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Abstract

The advent of Industry 5.0 represents a paradigm shift towards a more

human-centric approach in manufacturing, focusing on integrating hu-

man operators with advanced technological systems. Despite signifi-

cant progress in predictive maintenance for machinery, there is a no-

table gap in predictive assessment technologies to safeguard human

operators.

This thesis introduces a novel conceptual framework designed to fill

this gap by leveraging predictive technologies and methodologies to

monitor human operators in Industry 5.0 paradigm settings proac-

tively. Our framework emphasizes the importance of human well-

being and safety by integrating data collection, advanced analytics,

and targeted intervention techniques.

Through a literature review of related works, a formulation of a taxon-

omy of the human factors to be considered, and a detailed exposition

of our framework, we highlight its potential to enhance operational

efficiency, environmental sustainability, and, most importantly, the

overall welfare of the workforce. This research underlines the critical

need for a balanced focus on both technological advancement and the

well-being of human operators, proposing a preemptive approach that

aligns with the pillars of Industry 5.0. We discuss the implications

of our findings for future research, particularly the need for ethical

data collection practices, real-time data processing techniques, and

personalized interventions.

The proposed framework categorizes conceptual approaches and intro-

duces recent innovations in predictive assessment technologies, outlin-

ing the way for more sustainable, efficient, and human-centric indus-

trial environments.
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Sommario

L’avvento dell’Industria 5.0 rappresenta un cambio di paradigma verso

un approccio più umano-centrico nella produzione, incentrato sull’integrazione

degli operatori industriali con sistemi tecnologici moderni ed avanzati.

Nonostante i significativi progressi nella manutenzione predittiva dei

macchinari, il panorama scientifico attuale mostra lacune nelle tecnolo-

gie di valutazione predittiva per la tutela e salvaguardia dei lavoratori

nelle industrie.

Questa tesi introduce un nuovo quadro concettuale progettato per

colmare questa deficienza nel contesto dell’Industria 5.0, sfruttando le

tecnologie e metodologie predittive per monitorare in modo proattivo

gli operatori. Il framework proposto enfatizza la centralità dell’uomo

nei processi produttivi, sottolineando l’importanza del benessere e

della sicurezza umana integrando la raccolta dei dati, l’analisi avanzata

di questi ed apposite tecniche di intervento mirate e personalizzate.

La dettagliata revisione della letteratura svolta, assieme alla formu-

lazione della tassonomia dei fattori umani da considerare e alla espo-

sizione dettagliata del framework, evidenziano il potenziale di questo

lavoro nel migliorare l’efficienza produttiva, la sostenibilità ambien-

tale, ma soprattutto il benessere generale della forza lavoro. Questa

ricerca sottolinea la necessità critica spinta dal paradigma dell’Industria

5.0 di concentrarsi in modo equilibrato sia sul progresso tecnologico

che sul benessere degli operatori umani, proponendo un approccio pre-

ventivo che si allinea con i pilastri di questo approccio industriale.

Vengono inoltre discusse le implicazioni dei risultati per le ricerche fu-

ture, in particolare la necessità di pratiche etiche di raccolta e analisi

dei dati, tecniche di elaborazione dei dati in tempo reale, e possibilità

di aumentare il grado di personalizzazione delle tecniche di intervento.

Il framework proposto categorizza gli approcci concettuali presentati

nella letteratura e introduce le reecenti innovazioni nelle tecnologie di

monitoraggio e valutazione predittive, marcando la strada per contesti

industriali più sostenibili, efficienti e incentrati sull’uomo.
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Chapter 1

Introduction

Throughout history, human progress and societal evolution have been intrinsi-

cally linked with technological progress. The shift from one industrial approach

to another, primarily driven by advancements in technology, is defined as an In-

dustrial Revolution (IR). Recently, the advent of the Industry 4.0 (I4.0) paradigm

has pointed out a significant move towards a data-driven industry strengthened by

digitalization and Artificial Intelligence (AI) technologies. However, this model

has been increasingly discussed as it does not adequately address the current

socioeconomic and political challenges. These criticalities include environmental

emergencies due to the excessive exploitation of natural resources, various crises

such as the COVID-19 pandemic, and escalating political tensions worldwide, as

in the Russo-Ukrainian war. Additionally, the rapid adoption of AI technologies,

while enhancing efficiency, has originated significant social issues, leading com-

panies to reduce the number of operators, causing unemployment problems and

deep social tensions.

Figure 1.1: Timeline of Industrial Revolutions from Industry 1.0 to Industry 5.0 [1].

In response to these new societal and technical challenges, a new paradigm,

1



2 Chapter 1. Introduction

Industry 5.0 (I5.0), was proposed by Michael Rada in 2016 [2]. This model

emphasizes a balanced approach to industrial development, focusing on the three

core pillars shown in Figure 1.2:

1. Human-centricity;

2. Resilience;

3. Sustainability.

However, it is more appropriate to consider I5.0 not as a standalone indus-

trial paradigm but rather as a logical continuation of I4.0 since they share the

same enabling technologies. Indeed, while previous Industrial Revolutions had

significant technological advancements, with I5.0 the changes are in perspective:

instead of focusing on technologies, it is proposing a shift where people are at the

core, the collaboration between humans and machines is enhanced, and there is

a critical interest in social and environmental issues [3].

This paradigm transition marks a change towards re-centering human factors

in manufacturing, emphasizing operators’ overall welfare and well-being [4]. That

introduces a pressing need for formulating and implementing systems that can

monitor, assess, and enhance all those human factors critical to maintaining a

satisfied and motivated workforce. However, given the early stages of I5.0, this

domain is still under-covered, and the related works are mainly developed in the

context of I4.0, showing an interest in the human workers as a mere productivity

factor. To fit within the human-centric principles of I5.0, such a system should

not only enhance operational efficiency but also safeguard and improve workers’

mental and physical health and address critical workplace challenges such as

stress, fatigue, and demotivation.

This work aims to propose a novel conceptual framework for assessing the

condition of human operators in industrial environments by leveraging the tech-

nological foundations of I4.0 and embracing the pillars of I5.0. The technologies

employed in our framework follow the same approach as the key enabling tech-

nologies of I5.0: merging various I4.0 technologies into components specifically

designed, in our case, to assess and support the conditions of human operators

proactively.

The outcome is a system able to identify potential health and safety risks

before they occur, optimize working conditions, and promote a balanced focus on

productivity, environmental sustainability, and social well-being.
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Figure 1.2: Diagram of the three core pillars of Industry 5.0 [1].

Consider the last time you heard about a workplace accident: how often do

we attribute these incidents to a lack of technological intervention tailored to

human needs? This thesis aims to bridge this gap, presenting a paradigm where

technology serves not just the machines but the core of any industry: the human

operators. Can we overlook the potential of integrating human-centric predictive

technologies to safeguard our most valuable resource? [5].

Specifically, the objectives of this work can be summarized into four Mile-

stones (MSs):

� MS1: Define a taxonomy of the human factors impacting operators in the

industry, outlining the critical elements the framework needs to address.

� MS2: Evaluate current methodologies for assessing these human factors to

identify best practices and areas needing innovation.

� MS3: Explore technologies for automating data collection and the assess-
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ment methodologies linked to these human factors.

� MS4: Develop a comprehensive framework incorporating human factors

and technologies into a structured three-stage approach: data collection,

data analysis, and intervention module.

Figure 1.3: Flowchart outlining the four main milestones of the thesis research.

The first step to achieving these goals has been to review the literature, using

previous works on the topic as a starting point to formulate the taxonomy of

human factors (MS1) and determine the assessment methodologies (MS2). By

doing that, we were able to understand the metrics of interest and, therefore, the

data needed to be collected.

The second phase involved the determination of the I4.0 technologies that

can be used to collect all those data linked to the human factors defined within

the second milestone to automate the assessments (MS3).

Finally, the selected technologies have been merged into components, en-

abling the collection of data, their analysis, and the triggering of appropriate

interventions when needed (MS4).

1.1 Contributions

The author conducted most of his thesis work during his period abroad in Viana

do Castelo, Portugal, where he was hosted at the AditLab [6] of the Instituto

Politécnico de Viana do Castelo (IPVC) under the onsite supervision of Professor

Sérgio Ivan Lopes. The author has received funding from the European Union

under the Erasmus+ Program.
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This work has been done in the context of the Agenda Drivolution – Transition

to the factory of the future, Ref. 02/C05-i01.02/2022.PC644913740-00000022,

funded by the Portuguese Resilience and Recovery Plan (PRR).

The research efforts led to two accepted publications: one at the SASYR

4th National Conference, held in Bragança, Portugal, on July 3rd, 2024 [7, 8],

and the second at the IEEE 29th ETFA international conference, which will take

place in Padua from September 10th to 13th, 2024 [5, 9]. The expenses related to

these publications and conference participations were covered by the Drivolution

project.

1.2 Document Structure

The thesis is organized into four main chapters.

Chapter 2 introduces the historical context and evolution of Industrial Rev-

olutions, discussing the first three revolutions and then focusing on the contem-

porary paradigms of I4.0 and I5.0.

Chapter 3 explores the predictive approaches for human operator assessment,

starting with the taxonomy of the human factors that the framework needs to

cover, considering four main domains: Safety, Health, Well-being, and Human

Errors. Following that, it presents a review of various qualitative and quantitative

assessment methodologies that have been discussed in the literature.

Chapter 4 details the developed conceptual framework, divided into three

primary and interconnected modules: Data Collection, Data Analytics and Pre-

dictive Modeling, and Intervention Techniques.

Finally, Chapter 5 summarizes the thesis findings, outlines future research

directions, and concludes with some closing thoughts and considerations.
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Chapter 2

Industrial Revolutions and the New

Paradigms

An Industrial Revolution (IR) represents a profound transition from one manu-

facturing process to another, typically pushed by technological advancements and

societal progresses [10]. The series of IRs, illustrated in Figure 2.1, have drasti-

cally changed production processes since the 18th century. Before this time, the

production of essentials such as food, clothing, and housing primarily relied on

manual labor or, at most, was aided by animal power [11].

Figure 2.1: Industrial Revolutions’ evolution [12].

Spanning the 18th and 19th centuries, the Industrial Revolutions transformed

largely rural and agricultural societies in Europe and America into industrialized

and urbanized landscapes. This shift introduced machines, factories, and mass

production techniques, significantly impacting industries like steel and textiles,

along with the development of the steam engine. These advancements improved

7



8 Chapter 2. Industrial Revolutions and the New Paradigms

transportation, communication, and banking systems and critically increased the

volume and variety of manufactured goods. However, while some enjoyed the im-

proved living conditions originating from these transitions, they also introduced

harsh working and living conditions for the working class and impoverished pop-

ulations [13].

The most recent paradigms, namely Industry 4.0 (I4.0) and Industry 5.0

(I5.0), are characterized by their potential to be recognized as true Industrial

Revolutions if their impacts prove to be sufficiently profound and transformative.

These revolutions are driven by a combination of emerging cutting-edge technolo-

gies, such as Machine Learning (ML) and Artificial Intelligence (AI), rapid evo-

lutionary pace, and global scale [13]. Furthermore, by integrating internet tech-

nology with operational technology, these paradigms enhance automation and

optimization across industries, resulting in more autonomous decision-making,

evolving workforce roles, new organizational structures, and the development of

intelligent systems.

In this Chapter, we will explore the historical development and impacts of

Industries 1.0, 2.0, and 3.0, and delve into the details of the emerging paradigms

of I4.0 and I5.0.

2.1 History of Industrial Revolutions

2.1.1 The First Industrial Revolution: Mechanical Production

The First Industrial Revolution, starting in the 1780s in Great Britain, was

marked by the mechanization of production powered by steam or water [3]. This

era was characterized by a drastic increase in production capabilities, where ma-

chinery boosted productivity more than eightfold compared to manual manu-

facturing, in which processes were highly dependent on the workers’ personal

schedules and physical capabilities [11, 14].

This revolution brought a vast number of benefits. Steam power found ap-

plications beyond machinery, including electricity generation and locomotive op-

eration, thus enhancing production efficiency, speeding up travel, and improving

communication [15].

From the onset of the 1800s, Industry 1.0 concentrated on developing water

and steam-powered machines that assisted in labor processes. These innovations

not only advanced production capabilities but also fostered business growth by

expanding the scope and efficiency of manufacturing and, for some, improved liv-
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ing standards by reducing the difficulty and enhancing the comfort of production

tasks [13].

Figure 2.2: An illustration of early steam-powered machinery used during the First Industrial Rev-
olution [16].

The impact of the First Industrial Revolution extended across multiple in-

dustries, including glass, coal mining, steam navigation, agriculture, and textiles.

Pivotal inventions like the mechanical loom and the spinning machine revolu-

tionized the textile industry. The increased need for capital investment led to

the growth of banking institutions, crucial in providing loans to escalating en-

trepreneurs [14]. In transportation, steam locomotives facilitated the movement

of goods over greater distances at reduced costs, significantly boosting the econ-

omy by increasing production capacities [17].
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However, these technological and economic advancements also originated sig-

nificant sociocultural changes. They aggravated poverty among workers and ex-

posed them to insecure working conditions, absent protections, and non-existent

workplace regulations. Moreover, the revolution imposed disruptive pressures

on the working class, with an acute demand for labor. The lack of regulatory

frameworks for factory operations often led to the inappropriate use of hazardous

equipment and machinery, resulting in frequent and severe injuries. Extended

working hours, often extending into the night, further exacerbated these dangers.

The most negative feature of this industrial age was the widespread employ-

ment of children, leading to the emanation of the Factory Act in 1833. This

legislation aimed to limit the working hours of children and introduced measures

to safeguard workers.

2.1.2 The Second Industrial Revolution: Mass Production

The Second Industrial Revolution, or Industry 2.0, began in the 19th century

and was characterized by the adoption of electricity as the primary power source.

Electricity was easier to use than water and steam, and it concentrated power

on specific machines, making production more efficient. During this period, tech-

nological innovations such as portable machinery, each with its power source,

further enhanced production systems and facilities [11].

By the early 20th century, electrical technology became the predominant

power source, revolutionizing factory environments and enabling businesses to op-

erate individual machines more effectively [13]. Moreover, in the 1870s, factories

started to transform into modern production lines, introducing a revolutionized

mass production that allowed the optimization of work processes and methods

while maintaining high-quality standards in output. [15, 18].

One of the significant milestones of this period was the development of the

assembly line by Ransom E. Olds in 1901, first implemented in the production of

Oldsmobile cars. By employing that approach, his company was able to increase

the output from a few units to 20 per day, obtaining a 500% increase in the pro-

duction rate in just one year, all of that while significantly reducing manufacture

costs [19]. Henry Ford further refined this method, making the assembly line a

pivotal component of his automotive manufacturing process. Ford’s system uti-

lized a conveyor belt to support a step-by-step assembly procedure, enabling the

rapid production of high-quality products at lower costs [14].

