5 = results[,2]; results_pow2 = vector(4); errors_pow2 = vector(4); results = sum_primes_derlog_AP(5,0,2,prec); results_pow2 = results[,1]; errors_pow2 = results[,2]; results_pow3 = vector(4); errors_pow3 = vector(4); results = sum_primes_derlog_AP(5,0,3,prec); results_pow3 = results[,1]; errors_pow3 = results[,2]; class1 = - ( 16*results_pow4[1] - 20*results_pow5[1] ); err_class1 = 16*errors_pow4[1]+20*errors_pow5[1]; corr_class1 = 16*log(11)/(11^4-1) -20*log(11)/(11^5-1); class4 = 4*results_pow2[4]; err_class4 = 4* errors_pow2[4]; Aplusminusone = class4 + class1 + corr_class1; err_Aplusminusone = err_class1+ err_class4; class2 = 4*results_pow2[2] - 12*results_pow3[2] + 12*results_pow4[2]; err_class2 = 4*errors_pow2[2] +12*errors_pow3[2]+ 12*errors_pow4[2]; class3 = 4*results_pow2[3] - 12*results_pow3[3] + 12*results_pow4[3]; err_class3 = 4*errors_pow2[3] +12*errors_pow3[3]+ 12*errors_pow4[3]; Aplusminustwo = class2 + class3; err_Aplusminustwo = err_class2 + err_class3; print(" ***************************"); print("gammaK1 = ", gammaK1); print("gammaK2 = ", gammaK2); print("A+_1 = ", Aplusminusone); print("A+_2 = ", Aplusminustwo); several_gammas = 4 * Euler + gammaK1 - 2*gammaK2; corr_summand = - log(5) / 4; gammaS = 1/4* (several_gammas + corr_summand - Aplusminusone - Aplusminustwo ) ; print("gammaS verification using gammaK1 and gammaK2 =", gammaS); toterr = err_Aplusminusone + err_Aplusminustwo; default(format,e); print("error(A+_1) = ", err_Aplusminusone); print("error(A+_2) = ", err_Aplusminustwo); print("toterr = ", toterr); } {gammaN12() = local(ret_val, toterr, prec, class2, class3, class4, class5, results, results_pow3, errors_pow3, err_class2, err_class3, err_class4, err_class5, gamma71, gamma76); prec = 100; default(realprecision, prec+10); \\ set working precision; q=12; phiq=eulerphi(12); qminusone = q-1; qcoprimes = vector(phiq); i=1; qcoprimes[1]=1; for(j=2, qminusone, if (gcd(j,q) == 1, i+=1; qcoprimes[i]=j ) ); numqcoprimes = i; results = matrix(numqcoprimes,2); results_pow2 = vector(numqcoprimes); errors_pow2 = vector(numqcoprimes); results = sum_primes_derlog_AP(12,0,2,prec); \\ \\ second parameter = 0 : is (-1)*(log der at 2) results_pow2 = results[,1]; errors_pow2 = results[,2]; index5 = vecsearch(qcoprimes, 5); index7 = vecsearch(qcoprimes, 7); index11 = vecsearch(qcoprimes, 11); class5 = results_pow2[index5]; class7 = results_pow2[index7]; class11 = results_pow2[index11]; err_class5 = errors_pow2[index5]; err_class7 = errors_pow2[index7]; err_class11 = errors_pow2[index11]; gamma121 = 0.780445251680074822178150748784085025947705319122330857926994720340219283582881987696103318559254512929001484176846749995; err_gamma121 = 2.16790502288384663677784640770548835333128443989810823434226935388126414130531209337224428019372970302237583362578694653/10^(124); ret_val = -2*log(2)/3 - log(3)/4 + gamma121 - 2*(class5+class7+class11); toterr = 2*(err_class5 + err_class7 + err_class11)+err_gamma121; print(" ***************************"); print("gammaN12 = ", ret_val); beta_0_prime = 0.302316142357065637947769900480199715602412795189369645458867841288865448752410510899487467813979272708567765913272591067; beta_1_prime = 0.75*(1-ret_val)*beta_0_prime; print("beta_0_prime = ", beta_0_prime); print("beta_1_prime = ", beta_1_prime); gammaSerre = gamma121 - 2*(class5+class7+class11); print("gammaSerre = ", gammaSerre); beta_0 = 2/3*beta_0_prime; print("beta_0 = ", beta_0); print("beta_1 = ", 3/4 * beta_0 *(1- gammaSerre)); default(format,e); print("toterr = ", toterr); default(format,f); } /************ Last login: Sun May 5 13:43:51 on ttys007 languasc@zygalski ~ % cd /Users/languasc/Documents/LANGUASCO/matematica/lavori/\[80\]EK_for_AP/programs