To further enhance production quality and management, Industry 2.0 in-
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Figure 2.3: Early 20th-century Henry Ford’s assembly line setup for the mass production of auto-
mobiles [20].

troduced more sophisticated strategies, including improved labor division and

resource allocation, and leveraged advancements in telecommunication, such as

the use of calls and telegrams, to accelerate business operations and information

transfer [19]. All of that led to a rapid increase in urbanization, as large num-

bers of migrants moved from rural areas to cities, exacerbating environmental
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pollution [3].

2.1.3 The Third Industrial Revolution: Automated

Production

The Third Industrial Revolution, also known as Industry 3.0 or Automation Rev-

olution, began around half of the 20th century with the introduction of digital

computers and electronic technologies. This period marked a significant shift to-

wards manufacturing automation in factories, where machinery increasingly took

over complex tasks previously performed by humans. Furthermore, the transition

from analog to digital technologies enabled the creation of precise duplicates of

original items, enhancing production accuracy and efficiency [11].

The Internet was a crucial invention during this era. It allowed computers

to connect and communicate with a central device, revolutionizing information

and communication technologies. This technological evolution contributed to the

emergence of a “new economy”, originating some concepts that are still modern

nowadays, such as globalization and outsourcing.

Moreover, the Automation Revolution radically changed how individuals and

companies interact, enabling small businesses to access larger markets and sig-

nificantly reducing technology costs while boosting productivity and business

performance [15].

Another innovation worth mentioning was the introduction of Programmable

Logic Controllers (PLCs), which automated tasks that had traditionally required

human intervention, although some level of human input and intervention was

still necessary [13].

Industry 3.0 evolved significantly again in 1969 with the use of robots, elec-

tronic devices, and communication technologies in the production process, leading

to more sophisticated automated production systems [3, 19, 21].

The mass production and widespread adoption of digital logic chips, MOS2

transistors, integrated circuits, and various ICT technologies transformed tradi-

tional production and commercial practices by converting analog to digital for-

mats. Pioneers like Charles Babbage and Ada Lovelace laid the foundations for

programmable computers in the 1820s with their Analytical Engines. However,

the first operational device appeared much later. During this period, Konrad

Enrst Otto Zuse developed the Z3, a fully autonomous, freely programmable,

and program-controlled computer, which later evolved into the Z4, recognized as

the first commercially used computer by ETH Zurich [15].
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Figure 2.4: Example of hardware PLC control used in automated production during Industry 3.0
[22].

The accelerated development pace of these technologies in the early 1980s led

to the dominance of fully automated Personal Computers (PCs) in offices and

household markets, replacing the typewriters of Industry 2.0. At the same time,

this era witnessed the emergence of some contemporary major IT companies such

as Apple and Microsoft. The software systems developed during this period facil-

itated various management procedures, such as inventory management, product

tracking, enterprise resource planning, product flow scheduling, and shipping lo-

gistics. These software tools effectively replaced manual operations previously

performed by humans, improving efficiency and accuracy but, at the same time,

leading to widespread human unemployment, a challenge that will be enforced

by Industry 4.0 [14].

2.2 Industry 4.0

Industry 4.0 (I4.0) represents a significant paradigm shift rather than a conven-

tional industrial revolution. Emerging in the 2010s, this transformation extends

the digital integration of Industry 3.0 through the incorporation of advanced

technologies such as Artificial Intelligence (AI), Cloud Computing, the Internet

of Things (IoT), and Robotics [11].
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The term “Industry 4.0” was first popularized by the German government in

2011 as a strategic initiative to drive manufacturing industries towards greater

efficiency and automation using these cutting-edge technologies [23]. Although

I4.0 has substantially influenced modern industrial practices, its classification

as a historic revolution remains to be determined as its long-term societal and

economic impacts continue to unfold.

The foundational technologies of I4.0 include [17]:

� Cyber-physical Systems (CPSs), integrating physical operations with

computer-based algorithms.

� Internet of Things (IoT) and Cloud Computing, facilitating a highly

interconnected environment that enables seamless machine-to-machine and

machine-to-human interactions.

� Cognitive Computing and Big Data Analytics, enhancing decision-

making and operational efficiency.

Figure 2.5: Industry 4.0 key enabling technologies [24].

These technologies enable a smart factory landscape characterized by signifi-

cant autonomy and efficiency, where machines operate independently and interact

seamlessly with one another, enabling functionalities like [13]:

� Interoperability through IoT and the Internet of People, allowing exten-

sive communications among machines, devices, and humans.

� Virtualization, where CPS create accurate virtual copies of the physical

world to simulate processes.
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� Decentralization, facilitating autonomous decision-making by CPS in man-

aging complex tasks and malfunctions.

� Real-time Capability, enabling the processing and analysis of data in-

stantaneously to respond promptly to changes and challenges within the

industrial environment.

� Service Orientation and Modularity, supporting flexible and rapidly

adaptable manufacturing systems that can respond quickly to consumer

demands and market changes.

The technologies integrated by Industry 4.0 enhance manufacturing flexibility

and efficiency, reduce costs, and improve the quality of outputs and services,

enabling the creation of smart products and services that can be customized

in real-time to meet increasingly specific customer demands [25]. Furthermore,

automation and intelligent systems promote scalability and more efficient resource

utilization, contributing to sustainability in production processes [21].

However, despite its potential, the transition to Industry 4.0 introduces sev-

eral challenges [21, 26]:

� Security Risks: As industries become more connected, at the same time,

they become more vulnerable to cyberattacks, which can lead to significant

financial and reputational damages.

� High Costs of implementation: The financial effort required for up-

grading to smart factory systems can be prohibitive, especially for small

and medium enterprises, potentially widening the technology gap.

� Workforce Displacement: Automation may reduce the need for human

workforce in specific sectors, creating job displacement and requiring sig-

nificant workforce retraining.

Furthermore, the pervasive use of advanced technologies in I4.0 raises crucial

ethical and social questions, particularly concerning privacy, data security, and

the societal role of automation in the workforce. There is an essential need for

policies that protect individuals’ rights while fostering innovation [27]. As these

technologies advance, they should be leveraged not only for economic growth but

also to enhance societal welfare and address environmental challenges [10].

In response to these considerations, a growing shift towards Industry 5.0

(I5.0) is emerging, emphasizing the reintegration of the human element into the
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industrial framework. This new paradigm focuses on balancing technological

efficiency with social equity, promoting sustainable practices that respect both

human operators and the environment [10, 28]. I5.0 seeks to enhance the synergy

between humans and machines, thus creating a more resilient and adaptable

industrial environment [3].

2.3 The New Industrial Paradigm: Industry 5.0

Industry 5.0 (I5.0) represents a pivotal paradigm shift from Industry 4.0, propos-

ing a more human-centric approach in manufacturing. Unlike its predecessor,

which emphasized improving productivity through automation and, in some cases,

replacing human operators, I5.0 seeks to reintegrate the human element at the

core of industrial processes. This new paradigm marks a significant transition

towards a more balanced approach, where technology serves to augment human

capabilities rather than replace them [29, 30].

Following the limitations and societal impacts highlighted by I4.0 discussed

in Section 2.2, the European Commission formally introduced I5.0 in July 2020

through a series of discussions and workshops, defining it as [31]:

“A movement towards a sustainable, resilient, and human-centric in-

dustrial model.”

This approach aims to evolve traditional industrial processes by prioritizing the

overall well-being of workers and respecting the environment, trying to improve

the socio-environmental impact of the industrial sector [10, 31].

The motivation for evolving to I5.0 arises from critical reflections on the

current and future directions set by I4.0, which continued to emphasize the push

on automation and digital integration while overlooking the human aspects and

societal repercussions. Industry 5.0 addresses these open challenges by focusing

on both technological advancements and social and environmental responsibilities,

seeking to find a balance among these.

At its core, I5.0 confronts the “dehumanization” that was implicitly and in-

advertently fostered by I4.0. The three core pillars of this new paradigm are:

1. Human-centricity;

2. Resilience;

3. Sustainability.
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Figure 2.6: The three foundational pillars of Industry 5.0 [32].

Human-centricity emphasizes enhancing the capabilities of industrial oper-

ators, recognizing the importance of creativity, personal skills, reasoning, critical

thinking, and adaptability. In this context, machines are seen not as replacements

for humans but as aids that support their daily tasks, thus reducing physical and

mental workloads and providing continuous on-site support [11, 33]. A prime

example of this approach is the development of Collaborative Robots (CoBots),

designed to work alongside humans rather than independently, demonstrating

that shifting from pure automation to collaboration can enhance process effi-

ciency and product quality while ensuring safety and adding a personal touch

[18].

The pillar of Resilience underscores the industry’s ability to adapt and

respond to challenges of various severity types. Especially in recent times, this

emerged as a critical requirement, considering the COVID-19 pandemic and the

various geopolitical tensions disseminated around the globe [10].

Lastly, Sustainability underscores the need for industrial strategies that

not only minimize negative impacts but actively and positively contribute to the
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environment. This concept, formalized as “Net Positive”, suggests that industries

should aim to leave the environment better than they found.

Overall, I5.0 promotes the Triple Bottom Line (TBL) principle, which puts

on the same level Profits, People, and the Planet, integrating these into the core

of industrial strategies [34, 35].

2.3.1 Japan Society 5.0 Manifest

Japan’s Society 5.0 is the foundational concept of I5.0, and it started being im-

plemented in 2016 in order to leverage digital advancements to push societal

progress [28]. This idea was introduced by Japan’s most potent industrial as-

sociation, Keindanren (Japan Business Federation), and later adopted by the

Japanese government as part of a national strategy to use technological innova-

tions to advance society overall.

Society 5.0 was formally defined in Japan’s Fifth Science and Technology

Basic Plan by the Japanese government, proposing technology as a pivotal tool

to address demographic and economic challenges, culminating in the so-called

“super-smart society”. On this occasion, it has been stated that [28]:

“Society 5.0 has decided to put technological innovation in the spot-

light based on the fact that it can be fully considered as a tool for

social innovation and not just a factor leading to changes in firms

and business processes”

and Society 5.0 has been described as:

“A process that must be carried out together with citizens who are

required to actively participate and, therefore, not just top-down; rec-

ognizes and underlines the importance of creating less formal relation-

ships between people, businesses, universities and the Public Admin-

istration; highlights the need to develop a more intense collaboration

with foreign people and firms, which bring in technological knowledge

of the frontier”

Keindanren identified five barriers, referred to as walls, that Japan must

overcome to succeed in evolving to Society 5.0 [11]:

1. The wall of the Ministries and Agencies, underscoring :
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“the need for the formulation of national strategies and construc-

tion of promotion system by a unified effort of government de-

partments”

Consequently, it is imperative that the government formulates national

strategies in an integrated manner, collaborates with academia and indus-

try, and builds IoT platforms meant to serve as a framework for government

support.

Society 5.0 technologies have the potential to establish a link between key

decision-makers and the general public, thereby enhancing stakeholder en-

gagement and potentially influencing sustainability decisions. Furthermore,

ministries and agencies have to require private sector participation to lever-

age appropriate actions that align with “the image of the future economy

and society” [11, 36].

2. The wall of the legal system, promoting:

“regulations, system reforms, and administrative digitization to

exploit Industry 5.0 technologies for implementing advanced tech-

niques by considering citizens’ voices for the development of fur-

ther reforms”

Moreover, guidelines for encouraging data uses and applications need to be

created with both easy access to the general public’s life and the develop-

ment of competitive advantages for governments and corporations in mind

[37].

3. The wall of technologies, requiring the employment of all available tech-

nologies, from the most developed and well-established to the newest and

most promising. This calls for significant funding for research and develop-

ment initiatives, changes to national innovation systems, and robust social

policies that promote inclusion, equality, and good working conditions [37].

4. The wall of human resources, demanding the specialization of human

resources in advanced digital skills by providing educational opportunities

that promote creativity and training in information technology. By doing

that, citizens will be able to [36]:
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Figure 2.7: Society 5.0’s five walls [11].

“think independently and create new values by combining various

items while working with others and leveraging new key techno-

logical innovations”

5. The wall of social acceptance, including the significance of achieving

social consensus, looking into the ethical and moral issues raised by man-

machine interactions and defining what constitutes personal happiness and

humanity [36].

Society 5.0 aims to harmonize several dimensions of human life, including

economic, social, and environmental dimensions, by integrating technologies like

Artificial Intelligence, Internet of Things, and robotics into everyday life, enhanc-
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ing comfort, safety, and sustainability. These technologies transform societal

challenges into opportunities for growth, promoting a balance between economic

progress and social problem-solving [11].

Applications of Society 5.0 include healthcare, disaster response, and envi-

ronmental management, showing its practical impact on real-world problems.

Furthermore, the strategy emphasizes the importance of data and connectivity

in creating interconnected systems that enhance both industrial and social pro-

cesses. By integrating IoT and AI across various sectors, Japan aims to establish

a more responsive and efficient societal model that better anticipates and reacts

to human needs.

However, Society 5.0 is not merely about technological enhancements but

also about fostering a cultural shift towards sustainable practices and inclusive

policies, ensuring that the benefits of innovation are broadly distributed across

society [28].

Ultimately, Japan’s Society 5.0 serves as a blueprint for the following stages

of industrial and societal evolution within the I5.0 paradigm, signifying a shift

from viewing technology solely as a tool for industrial efficiency to an enabler for

a better, more integrated, and sustainable society.

Actually, Industry 5.0 and Society 5.0 are similar since they both speak of

a fundamental shift in our economy and society towards a new paradigm that

underscores human dignity, privacy, autonomy, and universal worker rights. They

also emphasize the significance of innovation and research in assisting Industry

in providing long-term services to humanity within planetary bounds [10].

In practice, organizations and stakeholders, including the public, govern-

ments, and academic institutions, will play a significant role in Society 5.0.

2.3.2 European Commission on Industry 5.0

The European Commission’s vision for Industry 5.0 marks a significant evolution

from the technology-centric approach of Industry 4.0, focusing on a new paradigm

of industrial development that overextends digital advancements to redefine the

relationship between technology and society fundamentally. As a result, Industry

5.0 expands and enhances the main components of Industry 4.0, coexisting with

the currently in-use technologies [3, 31].

Formally introduced by the European Commission in 2020, Industry 5.0 rep-

resents a crucial step towards integrating deeper societal goals within industrial

practices, enforcing the need for a system where technology empowers humans,
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enhancing their capabilities rather than replacing them [31]. The Commission’s

definition highlights the role of Industry in achieving broader societal objectives,

stating that:

“Industry 5.0 recognizes the power of industry to achieve societal goals

beyond jobs and growth to become a provider of prosperity, by making

production respect the boundaries of our planet and placing the well-

being of the industry worker at the center of the production process”

Human
Centric Resilient Sustainable

Promotes talents, diversity,
and empowerment 

Is agile and resilient with flexible
and adaptable technologies

Leads action on sustainability and
respects planetary boundaries

Industry 5.0...

Figure 2.8: The European Commission view of Industry 5.0 [38].

The European Commission has defined three core pillars for I5.0, designed

to drive European industries towards more adaptive, responsible, and inclusive

economic models:

1. Human-centricity: This pillar emphasizes enhancing human work and

creativity within the industrial context, ensuring that technological ad-

vancements contribute to worker well-being and job satisfaction. It proposes

a shift from viewing workers merely as part of the workforce to recognizing

them as central figures whose talents and diversity drive innovation [11].

2. Resilience: Highlighting the need for industries that are not only tech-

nologically advanced but also robust enough to withstand and adapt to

various crises. Recent global challenges, such as the COVID-19 pandemic

and geopolitical tensions disseminated worldwide, underscore the impor-

tance of prioritizing long-term stability and adaptability over short-term

gains [10].

3. Sustainability: Focusing on sustainable practices that respect ecologi-

cal limits and prioritize long-term environmental health. Aligned with the
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Sustainable Development Goals (SDGs), this strategy seeks to balance eco-

nomic activities with environmental preservation, enabling industries to be-

come part of the solution to environmental challenges [10, 34].

According to the European Commission, I5.0 involves leveraging advanced

technologies to not only achieve economic benefits but also enhance the quality

of life and societal well-being. This vision positions I5.0 as a means to revolu-

tionize industries by including human creativity and personalization in production

processes. Such a transformation should improve customer satisfaction through

customized products and foster a deeper connection between workers and their

work, leading to more fulfilling and satisfying industrial employment.

Figure 2.9: The comprehensive framework of Industry 5.0 as defined by the European Commission
[18].

2.3.3 Industry 5.0 Enabling Technologies

As highlighted in recent statistics by Statista [39] and Reputiva [40], cutting-

edge technologies are projected to influence global businesses strongly. These
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advancements, particularly the ones originating from Industry 4.0, are depicted

in Figure 2.10 and include the Internet of Things, Artificial Intelligence, Cloud

Infrastructures, and Big Data Processing, collectively referred to as “the big-four

technologies”. Notably, IoT positions as a critical technology, with 72% of the

surveyed organizations acknowledging its pivotal role in current and future tech-

nological landscapes [39]. The second technology that highly impacted organiza-

tions worldwide is AI, used in many fields to increase efficiency and complement

human skills [39].

Figure 2.10: Industry 4.0 technologies with the greatest impact on organizations worldwide in 2020
[40].

While the core technologies of I5.0 largely overlap with those of I4.0, I5.0 shifts

the focus towards enhancing human-machine collaboration rather than merely

improving automation and efficiency, leading to the implementation of more in-

telligent systems. This evolution from I4.0 reflects a broader, more integrative

approach where technology serves to augment human capabilities and is designed

around societal needs rather than shaping society to fit technological capabilities.

For this reason, I5.0 should not be understood as a replacement or an alter-

native to I4.0 but rather as an evolution and logical continuation of the existing

I4.0 paradigm. This paradigm shift underscores the importance of viewing tech-

nologies as tools for societal and ecological empowerment, not just as drivers

of industrial productivity. In I5.0, technology is intended to enhance workers’

abilities and create safer and more satisfying working environments rather than

replacing human workers on the shop floor. The synergy of human intellect and

industrial automation offers long-term benefits, merging industrial efficiency with

cognitive and critical human capacities [41]. To support this shift, new skills and
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training for operators are essential, as discussed in Section 2.3.4.

Moreover, the need for personalized products in modern markets requires

human creativity and critical thinking to understand and meet consumer demands

deeply, a need that I5.0 aims to fulfill by integrating problem-solving skills and

creative value-addition proper of humans [42].

The commitment to the principles has led to increased investments in CoBots,

AI, and IoT technologies, reflecting a growing recognition of the benefits that I5.0

can offer. For instance, [31] stated that:

“Industrial Collaborative Robots are a unique technology that has the

potential to improve both the economy and society while embracing

Europe’s values if conducted by proper management.”

Additionally, revenues from AI and robotics are projected to grow at an

annual rate of 41% from 2019 to 2025, as shown in Figure 2.11 [39].

Figure 2.11: Potential impact of AI and Robotics in the Global Revenue Projections (in Billions
US$) [40].

Furthermore, the proliferation of IoT, while not a new technology, has seen

a growth in popularity due to decreased costs, enhanced computing capabilities,

and improvements in cloud connectivity and machine-to-machine communication.

These advancements have set the stage for the subsequent industrial development

termed “Industrial Internet of Things (IIoT)”, which enhances device connectivity

and data exchange across the value chain for more comprehensive integration [43].

A 2020 survey by Plataine, an American provider of optimization solutions

based on IIoT and AI, exposed a tripling in IoT adoption in manufacturing since

2018, with 66% of respondents identifying IIoT as critical to their company’s
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future success and profitability [44]. Furthermore, the World Economic Forum

(WEF) stated that IoT investments in production have doubled from US$35

billion in 2016 to US$71 billion by 2020, driven primarily by asset tracking,

condition-based maintenance, and robotics processing [45].

More specifically, in the current manufacturing landscape, IoT systems are

utilized for:

1. Smart enterprise control, enabling the linking of intelligent, networked

machinery and interconnected manufacturing parts to a central processing

unit, leading to more cost-effective and efficient productions.

2. Asset performance management, combining data analytics, cloud com-

puting, and wireless sensors to allow for a more effective real-time informa-

tion flow on the operation of linked machines, improving predictive main-

tenance and allowing for more accurate forecasts of machine breakdowns.

3. Augmented operators, leveraging the capabilities of IoT technologies to

assist operators in taking on specialized roles, thereby shifting the focus of

manufacturing environments from machines to users.

This user-led approach ensures that, while technology handles repetitive and

error-prone tasks, strategic oversights and innovations are driven by human in-

sights, reinforcing the principle that “technology enables, people lead” [43].

For that reason, the defining features of I5.0 include a series of “Enabling

Technologies” that combine various aspects of I4.0 technologies within a com-

prehensive framework to enhance ecological and societal values. The European

Commission has identified six key categories of these technologies, each interde-

pendent and crucial in realizing the full potential of I5.0 [10]:

1. Individualized Human-Machine Interaction that links and integrates

the strengths of both machines and humans;

2. Bio-inspired Technologies and Smart Materials that enable environ-

mentally friendly materials with integrated sensors and enhanced features;

3. Digital Twins and Simulations to model entire systems;

4. Data Transmission, Storage, and Analysis technologies;

5. Artificial Intelligence;
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Figure 2.12: Industry 5.0 enabling technologies [46].

6. Technologies for Energy Efficiency, Renewables, Storage, and Au-

tonomy.

Figure 2.12 shows a more comprehensive representation of these enabling

technologies.

Individualized Human-Machine Interaction

Individualized human-machine interaction encompasses a range of technologies

designed to augment human physical and cognitive tasks by integrating human

innovation with machine capabilities. These technologies facilitate closer collab-

oration between humans and machines, enhancing the workplace by supporting

daily activities and decision-making processes.
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This category includes [43]:

� Multi-lingual speech and gesture recognition and human inten-

tion prediction, which facilitate intuitive interactions between humans

and machines, making technology more accessible and responsive to indi-

vidual worker needs.

� Tracking technologies for monitoring employees’ mental and physical

strain and stress, aiming to create healthier and more productive work

environments.

� CoBots, designed to cooperate with humans, assisting and easing their

daily tasks, enhancing worker efficiency and safety.

� Technologies of Augmented Reality (AR), Virtual Reality (VR),

and Mixed Reality (MR), enhancing training protocols and providing

real-time on-site assistance. These immersive technologies also foster inclu-

siveness by adapting workspaces to diverse needs.

� Exoskeletons and bio-inspired working gear, which physically en-

hance human capabilities while promoting health and safety in industrial

settings.

� Technologies merging the potential of the human brain with Ar-

tificial Intelligence, improving decision support systems by integrating

human reasoning and creativity with the analytical capabilities of machines.

Bio-inspired Technologies and Smart Materials

Bio-inspired technologies and smart materials represent a significant segment of

I5.0, aligning closely with the sustainability pillar of this industrial evolution.

These technologies and materials seek to emulate biological processes and sys-

tems, embodying properties that enhance sustainability and functionality [10]:

� Self-healing or self-repairing materials, increasing the longevity and

durability of products.

� Lightweight materials, reducing energy consumption in transport and

manufacturing processes.

� Recyclable materials, supporting circular economy principles.
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� Raw material generation from waste, turning industrial by-products

into valuable resources.

� Embedded sensor technologies and biosensors, monitoring and ad-

justing processes in real-time.

� Adaptive/responsive ergonomics and surface properties, enhancing

user interaction and product adaptability.

� Materials with intrinsic traceability, ensuring transparency and ac-

countability throughout the supply chain.

In particular, the deployment of sensors has proven to significantly enhance

operational efficiency across labor, logistics, and quality control. Sensors im-

prove inventory management, material sorting, and automation, thereby increas-

ing overall productivity. They are also crucial in identifying manufacturing errors

and facilitating better product designs. By continuously monitoring assembly

lines, engineers can detect manufacturing issues in real-time, preventing them

from escalating into major failures, thus saving time and resources while improv-

ing safety [47].

Mitsubishi, for instance, has been investing in smart sensors since 2008, rec-

ognizing their potential to revolutionize automation systems and enhance manu-

facturing processes at every stage. Smart sensors contribute to [47]:

� Improving operational efficiency: Applied in labor monitoring to opti-

mize task assignments and quality inspections on assembly lines.

� Enhancing asset management: Potential issues can be proactively man-

aged by connecting and monitoring critical equipment.

� Real-time inventory tracking: Sensors facilitate touch-free item iden-

tification and monitoring, minimizing inventory shrinkage and automating

reorder processes.

� Innovative product design: Connected products provide insights into

customer behaviors and preferences, supporting responsive product devel-

opment.
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Figure 2.13: Applications of bio-inspired technologies in Industry 5.0 [48].

Digital Twins and Simulations

Digital Twins (DTs) and simulation technologies incorporate a suite of advanced

technologies, including Artificial Intelligence, the Internet of Things, the Meta-

verse, Virtual Reality, and Augmented Reality, to create digital copies of physical

objects, systems, or processes. These technologies play a critical role in modeling

and understanding real-world scenarios and their potential variations. Simula-

tions are used to predict future conditions, while DTs provide a mechanism to

compare anticipated outcomes with current realities, enhancing decision-making

and operational efficiency [43].

Key applications of these technologies include [43]:

� Virtual simulation and testing of products and processes, allowing

for the refinement and optimization of designs before physical prototypes

are built.

� Multi-scale dynamic modeling and simulation, providing insights

across different product or system operations levels.

� Simulation and assessment of environmental and social impacts,

facilitating more sustainable and responsible decision-making.

� Planned maintenance based on predictive analyses, reducing down-

time and extending the lifespan of the equipment.
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Figure 2.14: The different application fields of Digital Twins in Industry 5.0 [49].

One fundamental difference between simulations and DTs is their scope of

analysis. While advanced simulations can consider thousands of variables to pre-

dict potential outcomes, DTs can assess entire lifecycles of products or systems,

providing a comprehensive view from inception through disposal. This capacity

makes DTs especially valuable for high-stakes applications in sectors like indus-

trial facility management and power plant operations, where the complexity and

cost of errors are potentially disruptive.

Globally, industries are increasingly adopting DTs across various domains,

from engineering complex equipment to precision medicine and digital agriculture.

However, the high costs of implementing these technologies often limit their use
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to high-value applications [50].

Tesla provides a notable example of practical DTs usage in that scope. By

collecting data from sensors on its vehicles and uploading it to the cloud, Tesla has

been able to create detailed digital simulations of its cars. Utilizing proprietary

AI algorithms, they can predict where faults and breakdowns are most likely

to occur, thereby minimizing maintenance needs. This proactive approach has

significantly reduced warranty-related costs and enhanced customer satisfaction

by improving reliability and service quality.

Figure 2.15: Digital Twins use cases by Industry in 2024 [51].

Data Transmission, Storage, and Analysis Technologies

In the context of I5.0, the technologies that ensure secure, reliable, and energy-

efficient transmission, storage, and data analysis are of critical importance. These

technologies form the foundation of intelligent industrial systems, enabling en-

hanced decision-making and operational efficiency.

The key properties of these technologies include:

� Networked sensors, facilitating real-time data collection across various

points in the industrial environment.

� Data and system interoperability, ensuring seamless communication

and integration across different platforms and devices.
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� Scalability to accommodate growing amounts of data and expanding sys-

tem requirements.

� Multi-level cybersecurity measures to protect against potential breaches

and ensure data integrity.

� Safe cloud infrastructure, providing robust and secure data storage so-

lutions.

� Big data transmission and management capabilities to handle vast

volumes of data efficiently.

� Data processing for learning processes to extract actionable insights

from complex datasets.

� Edge computing to process data closer to the source of data generation,

reducing latency and bandwidth use.

The disseminated deployment of sensors across the industrial environment

allows for substantial data volumes to be collected, which can be leveraged to

extract patterns, trends, and insights. This wide range of data enables companies

to make informed decisions promptly, thus responding to customer needs faster.

Two notable examples highlighting the strategic use of these technologies are

[52]:

� Amazon: This e-commerce giant accurately stores every customer inter-

action to analyze spending behaviors. Insights gained from this data are

utilized to enhance social media advertising, in-platform recommendation

systems, and overall customer experience. For instance, when a product is

added to a wishlist or purchased, Amazon suggests related items or products

frequently bought together, enhancing the shopping experience.

� Apple: By collecting data on how consumers use its devices and services,

Apple gains insights into real-life usage patterns. This information is cru-

cial for making design changes that align with customer preferences and

improving user satisfaction and product functionality.

Artificial Intelligence

In the evolving landscape of I5.0 Artificial Intelligence (AI) plays a pivotal role,

applied across an ever-expanding set of domains and use cases. Within I5.0, AI
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Figure 2.16: Diagram of a smart factory layout within Industry 5.0, showcasing the data flow be-
tween the cloud, edge computing layers, and IIoT devices [53].

technologies primarily function as advanced correlation analysis tools, given that

their capabilities extend far beyond traditional computational methods [43].
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Key properties of AI technologies include [43]:

� Correlation-based and causality-based information extraction to

uncover meaningful patterns and causal relationships within data.

� Revealing relations and network effects extending beyond simple cor-

relations, offering more profound insights into complex systems.

� Autonomous response to new or unexpected conditions without

human intervention, enhancing system adaptability.