languasc@zygalski programs % gp2c-run -pmy_ -g -W sumprimes_derlog_AP.gp Warning:sumprimes_derlog_AP.gp:269: variable undeclared kjtimess Warning:sumprimes_derlog_AP.gp:346: variable undeclared e Warning:sumprimes_derlog_AP.gp:349: variable undeclared f Reading GPRC: /Users/languasc/.gprc GPRC Done. GP/PARI CALCULATOR Version 2.15.5 (released) i386 running darwin (x86-64/GMP-6.3.0 kernel) 64-bit version compiled: Feb 24 2024, Apple clang version 15.0.0 (clang-1500.1.0.2.5) threading engine: pthread (readline v8.0 enabled, extended help enabled) Copyright (C) 2000-2022 The PARI Group PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER. Type ? for help, \q to quit. Type ?18 for how to get moral (and possibly technical) support. parisizemax = 2048000000, primelimit = 500000, nbthreads = 12 ? quit Goodbye! languasc@zygalski programs % gp2c-run -pmy_ -g -W sumprimes_derlog_AP.gp Warning:sumprimes_derlog_AP.gp:346: variable undeclared e Warning:sumprimes_derlog_AP.gp:349: variable undeclared f Reading GPRC: /Users/languasc/.gprc GPRC Done. GP/PARI CALCULATOR Version 2.15.5 (released) i386 running darwin (x86-64/GMP-6.3.0 kernel) 64-bit version compiled: Feb 24 2024, Apple clang version 15.0.0 (clang-1500.1.0.2.5) threading engine: pthread (readline v8.0 enabled, extended help enabled) Copyright (C) 2000-2022 The PARI Group PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER. Type ? for help, \q to quit. Type ?18 for how to get moral (and possibly technical) support. parisizemax = 2048000000, primelimit = 500000, nbthreads = 12 ? sum_primes_derlog_AP(7,0,3,) ****** COMPUTATION OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP ******* ****** WITH A PRECISION OF AT LEAST 19 DECIMAL DIGITS ******* d = 7 u = 0 s = 3 -------------------------- Accuracy parameters: default precision is with prec = 19 prec = 19; A = 3200; P = 9600; K = 3; J = 3 Accuracy is 10^(-29) err1 = 4.7889654860024839329812159700 E-44 err2 = 30720000/612709757329767363772415999999999999999999999999 toterr = 5.0185821412108255536937185385 E-41 -------------------------- RESULTS -------------------------- d;a;s derlog_zeta_AP(7;1;3) = -0.00020567431791426310111498171778 derlog_zeta_AP(7;2;3) = -0.099367711755813983198745313475 derlog_zeta_AP(7;3;3) = -0.042986047314514441959665780476 derlog_zeta_AP(7;4;3) = -0.0018534757509890860207543913306 derlog_zeta_AP(7;5;3) = -0.013479595613151653035071321294 derlog_zeta_AP(7;6;3) = -0.0012403816484221365404242008239 -------------------------- -------------------------- ****** COMPUTATION TIME ******** Computation time: 0 min, 0 sec, 369 millisec ****** END PROGRAM ******** ? sum_primes_derlog_AP(7,1,3,) ****** COMPUTATION OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP ******* ****** WITH A PRECISION OF AT LEAST 19 DECIMAL DIGITS ******* d = 7 u = 1 s = 3 -------------------------- Accuracy parameters: default precision is with prec = 19 prec = 19; A = 3200; P = 9600; K = 3; J = 3 Accuracy is 10^(-29) err1 = 0.00000000000000000000000000000000000000045974068665623845756619673312 err2 = 294912000000/612709757329767363772415999999999999999999999999 toterr = 0.00000000000000000000000000000000000048178388555623925315459697970 -------------------------- RESULTS -------------------------- d;a;u;s sum_primes_AP (7;1;1;3) = 0.0085032416224231132294467959059 sum_primes_AP (7;2;1;3) = 0.20898683218785116439598278380 sum_primes_AP (7;3;1;3) = 0.14380640141595451869969236973 sum_primes_AP (7;4;1;3) = 0.023993380400057840149448058019 sum_primes_AP (7;5;1;3) = 0.078172800998601817362139917525 sum_primes_AP (7;6;1;3) = 0.019911283758551218432277428764 -------------------------- -------------------------- ****** COMPUTATION TIME ******** Computation time: 0 min, 