� Brain-machine interfaces integrating human cognitive functions with

computer processes.

� Informed deep learning, which combines expert knowledge with AI ca-

pabilities to refine learning processes.

� Skill matching of humans and tasks, optimizing workforce allocation

based on capabilities and system needs.

� Identifying correlations among complex, interrelated data from di-

verse origins to support comprehensive decision-making.

� Scalability in dynamic systems and within systems of systems, ensuring

AI applications grow with organizational needs.

In today’s data-rich landscape, there is a vast amount of information available

that, if properly utilized, can significantly enhance work processes and outcomes.

However, delivering this information effectively and at the right time is crucial,

considering that it is impractical for operators to constantly switch between work-

stations and applications to access the needed insights. AI can automate the

retrieval and synthesis of this information, allowing workers to spend less time

searching for data and more time applying it to deliver value. This improves effi-

ciency and enhances job satisfaction by reducing monotonous tasks and enabling

more focused and satisfactory work.

Technologies for Energy Efficiency, Renewables, Storage, and Autonomy

Achieving the ambitious zero-emission goal of I5.0 necessitates a significant fo-

cus on energy efficiency and the integration of sustainable energy sources. This

involves leveraging a wide range of advanced technologies designed to minimize

energy consumption and maximize the use of renewable resources.
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Figure 2.17: Domains of application of AI in Industry 5.0 [54].

Key technologies and strategies include:

� Integration of renewable energy sources, such as solar, wind, and

hydroelectric power, into industrial operations.

� Support for Hydrogen and Power-to-X technologies, which convert

electricity into other forms of energy, chemicals, or fuels, providing flexible

energy solutions and enhancing storage capabilities.

� Smart dust and energy-autonomous sensors, namely micro-electromechanical

systems that can collect and transmit data powered by small energy-harvesting

devices, reducing the dependency on traditional power sources.

� Low-energy data transmission and data analysis, optimizing the en-
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ergy efficiency of the vast data operations in industrial settings.

A notable innovation in this field is the development of “motion-sensitive

smart lightning” by the Italian start-up Greenled Industry. This system mini-

mizes lighting power consumption by integrating innovative zoning technologies,

occupancy sensors, and performance monitoring algorithms. The system auto-

matically adjusts the brightness of rooms based on occupancy, activity levels,

ongoing operations, and time of day, significantly reducing energy usage [55].

2.3.4 The Role of Operators in Industry 5.0

The previous discussions on digital, data-driven, and interconnected industries

originating with Industry 4.0 and evolving with Industry 5.0 underscore a trans-

formative effect on society, particularly for industry workers. As jobs have be-

come increasingly service-focused, demanding, and cognitively complex, there

have been notable benefits in production efficiency and quality. However, this

transition also introduces significant challenges, including stress and work-related

diseases.

Despite advancements in technology fostering human-machine collaboration

under the I5.0 paradigm, the industry is still struggling to fully realize the Euro-

pean Commission’s vision of [31]:

“Choose technologies based on an ethical rationale of how those sup-

port human values and needs, and not only based on what they can

achieve from a purely technical or economic perspective.”

While these technologies aim to create safer, more satisfying, and more er-

gonomic working environments where humans can utilize their creativity and

adopt new roles, empirical evidence suggests that around 60-70% of the attempted

implementations failed in quality, flexibility, or reliability, often due to an inade-

quate integration of human factors.

The transition to I5.0 requires profound changes in traditional career life cy-

cles, including training, work, and retirement. The shift in roles and reliance

on complex technologies demands novel educational and training programs to

prevent the potential adverse effects of technology-driven frustration, neglect,

and overwhelm [56]. Moreover, how technology impacts workplace mental health

largely depends on its implementation, organizational norms around its use, and

employee perceptions of its effect on their roles. Negative attitudes towards tech-
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nology can hinder its acceptance and effectiveness despite its potential benefits

[57].

Occupational safety and health experts are increasingly concerned by the

potential adverse effects of new procedures, roles, and digital tools on workers’

physical and mental health. Historical studies on automation’s impact over the

past decade revealed that rapid technological advancements can obstruct infor-

mal learning, motivation, and interdisciplinary cooperation among workers, po-

tentially leading to increased uncertainty, decreased situational awareness, and

resistance to automation [58, 59, 60, 61].

Furthermore, the relational impact of technology is considerable, as more ab-

stract activities and digital-mediated relationships can increase misunderstand-

ings and reduce physical interactions at work. Episodes of “technostress” are

particularly concerning, as they arise from an always-connected technological en-

vironment that can cause feelings of detachment from reality. Factors influencing

technostress include [43]:

� Cognitive overload due to excessive information quantity and pace;

� Organizational issues related to inadequate training and support for

proper technology use;

� Cultural challenges linked to an insufficient focus on health and safety

in new industrial contexts.

As jobs become more cognitively demanding, workers increasingly face dis-

tress related to insufficient training and job insecurity, fearing the automation of

tasks they were previously handling [62, 63]. Such stress can originate anxiety,

mental fatigue, and excessive cognitive workload, leading to decreased attention,

physical exhaustion, and reduced mental capabilities.

However, rapid technological changes are unlikely to leave millions of work-

ers unemployed. Instead, they pose a greater risk of job displacement with-

out substantial investments in training and job transition programs. Education,

reskilling, and upskilling are critical to aligning workforce capabilities with new

roles, safeguarding them against the psychological impacts of job insecurity, and

ensuring sustainable production and workforce welfare even in challenging or un-

expected situations [10].

The future of work requires a total shift in the work model, necessitating two

types of workforce changes:
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1. Upskilling, where operators gain new skills to aid in their current roles;

2. Reskilling, where operators acquire capabilities for different or entirely

new roles.

This shift is crucial as companies will need people with the right skills to

develop, manage, and maintain automated equipment and digital processes while

performing tasks that machines cannot [43]. For instance, the demand for physical

and manual skills is expected to reduce by 30% over the next decade in Europe

and the United States, while the demand for technological skills will likely increase

by over 50% Furthermore, the need for high-level social and emotional skills, such

as critical thinking, leadership, and entrepreneurship, is also expected to rise by

more than 30% [64].

Figure 2.18: Skill shift in US and Western Europe by category (% of time spent) [64].

It is essential for companies to understand which skills their operators lack,

leveraging direct access to the best technologies to anticipate future needs and

adapt their educational and training programs accordingly. Figure 2.19 illustrates

the critical barriers that large-scale reskilling efforts should aim to overcome [43].

Ultimately, Operator 5.0 should incorporate resilience, intelligence, and cre-

ativity, effectively applying the available technologies to overcome obstacles and

innovate within the sustainable production paradigm of I5.0. This dual-aspect

vision involves both “auto-resilience”, rooted in physical, cognitive, and psycho-

logical health, and “system resilience”, which refers to the adaptive autonomy

and collaborative capacity of new industrial environments [65].

To achieve both these goals, [66] defined 12 key abilities that Operator 5.0

should have:

1. Creative problem solving;

2. Digital literacy, which is the ability to find, evaluate, and communicate

information leveraging digital platforms;
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Figure 2.19: The most critical barriers that large-scale reskilling efforts should aim to overcome
[64].

3. Proficiency in the use of AI and data analytics;

4. Critical interpretation of the results;

5. Strong entrepreneurship;

6. Working safely and efficiently with the new technologies;

7. Cross-cultural and disciplinary, inclusive and diversity-oriented mindset;

8. Cybersecurity and privacy;

9. Managing the increased complexity of many requirements and tasks simul-

taneously,

10. Communicate with human operators and AI systems via different interfaces

and platforms;

11. Open mindset towards continuous changes;

12. Propensity for retraining and continuing education.

In the context of I5.0, technologies should present practical and positive im-

pacts in facing the complex threats they are introducing to the operators. [67]
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studied the most widely implemented I5.0’s enabling technologies in the manu-

facturing field to understand their impact on organizations and operators. The

results are divided into six technological categories:

1. Smart Wearables enhance operational safety by monitoring environmen-

tal conditions and workers’ health metrics. However, the reliance on such

technology must be balanced with concerns over privacy, physical comfort,

and potential over-trust that may reduce human vigilance in safety practices

[68, 69].

2. Robots and CoBots reduce physical strain and improve access to work

for people with disabilities. Yet, these systems also alter work dynamics,

potentially leading to psychological stress from reduced human interaction

and increased demands to keep up with automated processes [70, 71].

3. Augmented and Virtual Reality (AR and VR) are fundamental in

training and operational guidance. Still, they can lead to sensory overload,

disorientation, and a potential decrease in the learning curve for job skills

if overly relied upon [31, 72].

4. Exoskeletons support physical tasks and reduce the risk of injuries. Yet,

they can introduce new risks such as restricted mobility, discomfort, or even

new types of injuries due to improper use or poor ergonomic design [73].

5. Digital Twins (DTs) offer strategic insights through simulation and real-

time data analysis but require careful implementation to avoid inefficiencies

that could lead to decision-making errors or increased operational costs [74].

6. Wireless Communication Technologies facilitate real-time health and

safety monitoring but depend heavily on reliable data transmission. Fail-

ures in the system can lead to significant safety risks, while continuous

monitoring raises concerns about privacy and psychological impact [68].

These examinations underscore the necessity of a balanced approach to tech-

nology adoption in I5.0 that enhances operator capabilities while safeguarding

against new risks. The focus must remain on developing resilience, enhancing

skills, and ensuring that technology augments human work rather than replaces

it.
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Figure 2.20: The new skills needed to transition to Operator 5.0, underscoring the evolution from
Operator 4.0 attributes to the advanced capabilities required in Industry 5.0 [66].

2.3.5 Industry 5.0 Applications

Industry 5.0, characterized by its innovative integration of human-centric tech-

nologies and intelligent systems, has begun to influence a variety of sectors with

its advanced applications. The literature and ongoing projects provide insights

into the practical implementation of I5.0 technologies and their transformative

potential.

Figure 2.21: I5.0 applications across different domains [75].
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Intelligent Healthcare

Intelligent healthcare systems in I5.0 utilize smart wearables and intelligent sen-

sors to monitor patient health parameters continuously. These systems collab-

orate closely with medical personnel to provide personalized care and support

routine medical tasks, enhancing the efficiency and personalization of health-

care services. Additionally, CoBots can support medical personnel in performing

ordinary tasks like routine checkups, leaving more time to doctors for higher

complexity tasks [17, 76].

Cloud Manufacturing

Cloud manufacturing uses advanced technologies like Edge Computing, IoT, Vir-

tualization, and Simulations to innovate traditional manufacturing processes, pro-

viding reliability, excellent quality, cost-effectiveness, and on-demand capabilities.

By leveraging the cloud infrastructure, it is possible to manage and optimize the

production lifecycle, providing scalable solutions that take into account all the

procedures related to the production, such as service composition, scheduling,

and assembly [17].

Supply Chain Management

I5.0 enhances supply chain management by integrating IoT devices and CoBots

with human intelligence to support industries in meeting demand and providing

individualized and customized products more quickly. This integration facilitates

mass customization, allowing companies to adapt quickly to market demands

while reducing costs.

Manufacturing and Production

In manufacturing, I5.0 technologies delegate repetitive and physically demanding

tasks to Robots and CoBots, freeing human workers to engage in more creative

and fulfilling activities. This shift improves productivity and operational effi-

ciency and enhances worker safety and job satisfaction by reducing workplace

injuries, generating new job positions, and including AI and Robotics in training

and scheduling processes. [3].
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Disaster Management

In disaster management, Industry 5.0 technologies are critical in developing pre-

vention and response strategies that mitigate the repercussions of catastrophic

events. The integration of AI and IoT with human response teams enhances

the effectiveness of these strategies, providing rapid and adaptive solutions to

complex emergencies [17].

Horizon 2020 Case Studies

The EU’s Horizon 2020 program highlights several impactful Industry 5.0 initia-

tives [31]:

� FACT4WORKERS: This project focuses on integrating user-friendly IT

solutions into intelligent factories, enhancing worker experience and effi-

ciency.

A notable application is the one implemented at EMO Orodjarna, a Slove-

nian company that produces transfer and progressive tools for transforming

sheet metal. By providing easier and faster access to context-specific in-

formation for workers across various manufacturing stages, they improved

decision-making and response times, at the same time increasing participa-

tion and providing individual and collaborative problem-solving [77].

� Thermolympic S.L. is a company specialized in designing and producing

the molds used in thermoplastic injection molding. This company utilized

F4W (Factory for Work) tablets to foster a collaborative working envi-

ronment, enabling real-time data analysis and knowledge sharing among

operators. This technology helped troubleshoot and quickly resolve oper-

ational issues, significantly reducing downtime and promoting a proactive

workplace culture [78].

Examining a real-world scenario, how might one address the problem of be-

ing unable to pinpoint the source of machine-produced defective parts that

could result in extended periods of downtime and affect output? In that

use case, tablets are linked to a quality cloud, and the errors are examined

instantly. As a result, the system can offer a potential fix for the error that

has been identified, as well as instructions on how to restore the machine

in accordance with the fix. By doing that, the user can prevent the ma-

chine from being interrupted and solve the issue on their own right away.
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These devices also allow users to learn about machines and manufactur-

ing processes at multiple levels of detail using textual descriptions, photos,

and interactive videos. Additionally, the tablet can send alarm signals if

a machine malfunction is identified, giving the operator complete control

over the device. Another feature worth of mention lets operators inform

management about potential optimization and improvement, enabling the

manager to hear the operator’s feedback at the end of the shift. This helps

to increase the sense of responsibility and inclusion among the workforce.

These examples illustrate the broad scope and impact of Industry 5.0 applica-

tions, demonstrating how these technologies enhance operational efficiencies and

significantly improve human-machine collaboration and workplace quality.
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Chapter 3

Predictive Approaches for Human

Operator Assessment

The transition from Industry 4.0 (I4.0) to Industry 5.0 (I5.0), as discussed in Sec-

tion 2.3, signifies a pivotal shift towards re-emphasizing human factors in manu-

facturing. Since the advent of the first Industrial Revolution, human involvement

has been integral to manufacturing systems, and no degree of automation or

digitalization can function totally independently of human oversight.

While current literature underscores significant progress in efficiency and pro-

ductivity, especially within the area of predictive maintenance of machinery and

equipment, a notable gap persists in addressing operators’ health and well-being.

The majority of the studies often regard operators primarily from a productivity

point of view, with the perspective that a fatigued operator diminishes productiv-

ity or that injuries on the shop floor can disrupt production and escalate company

costs.

However, the focus should expand beyond merely mitigating negative impacts

on production. Proper adherence to the pillars of I5.0 demands a paradigm shift

towards a more human-centric approach. This involves considering all factors

that influence not only the safety but also the overall welfare of operators, en-

compassing both short and long-term health implications and, more in general,

well-being. It is common to hear of long-term or former industrial workers suf-

fering from joint or musculoskeletal issues or expressing dissatisfaction, stress,

or feelings of alienation at work. Therefore, there is an emerging and pressing

need to formulate a comprehensive strategy that addresses all these aspects to

enable a more effective integration of operators in the advanced manufacturing

environments of I5.0.

47
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The initial step towards that direction involves a comprehensive analysis of all

elements within an industrial setting directly affecting operators to identify the

various factors impacting them. Alongside this, it is crucial to establish metrics,

approaches, and methodologies that can be utilized to monitor and evaluate these

factors effectively.

These efforts are foundational for understanding the technologies that can be

leveraged to collect the data needed to understand the interactions between oper-

ators and their environment. This creates the basis for the pioneering framework

for the predictive assessment of human operators presented in Chapter 4.

In this Chapter, we will first detail the stages that led to the formulation of

the taxonomy of human factors impacting operators in industrial environments.

Then, we will discuss the methodologies that have historically and currently been

employed to assess these aspects.

3.1 Human Factors Taxonomy

While often overlooked, the prioritization of human health and well-being within

industrial settings has received attention in recent studies, particularly within

the context of I4.0. Using those works as a starting point, we adapt their per-

spective to the pillars of I5.0 and propose a taxonomy of critical factors that

influence operator health and well-being in industrial environments. Formulating

this taxonomy is the first crucial step of our work, fundamental for integrating hu-

man welfare and technological advancements in a single path toward sustainable

industrial progress.

To enhance working conditions for operators, we consider four primary do-

mains:

1. Safety;

2. Health;

3. Well-being and Satisfaction;

4. Human Errors.

These domains cover both physical and psychological aspects of operator welfare,

recognizing the interconnections of these factors in achieving optimal performance

and satisfaction. It is essential to understand that these fields are not isolated
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but interconnected and mutually influence each other within the industrial envi-

ronment.

By reviewing and analyzing the literature associated with these domains,

they can be decomposed into various more specific sub-domains, detailed in the

following Subsections.

3.1.1 Safety

Safety is probably the most critical domain concerning the welfare of operators

in industrial settings. It covers a wide variety of risks associated with such envi-

ronments, including manufacturing processes like cutting, welding, melting, and

hammering, and potential dangers such as crushing, falling objects, collisions,

fire, electrical shocks, explosions, and gas poisoning [79].

Historically, safety has gathered a lot of interest even within the domain of

I4.0, as safety accidents can result in severe injuries or fatalities, disrupt produc-

tion, and lead to legal and financial penalties for businesses.

The main factors contributing to accidents are [80]:

1. Collisions and falls due to human and equipment movements;

2. Fires, explosions, and gas poisoning, especially in narrow spaces;

3. Follow-up or secondary accidents, such as evacuation accidents, resulting

from inadequate safety management.

To formalize these threats more precisely, safety can be categorized into three

sub-domains:

1. Movement/Collision Situations

This sub-domain addresses risks associated with the physical movement of opera-

tors and machinery, including potential collisions, accidents caused by machinery

movements, and falling objects.

In an industrial environment, the risk of being crushed or trapped between

heavy objects is significant, as are slips and falls, which can result in severe trauma

or even death if an adequate reaction is not available [81, 82]. The integration

of CoBots and flexible manufacturing in I5.0 increased the need for enhanced

human presence detection to mitigate those risks.
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Therefore, monitoring the status of work areas and the workers’ positions and

movements can enable the gathering of information that can be used to detect

potentially hazardous conditions and prevent accidents [80].

2. Environmental Dangers

Risks from the working environment, such as inadequate ventilation, ineffective

dust removal, and exposure to toxins or chemicals, are critical [83].

Implementing environmental sensing technologies that can measure and man-

age these risks is crucial for maintaining a safe workplace that does not threaten

the personal safety of the operators [84]. Monitoring various gases (flammable, ex-

plosive, toxic), as well as environmental factors like oxygen levels, carbon monox-

ide, carbon dioxide, hydrogen sulfide, methane, noise, temperature, dust, and

smoke, enables the detection of deviations from safe thresholds and the trigger-

ing of appropriate safety measures [83, 84].

3. Operational Dangers

This sub-domain focuses on risks linked to specific tasks performed by operators,

requiring robust monitoring of all those operations considered more prone to be

hazardous [80].

Additionally, the potentially dangerous or hazardous components handled by

operators, for instance, chemicals such as paints and sharp objects such as metal

sheets, should be tracked and monitored [85].

3.1.2 Health

The domain of health, strictly connected to safety, is crucial for preserving both

the short-term and long-term welfare of operators while ensuring the efficiency

and productivity of manufacturing processes [86, 87]. Recognizing this critical

interconnection, recent research within the context of I4.0 has begun to emphasize

the health of industrial operators. However, the scope of such studies has often

been limited.

Most of the literature has focused on physical health, addressing concerns like

musculoskeletal disorders, exposure to hazardous conditions, and physical fatigue.

While these are vital aspects of health management, they represent only a part

of the overall health domain necessary for maintaining an effective, productive,

and satisfied workforce.
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Mental health is a crucial worker welfare component that has been neglected

in industrial health studies. This aspect concerns the essential role that mental

well-being plays in productivity, job satisfaction, and overall workplace safety. If

unaddressed, mental health issues can lead to increased absenteeism, reduced job

performance, and higher turnover rates, thus influencing industrial operations’

operational efficiency and safety outcomes [88].

Therefore, physical and mental health are the two sub-domains composing

the health domain in industrial settings. Each sub-domain has a fundamental

role in protecting and enhancing operators’ overall welfare.

1. Physical Health

Physical health in industrial environments includes risks related to musculoskele-

tal disorders, repetitive strain injuries, and other physical problems resulting from

industrial activities.

The main factor to consider for managing these health issues is physical fa-

tigue, which can significantly impair motor control, reduce strength, and decrease

performance, increasing the rate of accidents and errors [89]. Furthermore, phys-

ical exhaustion can contribute to chronic fatigue, decreased immunological func-

tion, and even long-term health consequences such as increased illness, job dis-

ability, occupational accidents, diminished quality of life, and even mortality [88,

90].

Both subjective approaches and objective measurements can be employed to

assess physical fatigue:

Subjective Assessments

Tools like the Swedish Occupational Fatigue Industry (SOFI), which uses as in-

dicators the lack of energy, the bodily pain, and the Perceived Rating Exertion

(PRE) can be used to gain insights about muscle fatigue [91, 92].

Posture-based assessment such as the Ovako Working Posture Analyzing Sys-

tem (OWAS) and the Rapid Upper Limb Assessment (RULA) enable the esti-

mation of physical fatigue based on posture and musculoskeletal stress [93, 94].

Indeed, frequent changes in posture or a non-upright posture can signal physi-

cal fatigue due to prolonged static positions or repetitive actions [87]. The most

employed metric in this scope is the Rapid Entire Body Assessment (REBA) [95].

Task duration is also a metric that can be used to assess rising fatigue levels.

Indeed, if the time an operator is spending on performing the same task increases
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during time, it indicates the operator is probably accumulating fatigue [87].

Objective Measurement

Electromyography (EMG) is commonly applied to record the electrical activ-

ity produced by muscles and consequently determine the level of physical fatigue

[86]. Additional metrics include brainwave power captured by Electroencephalog-

raphy (EEG) and facial feature analysis such as Eye-opening Frequency (PER-

CLOS), Mouth-aspect Ratio (MAR), Blink-rate Ratio (BRR), and Eye-aspect

Ratio (EAR) to detect signals of physical exhaustion [87, 96, 97, 98].

Furthermore, the analysis of body kinematics provides insights into physical

fatigue. As fatigue accumulates, observable changes in joint kinematics such as

Range of Movement (ROM), angular velocities, and angular accelerations can be

detected, especially when performing repetitive tasks [99, 100, 101].

Nevertheless, variations in heart rate offer valuable information regarding the

automatic regulation of the circulatory system and its response to fatigue, which

is critical for assessing the overall physical condition of operators [102].

2. Mental Health

Mental health in industry concerns the psychological well-being of operators and

covers all the workplace conditions that might affect their mental states.

The World Health Organization (WHO) defines mental health as [103]:

“a state of well-being in which every individual realizes his or her

own potential, can cope with the normal stresses of life, can work

productively and fruitfully, and is able to make a contribution to her

or his community.”

This definition highlights that good mental health goes beyond the absence of

mental disorders, concerning also the ability to handle stress, recognize individual

potential, and contribute effectively in the workplace [104].

Therefore, promoting mental health in the workplace is crucial as it directly

influences productivity, safety, and operators’ satisfaction. Positive mental health

induces a more satisfying work environment and enhances overall worker welfare

[103].

To effectively monitor and enhance mental health in industrial settings, var-

ious metrics and indicators can be employed:



3.1 Human Factors Taxonomy 53

� Physchological Indicators: The metrics originating from the brain, such

as EEG, enable the detection of stress and fatigue by analyzing brainwave

patterns. EEG has proven effective in identifying changes in vigilance, sleep

states, and stress [105, 106].

� Facial and Eye Metrics: The frequency and pattern of eyelid movements

(PERCLOS, EAR, BRR) are significant indicators of mental fatigue and

sleepiness, which are critical in assessing the tiredness and exhaustion level

of operators [107, 108].

� Behavioral Indicators: Specific gestures, body movements, and behav-

iors of operators, such as sudden head nods (i.e., head falling suddenly and

fighting it) or head shakes, can provide early signs of mental fatigue. The

definition of a gesture dictionary can help in defining and interpreting these

movements to assess risk levels associated with various mental states [109].

3.1.3 Well-being and Satisfaction

The domain of well-being and satisfaction is crucial in the taxonomy of factors af-

fecting the welfare of operators within industrial settings. This domain intersects

with the ones of health and safety, at the same time extending beyond those by

addressing factors that are fundamental under the I5.0 paradigm but were often

overlooked in I4.0. In the context of I5.0, as stated in Section 2.3.4, the perspec-

tive shifts from viewing operators as a matter of productivity and efficiency to

recognizing them as central and core parts of the industrial ecosystem. Therefore,

the well-being and satisfaction of operators are linked directly to their sense of

creativity, realization, and value in their roles, which consequently can enhance

overall productivity and innovation.

The sub-domains composing that domain, addressing specific aspects of it,

are:

1. Repetitive Manual Material Handling (MMH);

2. Training and On-site Assistance;

3. Emotions and Mood States.

Repetitive manual tasks can affect physical health and decrease operators’ sense

of personal achievement. Training and on-site assistance ensure that operators

feel confident and safe, reducing stress and anxiety associated with performing
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tasks, especially potentially hazardous ones. Finally, acknowledging and actively

managing workers’ emotional and mood states can lead to a more satisfactory

and sustainable work environment.

These sub-domains, which will be further detailed in the following subsections,

enable the creation of a workplace where operators are not only productive but

also genuinely satisfied and engaged with their work, aligning with the human-

centric pillar of I5.0.

Repetitive Manual Material Handling

Repetitive MMH includes tasks that require continuous physical effort, such as

pushing, pulling, lifting, bending, and walking. These activities are physically

demanding and often monotonous, adding to the bodily fatigue a component of

mental fatigue. The physical aspects of these tasks can result in musculoskeletal

disorders and discomfort, while the mental ones can diminish workers’ sense of

contribution and satisfaction [86].

Approaches for the assessment of MMH overlap with those used in assess-

ing physical health (see Section 3.1.2), involving both direct measurements and

observational techniques like standard questionnaires or body sensors [110]. Ad-

ditionally, to enhance the overall understanding of the physical exertion caused

by MMH, it is crucial to consider the weight and ergonomics of handled materials

[111]. Nevertheless, integrating mental fatigue assessment techniques that lever-

age facial features provides a more comprehensive understanding of the operators’

overall well-being.

By assessing the repetitive MMH, it is possible to implement changes in the

industrial workflow, improving efficiency and productivity while diminishing the

adverse effects of this task on operators.

Training and On-site Assistance

Proper training is crucial for operator confidence and efficacy, especially in per-

forming complex tasks and handling dangerous equipment [112]. Comprehensive

training programs can ensure operators are well-prepared for their roles, reduc-

ing anxiety and increasing job satisfaction. At the same time, on-site assistance

enhances these aspects by providing real-time support and guidance, which is

especially critical in high-stress or emergency situations [113, 114].

Traditional training methods, such as lecture-based or mentor-based approaches,

face several limitations in reaching these requirements. While lecture-based train-
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ing can be provided to many workers simultaneously, it lacks the hands-on ex-

perience that is critical for effective learning. Mentor-based training is more

interactive but costly and can be inconsistent due to the variability in mentors’

skills and experience [115].

The transition towards on-site assistance represents a change from conven-

tional training to a more dynamic approach. This involves systems that provide

real-time instructions and feedback to operators while performing their tasks, en-

suring the correct execution of the latter without altering the workflow. Effective

on-site assistance systems should be able to detect when operators require help

and provide the necessary guidance in a fast and reliable way [115]. For instance,

object detection technologies can identify the tools or components the operator

is using and provide contextualized assistance based on the specific task being

performed [116].

Furthermore, such a system should be able to understand operators’ mental

states, such as confidence or confusion levels, through behavioral and physiological

indicators. These metrics can enhance the assistance system’s responsiveness,

enabling the provision of support when it is most needed.

Therefore, to provide adequate on-site assistance, the system should be able

to understand when guidance is needed and offer it at the right time. The advice is

associated with searching for parts or components and their information, recalling

the assembly information, and being sure and confident about the task being

performed.

Emotions and Mood States

Monitoring and actively managing the emotional well-being of operators is cru-

cial to creating a satisfactory work environment. Here, we should merge all the

components related to physical and mental health, as well as the ones related to

safety. An operator can maintain a positive mood only if he is not under physical

or mental stress and is confident that the workplace is safe and that appropriate

measures to contain or counteract potential hazards are implemented.

When the operators’ mood states are not positive, they are more prone to

lapse in concentration, vigilance decline, sleepiness, and neglect of the risk, in-

creasing the risk of injuries, especially when using machine tools [96].

Other factors severely impacting mood states are repeated working activities

(e.g., repetitive MMH), noise levels, and shift changes [117].

Therefore, we can apply the vast array of assessment metrics mentioned in
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Section 3.1.2, in particular the ones associated with EEG records [118, 119].

3.1.4 Human Errors

The last domain composing this taxonomy is the one of human errors. In the

context of I5.0, human-machine interactions are frequent and complex; therefore,

human errors are more significant regarding their influence on product quality

and their potential impact on operators’ safety and health. An error can have

disruptive effects on safety, for instance, if the safety measures and protocols are

not respected, or on mental health since a mistake can cause dissatisfaction or

distress in the operator.