0 sec, 373 millisec ****** END PROGRAM ******** *****************/ /*************** *********************************** VERIFICATION OF GAMMAS IN EK ARTIN USING GAMMA(5,1) *********************************** ? gammaS_ver() ****** COMPUTATION OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP ******* ****** WITH A PRECISION OF AT LEAST 100 DECIMAL DIGITS ******* d = 5 u = 0 s = 4 -------------------------- Accuracy parameters: prec = 100; A = 3200; P = 9600; K = 7; J = 7 Accuracy is 10^(-110) err1 = 8.1260279111443532330346180829253600286325719272077762839910814821533213906367032748488894442699144823714365109 E-124 err2 = 8.5075207590815179272915716875662969080371319309509562294492523296297024080192246873541213908099341647230005090 E-121 toterr = 8.5156467869926622805246063056492222680657645028781640057332434111118557294098613906289702802542040792053719456 E-121 -------------------------- RESULTS -------------------------- d;a;s sum_primes_AP (5;1;0;4) = 0.00016937744512014340027299710018830829049718273029339740204838688912281274822981602505484020111005951468414481948 sum_primes_AP (5;2;0;4) = 0.047057601122699647749854505722669374934563060794458749578353694071174342557861678260013654220399137791016238163 sum_primes_AP (5;3;0;4) = 0.013835611380580619930730165229688521332918906270073057800504061065825622956800618808102053765486298349562074180 sum_primes_AP (5;4;0;4) = 0.000027947583198118661173124089973726324226256971766183101908880378389209862689524494131759148923050982453424553252 -------------------------- -------------------------- ****** COMPUTATION TIME ******** Computation time: 0 min, 4 sec, 101 millisec ****** END PROGRAM ******** ****** COMPUTATION OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP ******* ****** WITH A PRECISION OF AT LEAST 100 DECIMAL DIGITS ******* d = 5 u = 0 s = 5 -------------------------- Accuracy parameters: prec = 100; A = 3200; P = 9600; K = 5; J = 5 Accuracy is 10^(-110) err1 = 5.9911578583285080463408734716020367272840462603595271327411568767030239019600202745365969363006290262196070872 E-116 err2 = 6.2724249052556215374335299738088793843576166300515210088483447575893869913844139774924466190163482609669738153 E-113 toterr = 6.2784160631139500454798708472804814210849006763118805359810859144660900152863739977669832159526488899931934224 E-113 -------------------------- RESULTS -------------------------- d;a;s sum_primes_AP (5;1;0;5) = 0.000015049081176738061596653764329510041753741550817654580693284874052200517861791370668558161705005447668046490488 sum_primes_AP (5;2;0;5) = 0.022477441751559857824951820476004112559067449178380133495900105689365031435018986024274954632136798347236769947 sum_primes_AP (5;3;0;5) = 0.0045471545870790090501973153875495982043052977761047854522880199281552068540878866139248340797375575194225944296 sum_primes_AP (5;4;0;5) = 0.0000013617805387771396831810339138828782990949162828203195308948812848407387680985084631032666957653616830087000289 -------------------------- -------------------------- ****** COMPUTATION TIME ******** Computation time: 0 min, 2 sec, 113 millisec ****** END PROGRAM ******** ****** COMPUTATION OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP ******* ****** WITH A PRECISION OF AT LEAST 100 DECIMAL DIGITS ******* d = 5 u = 0 s = 3 -------------------------- Accuracy parameters: prec = 100; A = 3200; P = 9600; K = 9; J = 9 Accuracy is 10^(-110) err1 = 9.9852630972254662269889286902502330355295517539778642811169135029493910666633841618523299689193912398663687648 E-116 err2 = 1.0454041508759369229055883289681465640596027716752535014747241262648978318974023295820744365027247101611623026 E-112 toterr = 1.0464026771856594695282872218371715873631557268506512879028358176151927710040686679982596694996166492851489394 