In this domain, “Human Errors” and “Human Reliability” describe two com-

plementary aspects of human action. VDI 4006 defines human reliability as [120]:

“The capability of human beings to complete a task under given con-

ditions, within a defined period of time, and within the acceptance

limits.”

while a human error is defined as

“A human action that exceeds the defined acceptance limits.”

Accordingly, the Human Error Probability (HEP) and Human Reliability Prob-

ability (HRP) are metrics used to quantify the likelihood of errors over faultless

actions. They are defined as:

HEP =
number of observed errors

number of the possibilities for an error
=

n

N
(3.1)

HRP = 1− HEP (3.2)

These indicators can be used to gain valuable insights about the most frequent

and impacting human errors in an industry, enabling the implementation of ap-

propriate counteracting measures.

Regarding the classification of human errors, these can be divided into three

categories [121, 122]:

1. Memory Errors: The first category involves those errors that occur when

the worker does not remember the remaining steps of a process, including

errors like:

� Omissions;
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� Wrong amount of repetitions;

� Inverted order;

� Wrong point in time;

� Task not assigned.

2. Perception Errors: These are errors arising from incorrect perception by

the operator, and they can be divided into:

� Perception of types and quantities, including incorrect selection and

wrong counting;

� Perception of states, comprising incorrect detection and errors in the

perception of safety risks;

� Perception of motions, including incorrect holding, positioning errors,

and execution directions.

3. Motion Errors: This domain includes situations where the execution of

a task is incorrect even though the operator correctly understood the task

and perceived the situation accurately. Some typical errors belonging to

this category include:

� Wrong amount (when executing);

� Unstable fixation;

� Incorrect adjustments;

� Insufficient prevention.

To address human errors effectively, Human Reliability Assessment (HRA)

techniques enable the quantitative or qualitative evaluation of human reliability.

The best approaches in the literature, in terms of usefulness, acceptability, and

practicality, are [122]:

� the Systematic Human Action Reliability Procedure (SHARP);

� the Accident Sequence Evaluation Program (ASEP);

� the Technique for Human Error Rate Prediction (THERP).

THERP has been found to be, under the metrics mentioned above, the best

HRA technique among those [123]. It estimates human errors and evaluates the

related effects on the entire human-machine system. A probability tree is used
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as a primary tool to model decision steps, including wrong and correct choices.

Additionally, a comprehensive set of tables links certain types of actions to a

corresponding error probability [124].

One major issue with the quantitative evaluation of human error is the avail-

ability of reliable data. These can, for example, be determined via field study,

experiment, statistics, estimation by experts, or interviews. Generally, data de-

rived from measurements should be preferred over subjective estimations.

Health

Physical Health

• Posture

• Ergonomics

• Skeletal overload

• Muscle overload

• Joint overload

Mental Health

• Fatigue

• Stress

• Tirediness

• Alienation

Safety Well-being & Satisfaction

Repetitive Manual
Material Handling

• Lifting and moving 
   objects repetitively

• Weight and
ergonomic of the
object being moved

Emotions and 
Mood States

• Demotivation

• Mental intention

• Social interactions

• Creativity stimulation

Training and 
On-Site Assistance
• Searching for parts/
   components

• Searching for 
   component
   information
• Searching for
   assembly
   information

Human Errors

Memory

• Omissions

• Wrong amount of 
   repetitions

• Inverted order

• Wrong point in time

• Task not assigned

Perception
• Incorrect selection

• Wrong counting

• Incorrect detection

• Safety risks not 
   percepted

• Incorrect holding

• Positioning errors

Motion

• Unstable fixation

• Incorrect 
   adjustments

• Insufficient 
   prevention

Collision
Situations

• Heavy objects 
  in movement

• Operators-machinery 
   in collision

• Machines in collision

• Falling of operators 

Environmental
Dangers

• Fire and explosions

• Gas poisoning

• Temperature

• Noise

• Dust

Operational 
Dangers

• Drowsy driving

• High-risk job tasks,
  such as welding,
  hammering, painting

• Not wearing
   Personal Protective 
   Equipments

• Abuse of drugs/substances

Figure 3.1: A visual representation of the formulated Human Factors Taxonomy.

3.2 Methods for Assessment

Over the years, several methods have been proposed to assess ergonomic risk

factors, considering both physical (the study of mechanical and physical aspects

of human interactions) and cognitive (the mental interactions of the operators

with all the elements of the manufacturing system) aspects.

Traditional qualitative methods such as interviews and structured question-

naires are effective and reliable for reaching these objectives. However, the po-

tential of these methods can be enhanced by integrating advanced technologies
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that enable dynamic and real-time data collection, leveraging the vast amount of

information collected to establish quantitative evaluations.

By leveraging these survey approaches, we can identify the data of interest

that needs to be collected to assess the workplace’s physical and ergonomic condi-

tions. Then, in the framework development detailed in Chapter 4, we will explore

the technologies that can automate and improve the data collection process, en-

suring that the data is continuously updated to reflect real-time conditions and

changes in the workplace environment.

3.2.1 Posture-based Methods for Physical Ergonomics

Evaluation

Posture-based methods are essential for identifying ergonomic risks associated

with the physical positioning of workers during tasks. These methods provide

systematic ways to observe and analyze body postures to ensure that worksta-

tions and tasks are designed according to ergonomic principles, thus preventing

musculoskeletal disorders.

Rapid Upper Limb Assessment (RULA), developed by McAtamney and

Nigel Corlett in 1993, serves as a foundational tool for assessing the ergonomic

risks associated with upper limb disorders in various work environments. This

method focuses on analyzing body postures, muscle function, and force exertion

during task execution. Observers at the workplace record the posture of the

worker’s arms, wrists, neck, and trunk, alongside the muscle groups involved and

the forces exerted. RULA employs a straightforward scoring system to evaluate

each element, which cumulatively provides a risk score indicating the urgency for

ergonomic intervention [94]. Although highly effective in identifying ergonomic

risks, RULA primarily addresses the upper body and does not account for lower

body postures or dynamic movements. The worksheet used for RULA assessment

is illustrated in Figure 3.2

Expanding upon RULA, Rapid Entire Body Assessment (REBA) was

designed to include the assessment of the entire body, thereby enhancing the

method’s applicability to a broader range of occupational tasks that involve com-

plex movements and whole-body efforts. REBA analyzes the worker’s body in

segments, namely each arm, the neck, trunk, and legs are evaluated for posture

with additional considerations for force, load, and activity level. The scores for

each body segment are integrated using a detailed worksheet, as the one illus-

trated in Figure 3.2, enabling the computation of a comprehensive risk score that
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RULA Employee Assessment Worksheet

Original Worksheet Developed by Dr. Alan Hedge. Based on RULA: a survey method for the investigation of work-related upper limb disorders, McAtamney & Corlett, Applied Ergonomics 1993, 24(2), 91-99

A. Arm and Wrist Analysis

Step 1: Locate Upper Arm Position:

‘

Step 1a: Adjust…
If shoulder is raised: +1
If upper arm is abducted: +1
If arm is supported or person is leaning: -1

Step 2: Locate Lower Arm Position:

Step 2a: Adjust…
If either arm is working across midline or out to side of body: Add +1

Step 3: Locate Wrist Position:

Step 3a: Adjust…
If wrist is bent from midline: Add +1

Step 4: Wrist Twist:
If wrist is twisted in mid-range: +1
If wrist is at or near end of range: +2

Step 5: Look-up Posture Score in Table A:
Using values from steps 1-4 above, locate score in
Table A

Step 6: Add Muscle Use Score
If posture mainly static (i.e. held>10 minutes),
Or if action repeated occurs 4X per minute: +1

Step 7: Add Force/Load Score
If load < .4.4 lbs. (intermittent): +0
If load 4.4 to 22 lbs. (intermittent): +1
If load 4.4 to 22 lbs. (static or repeated): +2
If more than 22 lbs. or repeated or shocks: +3

Step 8: Find Row in Table C
Add values from steps 5-7 to obtain
Wrist and Arm Score. Find row in Table C.

B. Neck, Trunk and Leg Analysis

Step 9: Locate Neck Position:

Step 9a: Adjust…
If neck is twisted: +1
If neck is side bending: +1

Step 10: Locate Trunk Position:

Step 10a: Adjust…
If trunk is twisted: +1
If trunk is side bending: +1

Step 11: Legs:
If legs and feet are supported: +1
If not: +2

Step 12: Look-up Posture Score in Table B:
Using values from steps 9-11 above,
locate score in Table B

Step 13: Add Muscle Use Score
If posture mainly static (i.e. held>10 minutes),
Or if action repeated occurs 4X per minute: +1

Step 14: Add Force/Load Score
If load < .4.4 lbs. (intermittent): +0
If load 4.4 to 22 lbs. (intermittent): +1
If load 4.4 to 22 lbs. (static or repeated): +2
If more than 22 lbs. or repeated or shocks: +3

Step 15: Find Column in Table C
Add values from steps 12-14 to obtain
Neck, Trunk and Leg Score. Find Column in Table C.

Upper Arm Score

Lower Arm Score

Wrist ScoreWrist Twist Score

Posture Score A

Muscle Use Score

Force / Load Score

Wrist & Arm Score

Neck Score

Trunk Score

Leg Score

Posture B Score

Muscle Use Score

Force / Load Score

Neck, Trunk, Leg Score

Scores

=

+

+

=

+

+Scoring: (final score from Table C)
1-2 = acceptable posture
3-4 = further investigation, change may be needed
5-6 = further investigation, change soon
7 = investigate and implement change

RULA Score

Task Name:                                                  Date:  

+1 +2 +2

+3 +4

+1
+2 +3

Add +1

+1 +2 +3

+4

+1 +2
+3

+4

Figure 3.2: RULA worksheet for operators assessment [125].

drives the prioritization of necessary ergonomic adjustments [95]. While REBA

offers a more detailed evaluation, it requires a more intricate and time-consuming

observation process, which may not be feasible in all work settings.

3.2.2 Biomechanic-based Methods for Physical Ergonomics

Evaluation

Biomechanic-based methods offer a scientific approach to evaluating the physical

demands on workers, focusing on the forces exerted and the mechanical loads

sustained by the body during tasks. These methods are critical for assessing the
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REBA Employee Assessment Worksheet

A. Neck, Trunk and Leg Analysis

Step 1: Locate Neck Position

Step 1a: Adjust…
If neck is twisted: +1
If neck is side bending: +1

Step 2: Locate Trunk Position

Step 2a: Adjust…
If trunk is twisted: +1
If trunk is side bending: +1

Step 3: Legs

Step 4: Look-up Posture Score in Table A
Using values from steps 1-3 above, 
Locate score in Table A

Step 5: Add Force/Load Score
If load < 11 lbs. : +0
If load 11 to 22 lbs. : +1
If load > 22 lbs.: +2
Adjust: If shock or rapid build up of force: add +1

Step 6: Score A, Find Row in Table C
Add values from steps 4 & 5 to obtain Score A.
Find Row in Table C.

B. Arm and Wrist Analysis

Step 7: Locate Upper Arm Position:

Step 7a: Adjust…
If shoulder is raised: +1
If upper arm is abducted: +1
If arm is supported or person is leaning: -1

Step 8: Locate Lower Arm Position:

Step 9: Locate Wrist Position:

Step 9a: Adjust…
If wrist is bent from midline or twisted : Add +1

Step 10: Look-up Posture Score in Table B
Using values from steps 7-9 above, locate score in Table B

Step 11: Add Coupling Score
Well fitting Handle and mid rang power grip, good: +0
Acceptable but not ideal hand hold or coupling
acceptable with another body part, fair: +1
Hand hold not acceptable but possible, poor: +2

No handles, awkward, unsafe with any body part,
Unacceptable: +3

Step 12: Score B, Find Column in Table C
Add values from steps 10 &11 to obtain
Score B. Find column in Table C and match with 
Score A in row from step 6 to obtain Table C Score.

Step 13: Activity Score
+1 1 or more body parts are held for longer than 1 minute (static)
+1 Repeated small range actions (more than 4x per minute)
+1 Action causes rapid large range changes in postures or unstable base

Original Worksheet Developed by Dr. Alan Hedge. Based on Technical note: Rapid Entire Body Assessment (REBA), Hignett, McAtamney, Applied Ergonomics 31 (2000) 201-205

+1

+2

+2

+4

+3

+2

+2

+1

+2+1 Add +1 Add +2

Adjust:

+1 +2 +2

+3 +4

+1 +2

+1 +2

Scores

+

=

+

=

Scoring
1 = Negligible Risk
2-3 = Low Risk. Change may be needed.
4-7 = Medium Risk. Further Investigate. Change Soon.
8-10 = High Risk. Investigate and Implement Change
11+ = Very High Risk. Implement Change

Neck Score

Trunk Score

Leg Score

Posture Score A

Force / Load Score

Score A

Upper Arm  Score

Lower Arm Score

Wrist Score

Posture Score B

Coupling Score

Score B

Table C Score Activity Score REBA Score

+

=

Task Name:                                                  Date:  

Figure 3.3: REBA worksheet for operators assessment [126].

potential for injury and designing interventions that enhance worker safety and

health.

Revised NIOSH Lifting Equation offers a quantitative approach to evalu-

ate the physical demands involved in lifting tasks. This method uses an equation

to calculate a recommended weight limit, which helps prevent lower back injuries

by ensuring lifting tasks are within safe limits. The parameters considered in-

clude the vertical and horizontal positioning of the object relative to the operator’s

body, the distance over which the object is moved, the frequency of lifting (i.e.,

number of lifts per minute), and the total duration of the lifting activity [127].

While highly effective in many settings, the Revised NIOSH Lifting Equation
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may not accurately reflect the risks associated with asymmetrical lifting tasks,

variable load weights, or shifts in work routines. The assessment worksheet used

in this method is detailed in Figure 3.4.

Step 1 : Measure and record task variables Step 2 : Determine the multipliers

F 
(lifts /
min)

Duration

< 1 hour 1-2 hours 2-8 hours

V < 30 in V ≥ 30 in V < 30 in V ≥ 30 in V < 30 in V ≥ 30 in

≤ 2 1.00 1.00 0.95 0.95 0.85 0.85

0.5 0.97 0.97 0.92 0.92 0.81 0.81

1 0.94 0.94 0.88 0.88 0.75 0.75

2 0.91 0.91 0.84 0.84 0.65 0.65

3 0.88 0.88 0.79 0.79 0.55 0.55

4 0.84 0.84 0.72 0.72 0.45 0.45

5 0.80 0.80 0.60 0.60 0.35 0.35

6 0.75 0.75 0.50 0.50 0.27 0.27

7 0.70 0.70 0.42 0.42 0.22 0.22

8 0.60 0.60 0.35 0.35 0.18 0.18

9 0.52 0.52 0.30 0.30 0.00 0.15

10 0.45 0.45 0.26 0.26 0.00 0.13

11 0.41 0.41 0.00 0.23 0.00 0.00

12 0.37 0.37 0.00 0.21 0.00 0.00

13 0.00 0.34 0.00 0.00 0.00 0.00

14 0.00 0.31 0.00 0.00 0.00 0.00

15 0.00 0.28 0.00 0.00 0.00 0.00

> 15 0.00 0.00 0.00 0.00 0.00 0.00

Automate this asssessment with Computer Vision!  Find us at www.tumeke.io 

Step 3 : Calculate RWL and LI Using NIOSH Lifting Equation

Revised NIOSH Lifting Equation Worksheet

Based on NIOSH [1994]. Applications manual for the revised NIOSH lifting equation. By Waters TR, Ph.D., Putz–Anderson V, Ph.D., Garg A, Ph.D. Cincinnati, OH: U.S. Department of Health and 
Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 94-110 (Revised 9/2021)

Horizontal Multiplier
(HM)

Vertical Multiplier
(VM)

Distance Multiplier
(DM)

Asymmetric Multiplier
(AM)

Coupling Multiplier
(CM)

Frequency Multiplier
(FM)

Recommended Weight Limit (RWL)

51

HM VM DM AM FM CM LC RWL

Lifting Index (LI)

L

RWL
LI

LI ≤ 1 This lift may be acceptable

1 < LI ≤ 3 This lift may increase the risk of low back or lifting 
injury. Controls should be considered

LI > 3
This lift may exceed the capabilities of safely 
performing the lift for nearly all workers. Redesign of 
the lifting task is recommended

H V D A F Dur C L LC

Horizontal
Location

(in)

Vertical
Location

(in)

Vertical
Travel 

Distance

Asymmetry 
Angle

(degrees)

Frequency 
Rate

(lifts/min)

Lifting 
Duration
(hours)

Object 
Coupling

Load 
Weight

(pounds)

Load
Constant
(pounds)

51

<1 hrs Short

1-2 hrs Moderate

2-8 hrs Long

1 Good

2 Fair

3 Poor

Duration Scoring

Coupling Scoring

Load (L)
Determine the weight of the object 
lifted. If necessary, use a scale to 
determine the exact weight. If the weight 
of the load varies from lift to lift, you 
should record the average and maximum 
weights lifted.

H (in) HM Factor

≤ 10 1.00
11 0.91

12 0.83
13 0.77
14 0.71
15 0.67
16 0.63
17 0.59
18 0.56
19 0.53

20 0.50
21 0.48

22 0.46
23 0.44
24 0.42
25 0.40

> 25 0.00

V (in) VM Factor

0 0.78

5 0.81

10 0.85

15 0.89

20 0.93

25 0.96

30 1.00

35 0.96

40 0.93

45 0.89

50 0.85

55 0.81

60 0.78

65 0.74

70 0.70

> 70 0.00

D (in) DM Factor

≤ 10 1.00

15 0.94

20 0.91

25 0.89

30 0.88

35 0.87

40 0.87

45 0.86

50 0.86

55 0.85

60 0.85

70 0.85

> 70 0.00

Coupling Type
CM Factor

V < 30 in V ≥ 30 in
Good 1.00 1.00

Fair 0.95 1.00

Poor 0.90 0.90

A (deg) AM Factor

0 1.00

15 0.95

30 0.90

45 0.86

60 0.81

75 0.76

90 0.71

105 0.66

120 0.62

135 0.57

> 135 0.00

V

D

H

A

Figure 3.4: Worksheet for the Revised NIOSH assessment to evaluate the injury risks associated
with Manual Material Handling tasks [128].

Another critical biomechanic-based assessment tool are the SNOOK tables.

These tables use similar parameters to those in the NIOSH equation but are

derived from extensive population studies. They provide guidelines for acceptable

weights and forces for lifting, lowering, pushing, and pulling activities [129]. The

SNOOK Tables, illustrated in Figure 3.5, offer a quick reference for ergonomic

safety. Yet, they may lack the specificity needed to accommodate individual
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differences among workers or the unique conditions of specific job tasks [130].

Figure 3.5: Applications of the SNOOK Tables for defining the acceptable weights and forces for
various physical working activities [131].
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3.2.3 Multi-aspect Methods for Physical Ergonomics

Evaluation

Multi-aspect methods for physical ergonomics evaluation provide a holistic ap-

proach to assessing workplace risks. Considering various factors such as posture,

force, repetition, and environmental conditions, these methods ensure a compre-

hensive ergonomic evaluation that addresses both workers’ physical and cognitive

demands.

Risk Assessment and Management tool for manual handling Proac-

tively (RAMP) employs a comprehensive checklist to systematically identify

and manage risks associated with Manual Material Handling (MMH). By evaluat-

ing task requirements, worker capabilities, and environmental conditions, RAMP

facilitates a structured approach to mitigating potential ergonomic risks. Al-

though RAMP is specifically developed to assess MMH risks, it is generally rec-

ommended to use it in conjunction with other tools to ensure a holistic ergonomic

evaluation [132]. The RAMP assessment worksheet, which guides the evaluative

process, is depicted in Figure 3.6.

Ergonomic Assessment Worksheet (EAWS), another multi-aspect eval-

uation tool, assesses ergonomic risks by considering various factors, including

posture, force, task repetition, and environmental conditions within industrial

settings. EAWS aggregates these risk factors into an overall risk score, aiding in

the identification of areas needing ergonomic intervention. This method’s com-

prehensive approach makes it highly effective but demands significant expertise

for accurate application [134]. The EAWS worksheet, essential for conducting

these assessments, is shown in Figure 3.7.
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American Chemical Society  RAMP Worksheet www.acs.org/outreachsafety

Activity Name: RAMP prepared by: 

Date:

RAMP reviewed by: 

Date:

I recommend use of this activity or demo if the risk-lowering
measures identied in this document are implemented.  

Do not use this activity or demo
in an outreach setting.  

Required PPE
The checked boxes indicate the form(s) of PPE that various people must wear  

when near this activity or demo.

Hands-on Activity Demo

Facilitator Participant Spectator Presenter
Onstage 

volunteer Spectator

Safety glasses

Splash goggles

Face shield

Food service gloves

Nitrile gloves

Thermal gloves 
(hot/cold)

Lab coat or apron

Hearing protection

Safety Requirements
These requirements are based on the RAMP analysis
documented on the following page(s) of the worksheet.

•  Tie back long hair and secure loose clothing.
•  Wear appropriate PPE as indicated in the chart to the right.
•  Do not eat or drink food or liquids near this activity or demo.
•  Clean up and dispose of materials properly when you have 
nished with this activity or demo.

•  Thoroughly wash your hands after conducting this activity 
or performing this demo. 

•  

•  

•  

•  

•  

Activity facilitators, participants, demo presenters, and 
spectators must understand and exhibit the behaviors listed 
above during the preparation, presentation, and dismantling 
of this activity or demo.

RAMP Worksheet

American Chemical Society  RAMP Worksheet www.acs.org/outreachsafety

Recognize the Hazards Assess Risks Minimize Risks Prepare for Emergencies

What happens in each step of the 
procedure?

What types of hazard(s) does 
this step pose?

What is the risk 
level before 

making changes?

How can we lower risk to an 
acceptable level?

What is the 
risk level after 
implementing 

changes?

What action will we take if a mishap or injury occurs?  
(Write the type of emergency as a title, with the 

protocol for handling it directly beneath.) 

Low

Medium

High

Low

Medium

High

Low

Medium

High

Low

Medium

High

Low

Medium

High

Low

Medium

High

Low

Medium

High

Low

Medium

High

Low

Medium

High

Low

Medium

High

Low

Medium

High

Low

Medium

High

For additional steps in the procedure, duplicate or make copies of this page.

RAMP Worksheet

Figure 3.6: RAMP worksheet for the assessment of MMH related risks [133].
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In addition to physical ergonomics, within the scope of I5.0, it is crucial to

address cognitive ergonomics. Cognitive ergonomics focuses on optimizing tasks’

mental demands to align with operators’ cognitive capabilities. This approach en-

sures that tasks are neither overly simplistic, leading to boredom, nor excessively

complex, causing mental overload. It aims to improve efficiency, mental health,

and job satisfaction by considering Mental Workload (MWL) and User Experi-

ence (UX). Assessments in cognitive ergonomics typically utilize both objective

physiological measures, such as heart rate, brain activity, and eye movement, and

subjective self-assessment methods to capture the MWL and UX effectively [136].

3.2.4 Subjective Methods for Assessing Mental Workload

and User Experience

Subjective assessment tools are crucial in understanding the Mental Workload and

User Experience in industrial settings. These tools allow operators to report their

perceptions and experiences directly, providing insights into ergonomic design and

task management.

Nasa Task Load Index (NASA-TLX), developed by Sandra Hart at

NASA’s Ames Research Center in the 1980s, is an effective tool in this domain.

It utilizes a multi-dimensional rating system to derive an overall workload score

from six distinct subscales:

1. Mental demand: The cognitive and mental demands placed on the operator;

2. Physical demand: The level of physical activity required to perform the

task;

3. Temporal demand: The time pressure felt to complete the task;

4. Performance: The operator’s perception of their overall performance;

5. Effort: The effort required to achieve the level of performance;

6. Frustration: The stress and annoyance experienced during the task.

Each of these aspects captures a different dimension of the task load, contribut-

ing to a comprehensive evaluation of the operator’s workload. The factors are

weighted according to their relevance to the specific task, allowing for targeted

ergonomic interventions. Figure 3.8 displays the standardized worksheet used for

this assessment.
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Rating Scale Mental Effort (RSME), similar to NASA-TLX, provides a

subjective evaluation of mental effort. It consists of a line scale from low to high

effort with descriptive labels at each point, helping operators accurately evaluate

their experienced MWL. RSME is preferred in settings where quick and simple

tools are necessary for immediate feedback [138]. This tool focuses specifically

on the mental effort component, as illustrated in Figure 3.9.

Subjective Workload Assessment Techniques (SWAT) evaluates work-

load by considering three factors:

1. Time load;

2. Mental effort;

3. Psychological stress.

Each factor is rated on a scale from 1 to 3 with descriptions for each level, fa-

cilitating a significant understanding of workload components [139]. The SWAT

method’s worksheet, shown in Figure 3.10, aids in this multi-dimensional assess-

ment.

The Bedford Workload Scale offers a uni-dimensional rating system that

measures the operator’s mental capacity and satisfaction with their workload.

Operators use a ten-point scale to rate how well they manage their workload

without feeling overwhelmed [140]. This scale, depicted in Figure 3.11, is handy

for determining the sustainability of task demands.
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Observation

Planning

Green

Yellow

Red

Net duration of repetitive task/s (a) [min]

DateTask / Workplace Task duration [s]

m

Accessibility (e.g. entering motor 
or passenger compartment)

Extra points “Whole body” (per minute / shift)

E
A

W
S

 
ev

al
u

at
io

n

+ +

Line

fGender of operator Body height

Low risk: recommended; no action is needed

Possible risk: not recommended; redesign if possible, otherwise take other measures to control the risk

High risk: to be avoided; action to lower the risk is necessary

Green

Yellow

Red

Result of overall evaluation:
Calculate the total score of whole body and compare it to the UL score.The overall result is determined by the higher 
value and the appropriate traffic light is checked. Anyway, interpretation should  take into account both values.

0-25 Points

>25-50 Points

>50 Points

Upper LimbsWhole Body = Postures + Forces + Loads + Extra

= +

0b
very poor

1

none middle strong very strong

10

good complicated poor

5

Adverse effects by working on 
moving objects

2,5 4 6 8

0 3 8 15

0 2

Ergonomic Assessment Worksheet  v1.3.6 ESO

MTM Analysis

Comments / proposals for improvements

No. of real units (or cycles) (b)

Net cycle time [s]

=

Lines 0a-b mainly relate to the Automotive Industry, for other sectors additional elements may be necessary. For details see the EAWS manual. 

=

none middle strong very strong

Shift Duration and Tasks:

Extra points

Intensity

Status

Intensity

Plant

Analyst

0a

0d

[n]

Idle Time [s]

0

Non repetitive tasks
(i.e. cleaning, supplies, etc) [min]

-

Extra = ∑ lines 0a – 0e
note: Max. score = 40 (line 0c, 0d); Max. score = 15 (line 0a, 
0e); Max. score = 10 (line 0b)

0e

Other official pauses [min] -

 4 - 5 8 - 10

6

(a/b × 60) =

Joint position
(especially wrist)

Real shift duration [min]

Formula ResultDescription

8

0

Lunch break [min]

8

5 10 15
Other physical work load
(please describe in detail) 

[%] 5

[s] 60

0 2 2,5 4

[n]

> 2018 - 20

40

maximal

10017 33
1 11 16 20

10 20

67

-

note: correct evaluation, if duration of 
evaluation ≠ 60 s

neutral ~ 1/3 max

0 1

0c

Intensity × frequency
Countershocks, impulses, 
vibrations

Intensity × duration or frequency

0 1 2 5

light visible heavy very heavy

53

1 - 2

~ 2/3 max

3
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[%] 

[s/min] 

[min/8h] 

a

b

a

b

a

b

a

b

a

b

a

b

a

b

1) 2) ∑

15
Lying (on back, breast or side) w/ arms 
above head

6 9 15 21

108 135

96,0 120,0With S01 exoskeleton 5,2 7,8 13,9 20,0 29,1 38,2 55,1 71,0

Elbow at / above shoulder level 6 9

+
(a)

Postures = ∑ lines 1 - 16

0 1 (0,75) 3 (2,25)

note: Max. duration of evaluation = duration of task or 100%!
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t

0 1

0%0% 6% 15%

4 s 10 s

5 (3,75)
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F
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ea
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never

1,5 2,5
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15° 25°

slightly medium
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0 3

3 5

≤10°

strongly

40

20 25

Upright with back support
slightly bent forward or backward

0 0 0

Bent forward 0,7 1 1,5 2 3 4 6 8

Bent forward (20-60°)

with suitable support

Strongly bent forward (>60°)

with suitable support

51 63

9,5

Standing & walking in alteration, 
standing with support

Standing, Confined space

63

2 31 38

3,3 5 8,5 12 17 21 30 38 51

2 3 5 7 12 18 23 32

0

0,7 1 1,5 2 3 4 6 8

1,3 2 3,5 5 6,5 8 12 15

3 5 7 9,5 12 18 23

0 0 0 0,5 1

Upright no back support (for other 
restriction see Extra Points)

0 0 0,5 1 1,5 2 3 4

With S01 exoskeleton 1,9 2,8 4,9 7,0 9,1

∑
(max.=15)

7

60 75

(a)

stretched

∑ (max. = 40)2

13

5,5

=
(b)