E-112 -------------------------- RESULTS -------------------------- d;a;s sum_primes_AP (5;1;0;3) = 0.0020148854399831909866643013375462185093878175199592322633512965939733517461388501320530393450370409317274747763 sum_primes_AP (5;2;0;3) = 0.10542878535395337765344393977570609692827550316677732622227310419056760486930046740769648001881775731636496776 sum_primes_AP (5;3;0;3) = 0.043786170300197757462243565590019523317692403463141200591968999700026334897767196230328267369588310320635363277 sum_primes_AP (5;4;0;3) = 0.00061350306064210461155481927986300336825384535100520758517896992499241845150263035873320786481691499238561739347 -------------------------- -------------------------- ****** COMPUTATION TIME ******** Computation time: 0 min, 5 sec, 825 millisec ****** END PROGRAM ******** ****** COMPUTATION OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP ******* ****** WITH A PRECISION OF AT LEAST 100 DECIMAL DIGITS ******* d = 5 u = 0 s = 2 -------------------------- Accuracy parameters: prec = 100; A = 3200; P = 9600; K = 14; J = 14 Accuracy is 10^(-110) err1 = 1.4977894808341830102016472711140385263282757148880811790807887067726631630287999288935538520656095259305321424 E-115 err2 = 1.5681062263139053843583824934522198460894041575128802522120861893973467478461034943731116547540870652417434538 E-112 toterr = 1.5696040157947395673685841407233338846157324332277683333911669781041194110091322943020052086061526747676739860 E-112 -------------------------- RESULTS -------------------------- d;a;s sum_primes_AP (5;1;0;2) = 0.030187066190421240908509990749329047308514417895397393076146150336544128109883384981445802138883643371197373363 sum_primes_AP (5;2;0;2) = 0.28987367264898584871977847497133447370980254955516658164332526651036924267289945153101562331782432684212701867 sum_primes_AP (5;3;0;2) = 0.16595552485655846060048198979828232691219101715826611627052066109031205903575510126690548676338286001377855394 sum_primes_AP (5;4;0;2) = 0.016884816380479740562728932283026336159407573103579316821844953689267723060383595482245052952476607691447826493 -------------------------- -------------------------- ****** COMPUTATION TIME ******** Computation time: 0 min, 14 sec, 604 millisec ****** END PROGRAM ******** *************************** gammaS verification using gamma(5,4) =-0.0033929593299054971161341577386037819013398922685265956872251123824941717374782236692483746253425966981312270299 B1 = 0.20409356435860438176715327932352696935073282976569170231601654005163881011035553375679846306399517872560702719 B2 = 0.033769632760959481125457864566052672318815146207158633643689907378535446120767190964490105904953215382895652985 B = 0.17032393159764490064169541475747429703191768355853306867232663267310336398958834279230835715904196334271137420 toterr = 1.2556832228448172418558774402405213671743516782504558696727859887931361389028132348395396729733973053293287270 E-111? ## *** last result: cpu time 26,324 ms, real time 7,183 ms. ******************/ /**************************** *********************************** VERIFICATION OF GAMMAS IN EK ARTIN USING GAMMAK5 and GAMMAK5plus *********************************** ? gammaS_ver_alt() ****** COMPUTATION OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP ******* ****** WITH A PRECISION OF AT LEAST 100 DECIMAL DIGITS ******* d = 5 u = 0 s = 4 -------------------------- Accuracy parameters: prec = 100; A = 3200; P = 9600; K = 7; J = 7 Accuracy is 10^(-110) err1 = 8.1260279111443532330346180829253600286325719272077762839910814821533213906367032748488894442699144823714365109 E-124 err2 = 8.5075207590815179272915716875662969080371319309509562294492523296297024080192246873541213908099341647230005090 E-121 toterr = 8.5156467869926622805246063056492222680657645028781640057332434111118557294098613906289702802542040792053719456 E-121 -------------------------- RESULTS -------------------------- d;a;s sum_primes_AP (5;1;0;4) = 0.00016937744512014340027299710018830829049718273029339740204838688912281274822981602505484020111005951468414481948 sum_primes_AP (5;2;0;4) = 0.047057601122699647749854505722669374934563060794458749578353694071174342557861678260013654220399137791016238163 sum_primes_AP (5;3;0;4) = 0.013835611380580619930730165229688521332918906270073057800504061065825622956800618808102053765486298349562074180 sum_primes_AP (5;4;0;4) = 0.000027947583198118661173124089973726324226256971766183101908880378389209862689524494131759148923050982453424553252 -------------------------- -------------------------- ****** COMPUTATION TIME ******** Computation time: 0 min, 4 sec, 117 millisec ****** END PROGRAM ******** ****** COMPUTATION OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP ******* ****** WITH A PRECISION OF AT LEAST 100 DECIMAL DIGITS ******* d = 5 u = 0 s = 5 -------------------------- Accuracy parameters: prec = 100; A = 3200; P = 9600; K = 5; J = 5 Accuracy is 10^(-110) err1 = 5.9911578583285080463408734716020367272840462603595271327411568767030239019600202745365969363006290262196070872 E-116 err2 = 6.2724249052556215374335299738088793843576166300515210088483447575893869913844139774924466190163482609669738153 E-113 toterr = 6.2784160631139500454798708472804814210849006763118805359810859144660900152863739977669832159526488899931934224 E-113 -------------------------- RESULTS -------------------------- d;a;s sum_primes_AP (5;1;0;5) = 0.000015049081176738061596653764329510041753741550817654580693284874052200517861791370668558161705005447668046490488 sum_primes_AP (5;2;0;5) = 0.022477441751559857824951820476004112559067449178380133495900105689365031435018986024274954632136798347236769947 sum_primes_AP (5;3;0;5) = 0.0045471545870790090501973153875495982043052977761047854522880199281552068540878866139248340797375575194225944296 sum_primes_AP (5;4;0;5) = 0.0000013617805387771396831810339138828782990949162828203195308948812848407387680985084631032666957653616830087000289 -------------------------- -------------------------- ****** COMPUTATION TIME ******** Computation time: 0 min, 2 sec, 57 millisec ****** END PROGRAM ******** ****** COMPUTATION OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP ******* ****** WITH A PRECISION OF AT LEAST 100 DECIMAL DIGITS ******* d = 5 u = 0 s = 2 -------------------------- Accuracy parameters: prec = 100; A = 3200; P = 9600; K = 14; J = 14 Accuracy is 10^(-110) err1 = 1.4977894808341830102016472711140385263282757148880811790807887067726631630287999288935538520656095259305321424 E-115 err2 = 1.5681062263139053843583824934522198460894041575128802522120861893973467478461034943731116547540870652417434538 E-112 toterr = 1.5696040157947395673685841407233338846157324332277683333911669781041194110091322943020052086061526747676739860 E-112 -------------------------- RESULTS -------------------------- d;a;s sum_primes_AP (5;1;0;2) = 0.030187066190421240908509990749329047308514417895397393076146150336544128109883384981445802138883643371197373363 sum_primes_AP (5;2;0;2) = 0.28987367264898584871977847497133447370980254955516658164332526651036924267289945153101562331782432684212701867 sum_primes_AP (5;3;0;2) = 0.16595552485655846060048198979828232691219101715826611627052066109031205903575510126690548676338286001377855394 sum_primes_AP (5;4;0;2) = 0.016884816380479740562728932283026336159407573103579316821844953689267723060383595482245052952476607691447826493 -------------------------- -------------------------- ****** COMPUTATION TIME ******** Computation time: 0 min, 14 sec, 728 millisec ****** END PROGRAM ******** ****** COMPUTATION OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP ******* ****** WITH A PRECISION OF AT LEAST 100 DECIMAL DIGITS ******* d = 5 u = 0 s = 3 -------------------------- Accuracy parameters: prec = 100; A = 3200; P = 9600; K = 9; J = 9 Accuracy is 10^(-110) err1 = 9.9852630972254662269889286902502330355295517539778642811169135029493910666633841618523299689193912398663687648 E-116 err2 = 1.0454041508759369229055883289681465640596027716752535014747241262648978318974023295820744365027247101611623026 E-112 toterr = 1.0464026771856594695282872218371715873631557268506512879028358176151927710040686679982596694996166492851489394 E-112 -------------------------- RESULTS -------------------------- d;a;s sum_primes_AP (5;1;0;3) = 0.0020148854399831909866643013375462185093878175199592322633512965939733517461388501320530393450370409317274747763 sum_primes_AP (5;2;0;3) = 0.10542878535395337765344393977570609692827550316677732622227310419056760486930046740769648001881775731636496776 sum_primes_AP (5;3;0;3) = 0.043786170300197757462243565590019523317692403463141200591968999700026334897767196230328267369588310320635363277 sum_primes_AP (5;4;0;3) = 0.00061350306064210461155481927986300336825384535100520758517896992499241845150263035873320786481691499238561739347 -------------------------- -------------------------- ****** COMPUTATION TIME ******** Computation time: 0 min, 6 sec, 272 millisec ****** END PROGRAM ******** *************************** gammaK1 = 1.7206242125134047616957287886491072983521953749102677795716239642335799261299871857296633346415432163620997662 gammaK2 = 1.4048951416170377485975590797597760777960232886148925534510825180146208883437815265879518244256964898942433246 A+_1 = 0.067453075884830773681197940988978569906602379878063861732494819045643480770327457468232000440631549258114172189 A+_2 = 0.76345587221172682805980784611805451474614299206909015843077152535959751580575381235277596749458116946655806609 gammaS verification using gammaK1 and gammaK2 =-0.0033929593299054971161341577386037819013398922685265956872251123824941717374782236692483746253425966981312270096 error(A+_1) = 1.8835248325657206952316674745847999271020287374587066451577463833080552252398968843299769516393432963124348056 E-111 error(A+_2) = 3.7670496583189266695451461182469340509222931343816125645873331585195423658855243892210947111935307707085864335 E-111 toterr = 5.6505744908846473647768135928317339780243218718403192097450795418275975911254212735510716628328740670210212391 E-111 ****************************/ /**************************** *********************************** VERIFICATION OF GAMMA7 IN EK for primes in AP *********************************** ? gammaK7() ****** COMPUTATION OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP ******* ****** WITH A PRECISION OF AT LEAST 100 DECIMAL DIGITS ******* d = 7 u = 0 s = 3 -------------------------- Accuracy parameters: prec = 100; A = 3200; P = 9600; K = 9; J = 9 Accuracy is 10^(-110) err1 = 9.9852630972254662269889286902502330355295517539778642811169135029493910666633841618523299689193912398663687648 E-116 err2 = 1.0454041508759369229055883289681465640596027716752535014747241262648978318974023295820744365027247101611623026 E-112 toterr = 1.0464026771856594695282872218371715873631557268506512879028358176151927710040686679982596694996166492851489394 E-112 -------------------------- RESULTS -------------------------- d;a;s sum_primes_AP (7;1;0;3) = 0.00020567431791426310111498171778140625565076116797872805077284349471875474934616568533612911630838700954598157627 sum_primes_AP (7;2;0;3) = 0.099367711755813983198745313474625100312300840664234369320760729392201906536062673389647963026507582803050087504 sum_primes_AP (7;3;0;3) = 0.042986047314514441959665780476210118764530058373057538726128236439324324707236704429044907825456969626565901324 sum_primes_AP (7;4;0;3) = 0.0018534757509890860207543913306021068972543307467095876761482612589128517426384217508571831149929120106549398500 sum_primes_AP (7;5;0;3) = 0.013479595613151653035071321293754872113902662260246198946641582825965489657634694241213107626031205825661619137 sum_primes_AP (7;6;0;3) = 0.0012403816484221365404242008239190638090870537318673125125235372279192469090561506933096130684331454392485710844 -------------------------- -------------------------- ****** COMPUTATION TIME ******** Computation time: 0 min, 10 sec, 616 millisec ****** END PROGRAM ******** *************************** gammaK7 = 1.9571564544497147527138218614254566264775388945426607376494545598379949989204133082397134632509851932705328733 toterr = 1.2556832126227913634339446662046059048357868722207815454834029811382313252048824015979116033995399791421787273 E-111 verification K7 = 1.9571564544497147527138218614254566264775388945426607376494545598379949989204133082397134632509851932705328733 + 0.000000000000000000000000000000000000 ? ## *** last result: cpu time 10,758 ms, real time 3,004 ms. ? gammaN12() ****** COMPUTATION OF sum_{p = a mod d} (p^u log p)/ (p^s-1)); Re(s)> 1; in AP ******* ****** WITH A PRECISION OF AT LEAST 100 DECIMAL DIGITS ******* d = 12 u = 0 s = 2 -------------------------- Accuracy parameters: prec = 100; A = 3200; P = 9600; K = 14; J = 14 Accuracy is 10^(-110) err1 = 1.4977894808341830102016472711140385263282757148880811790807887067726631630287999288935538520656095259305321424 E-115 err2 = 1.5681062263139053843583824934522198460894041575128802522120861893973467478461034943731116547540870652417434538 E-112 toterr = 1.5696040157947395673685841407233338846157324332277683333911669781041194110091322943020052086061526747676739860 E-112 -------------------------- RESULTS -------------------------- d;a;s sum_primes_AP (12;1;0;2) = 0.022292145528363059037841182710355366098664997270141512426066123893661785420872667763959779988138634998709631577 sum_primes_AP (12;5;0;2) = 0.087883434185488853244264403750269804303221667005861856641827499744106487605715532219429265775027198470761222653 sum_primes_AP (12;7;0;2) = 0.058694498218847279921838460698174768912445075064937804377994587117002327655967724085975133723046616560952633263 sum_primes_AP (12;11;0;2) = 0.032715318891671466299103951092888827316380843618061039938579021480662016041960323324013618923048064725629133622 -------------------------- -------------------------- ****** COMPUTATION TIME ******** Computation time: 0 min, 6 sec, 135 millisec ****** END PROGRAM ******** *************************** gammaN12 = -0.31489244345226467254589560583466424666192924795124807633726775274829170030885389035171220831736806047734465618 beta_0_prime = 0.30231614235706563794776990048019971560241279518936964545886784128886544875241051089948746781397927270856776591 beta_1_prime = 0.29813490833920854459071499161910339901119112670998131249524270466672035077289255966515508230249495397142786410 gammaSerre = 0.42185874908805962324773711770141822488361014774460945601019250365667762097559482843726728171701075341431550510 beta_0 = 0.20154409490471042529851326698679981040160853012624643030591189419257696583494034059965831187598618180571184394 beta_1 = 0.087390716356593085507282150858840987765244584774866372734975910755936786918849862809983750604929833617230852147 toterr = 9.4176240947706053092343886909767811541021000877199412847868999768590587354086750299533365637302882928862376455 E-112 ************************/