11

42,0 52,5

21

35

10 s≥ 13 s ≥ 13 s

80%60%

4 sdu
r

close
≥30°

never

15% ≥ 20%

arm

6%

1,5

13

11329

Bent forward

Climbing 6,7 10 22 33 50 66

15

4 6 10 14 20 25

Upright 3,3 27 36 45

37 53 68 91

45

16 23 33 43 62 80

Kneeling or crouching

12

11

10

5 7 9 12

11,2 16,1 28,0 35,0

Hands above head level 4 6
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note: correct evaluation, if task duration ≠ 60 s

extreme

≥ 20%

14

∑
(max.=15)

∑
(max.=10)
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t

0 1

(b)
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3 4,5 6 9 12 16 20 30 40

8

5

≥400

≥ 50
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21,51110,5000

11 13

S
u
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s

0-527 33 50 67
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Postures

Standing (and walking)

dur

0-3

int

0-2

Intensity × 
Duration

Intensity × 
Duration

Intensity × 
Duration

0-3

Duration [s/min] =
duration of posture [s] × 60

Task duration [s]

160 240 320

Basic Postures / Postures and movements of trunk and arms

(incl. loads of <3 kg,
forces onto fingers of <30 N
and whole body forces of <40 N)

High frequency movements:
Trunk bendings (> 60°) ≥ 2/min
Kneeling/crouching ≥ 2/min
Arm liftings (> 60°) ≥ 10/min

Static postures: ≥ 4 s

Symmetric

Lying or climbing

16

9

7

Sitting

6

0-5

Asymmetric

Trunk 
Rotation 1)

Lateral 
Bending 1)

Far Reach 
2)Evaluation of static postures

and/or high frequency movements of 
trunk/arms/legs

int dur int dur

5 0-5

3

4

1

2

29,0

Elbow at/above shoulder level 3,3 5 8,5 12 17 21 30 38

46,5

1,5 2

39,0 48,0

Hands above head level 5,3 8 14 19 26 33 47 60 80 100

With S01 exoskeleton 2,5 3,8 6,4 9,0 13,1 16,2 23,1

60 75

21,0

62,0 77,5

Elbow at / above shoulder level 2,7 4 7 10 13 16 23 30 40 50

With S01 exoskeleton 4,1 6,2 11,0 14,8 20,0 25,5 36,5

7,0 9,8 14,0 17,5 24,5 31,5

10 14 20 25 35 45

 

      20°  0°
 60°
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+A +A +A
-A -A -A
+B +B +B
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+C +C +C
-C -C -C

+A +A +A
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+B +B +B
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-A -A -A
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=
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1
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Basis: number of real actions per minute or percent static actions (analyze only the most loaded limb)

Shoulder (flexion, extension, abduction)

PP

Breaks (≥ 8 min) [#/shift]
Break points 

≥

Hand / arm / shoulder postures (use duration for worst case of wrist / elbow / shoulder)

26 40

32

75

6

SC

0

1

0

30

3

4

%DA = 100% - %SA

FFD = Force-Frequency Dynamic

GD = Grip Points Dynamic

%FLD = Percentage of Dynamic Actions at force level 

DC = Dynamic Contribution

FFGD = Sum of Dynamic Contributions

L
eg

en
d

%SA = Percentage of Static Actions

FDS = Force-Duration Static

GS' = Modified Grip Points Static (Grip x %SA)

%FLS = Percentage of Static Actions at force level

cycle time ≤ 30 s

Breaks are possible at every
time

FDGS = ∑ SCi
100%

FFG = FDGS + FFGD
FFG

%DA = ΣFLDj FFGD = ∑ DCj

SC = Static Contribution

FDGS = Sum of Static Contributions

21

8

5

a

6

=

0

1 1,5
180

Repetitive tasks duration

3
300

5
Breaks lead to a stop of the

process
Breaks are possible at given conditions

(Cycle time shorter than 1 minute)(Cycle time between 1 and 10 minutes)(Cycle time longer than 10 minutes)

-1 -2 -3
1

-4
2 3 4 5 6 ≥7

× =

10% 25% 33% 50% 65% 85%
0 0,5 1

(a) Force & Frequency & Grip Upper Limbs

Net Duration [min/shift]
Shift Points (1 hour = 1 point)
Work Organization

Work Organization Points

420
7

60

1

Additional points (choose the highest value)

90

4

2

Precision tasks are carried out for over half the time (tasks over areas smaller than 2-3 mm)

During almost the whole time one or more additional factor/s is/are present

Tools employed cause compressions of the skin (rednesses, callosities, blebs, etc.)

Exposure to cold or refrigeration (less than 0 degree) for over half the time

Vibrating tools are used for 1/3 of the time or more

2

16

144

6 9 12

a b
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Upper  LimbsUpper limb load in repetitive tasks

power grip/contact grip

finger or moderate pinch
(thumb to >2 fingers, finger)

strong pinch
(thumb to 1 or 2 fingers)
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0
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( FFG )AF

Additional factors
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Tools with a very high level of vibrations

AF

Gloves inadequate (which interfere with the handling ability required) are used for over half the time

Working gestures required imply a countershock. Frequency of 2 time per minute or more (i.e.: hammering over hard surface)

Working gestures imply a countershock (using the hand as a tool) with freq. of 10 time per hour or more
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PP+

Upper limb load in repetitive tasks
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Force [N]

0 ─ 5
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1 5 10 15 20

Very
Low

Low Medium High Very
High

Name Task Date

Mental Demand How mentally demanding was the task?

1 5 10 15 20

Very
Low

Low Medium High Very
High

Physical Demand How physically demanding was the task?

1 5 10 15 20

Very
Low

Low Medium High Very
High

Temporal Demand How hurried or rushed was the pace of the task?

1 5 10 15 20

Very
Low

Low Medium High Very
High

Performance How successful were you in accomplishing the task?

1 5 10 15 20

Very
Low

Low Medium High Very
High

Effort How hard did you have to work to accomplish your level of performance?

1 5 10 15 20

Very
Low

Low Medium High Very
High

Frustration How insecure, discouraged, irritated, stressed, and annoyed were you?

Figure 3.8: NASA-TLX worksheet for workload assessment [137].
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Not at all
hard to do

0 10

Not very
hard to do

20

A bit
hard to do

30

Fairly
hard to do

40

Rather
hard to do

50

Pretty
hard to do

Very
hard to do

70

Very very
hard to do

80

Tremendously
hard to do

90

Not
sustainable

100

Damaging

60

Figure 3.9: RSME worksheet for the subjective evaluation of mental effort [138].

Please tick one of the two dimensions of workload that you think is more important to you.

Mental Effort Load Time Load

Time Load Psychological Stress Load

Psychological Stress Load Time Load

Please evaluate the following dimensions with respect to the rating scales reported below.

Time Load

1 Often have spare time.
Interruptions or overlap among activities occur infrequently or not at all.

2 Occasionally have spare time.
Interruptions or overlap among activities occur infrequently.

3 Almost never have spare time.
Interruptions or overlap among activities are very frequent, or occur all the time.

Mental Effort Load

1 Very little conscious mental effort or concentration required.
Activity is almost automatic, requiring little or no attention.

2
Moderate conscious mental effort or concentration required.
Complexity of activity is moderately high due to uncertainty, unpredictability, or
unfamiliarity.
Considerable attention required.

3 Extensive mental effort and concentration are necessary.
Very complex activity requiring total attention.

Psychological Stress Load

1 Little confusion, risk, frustration, or anxiety exists and can be easily
accommodated.

2

3 High to very intense stress due to confusion, frustration, or anxiety.
High extreme determination and self-control required.

Moderate stress due to confusion, frustration, or anxiety noticeably adds to
workload.
Significant compensation is required to maintain adequate performance.

Name Task Date

Figure 3.10: SWAT worksheet for workload assessment [139].
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Yes

NoWas it possible
to complete the task?

No

Yes

Was workload tolerable
for the task?

Yes

No
Was workload

satisfactory without
reduction?

Tasks abandoned
Operator unable to apply sufficient effort

Very high workload
Almost no spare capacity

Difficult to maintain the level of effort
Extremely high workload

No spare capacity
Not possible to maintain the level of effort

High workload
Little spare capacity

Very difficult to maintain the level of effort

Reduced spare capacity
Additional tasks should require low-effort

Little spare capacity
No additional task can be assigned

Sufficient spare capacity for
low-effort additional tasks

Workload low

Enough spare capacity for high-effort
additional tasks

Workload insignificant 1

2

3

4

5

7

8

9

10

6

OPERATOR DEMAND LEVEL RATING

Enter Here
Figure 3.11: Bedford Workload Scale for the assessment of mental capacity and satisfaction of

operators [140].



Chapter 4

Framework Development

The Industry 5.0 paradigm emphasizes the interplay between human capabilities

and technological advancements, with a strong focus on enhancing operator wel-

fare in industrial environments. Building on the definition of the human factors

taxonomy discussed in Section 3.1 and the methodologies for their assessment

explored in Section 3.2, the next step towards a more worker-centric industrial

future lies in the development of a comprehensive approach that combines data

collection, processing, analysis, and interventions strategies to address risks to

operators welfare both reactively and proactively. This integration enables the

establishment of a dynamic, closed-loop system capable of responding to current

industrial conditions and anticipating future ones, setting a new standard for

predictive assessment systems in industrial settings.

The proposed framework is structured into three distinct yet interconnected

modules, each playing a critical role in implementing both reactive measures and

proactive strategies:

1. Data Collection Module: Central to the framework, this module gathers

a wide range of data, including workers’ biometric parameters, environmen-

tal conditions within the industrial workspace, and machinery operational

statuses. This broad spectrum of collected data is crucial for comprehen-

sively analyzing the interactions between operators and their environments,

setting the stage for effective predictive analysis.

2. Data Analytics and Predictive Modelling Module: Provided with

extensive data, this module processes and analyzes the information to iden-

tify patterns and trends essential for predicting potential hazards and en-

hancing operator welfare. It facilitates reactive measures and preemptive

75
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strategies by offering insights that help anticipate and mitigate risks before

they occur.

3. Intervention Techniques Module: Informed by the analytics module,

this component defines strategic responses designed to enhance workplace

safety and improve the health and well-being of operators. The interven-

tions, customized to individual and environmental needs, range from er-

gonomic adjustments to emergency responses, all aimed at fostering a safer

and more supportive industrial workspace.

Hazards 
Identification

Insights 
Generation

Digital Twins 
and
Anomaly Detection

Environmental 
Monitoring

Operators 
Monitoring

Machinery 
Monitoring

Data 
Collection

Data 
Analysis

Physiological and
Psychological State
Assessment

Location-Based
Worker Safety
Assessment

Real-time Adaptive
On-Site Assistance

Intervention
Techniques

Figure 4.1: Flowchart illustrating the three modules of the framework and their main components.

This dynamic framework operates on a continuous feedback loop, allowing

for constant refinement and adaptation based on evolving data insights. It facili-

tates an industrial environment that is both productive and supportive, evolving

dynamically to meet the changing needs of human operators. Furthermore, it

is a living system designed to maintain flexibility and responsiveness to ensure

sustained operator welfare and system efficiency.

This Chapter begins with an in-depth exploration of the three core modules

that compose the framework. Each module is specifically examined for its distinct

functions, interactions, and contributions toward establishing a balanced and

effective system that enhances operator welfare and productivity. The discussions

presented in the last Section of this Chapter will evaluate the framework’s overall
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impact, addressing its limitations, implementation challenges, and potential areas

for future research and development.

4.1 Data Collection Module

The Data Collection Module is the foundational component of this framework,

having the critical role of acquiring real-time data essential for the subsequent

analysis processes. As outlined in Section 3.1, four key elements should be con-

sidered for enhancing the defined human factors: the operators, their working

environment, the machinery in use, and the operational tasks performed. Ac-

cordingly, this module is strategically divided into four primary components:

1. Operators Monitoring and Assessment;

2. Environment Monitoring;

3. Machinery Monitoring;

4. Operation Monitoring.

Each component focuses on a specific aspect of the industrial setting, ensuring

a comprehensive data-gathering approach that captures every critical variable.

Subsequent subsections detail the technologies employed in this process, which

enable the passive and continuous collection of data crucial to deriving actionable

insights.

4.1.1 Operators Monitoring and Assessment

In the context of I5.0, data collection about human operators is fundamental

to enhancing workplace ergonomics and optimizing the interactions between hu-

mans and machines. The collected data informs immediate safety measures and

contributes to long-term health management and ergonomic interventions, which

are essential for supporting an effective human-technology synergy.

Wearable Devices

Wearable devices are among the most effective technologies for monitoring op-

erators. These devices are preferred for their direct contact with the user, non-

intrusive nature, and easiness of integration into daily work routines through



78 Chapter 4. Framework Development

incorporation into clothing, accessories, and Personal Protective Equipments

(PPEs) [96].

Heart monitoring is a critical function of wearable devices. Popular com-

mercial products like Apple Watch and Garmin Fenix, along with specialized

chest bands like Polar H10 and Garmin HRM Pro Plus, offer robust accurate-

ness for measuring heart rate, blood pressure, and oxygen saturation. These

devices provide essential data for assessing cardiovascular health and stress levels

in real-time, although they differ in accuracy and specific capabilities [102].

The mechanics of heath rate monitoring in smartwatches involve photoplethys-

mography, in which a green light emitted from the device is used to measure blood

volume changes under the skin. Specifically, the rear of the smartwatch contains

an optical sensor to detect the reflected light. The device measures the change

in concentration of red blood cells as the blood vessels expand and contract: ex-

panded blood vessels absorb more green light, and contracted blood vessels absorb

less green light. The detector measures the reflected green light, and a software

algorithm converts the changes in light intensity into pulse rate and blood pres-

sure [141]. More recent devices can also detect complex cardiovascular conditions

like atrial fibrillation (i.e., irregular heartbeat) with significant precision [142].

Despite their widespread usage, the accuracy of smartwatches can be affected by

various variables, such as skin pigmentation and the physical separation between

the light source and the sensor. Indeed, it is limited by the fact that the light

source and the detector are positioned on the same side, making the detector

entirely dependent on the amount of light reflected from the sample, i.e., the

blood.

The approach used for measuring blood oxygen is similar. The smartwatch

shines a red light to target hemoglobin, the protein particle in the blood responsi-

ble for carrying oxygen. Depending on how much oxygen it is transporting, it will

absorb more or less wavelengths of light. Therefore, the reading of the reflected

light will provide the percentage of oxygen in the blood [143].

On the other hand, chest bands provide measurements via Electrocardiogram

(ECG), capturing electrical pulses from the heart to offer precise and rapid heart

rate data, leading them to be more accurate and faster than smartwatches. In-

deed, while a smartwatch can take around 10 to 30 seconds to provide a reliable

measurement, chest bands like the Polar H10 declare to have a frequency of 1000

Hz, which is 1 ms [144]. For what concerns accuracy, while smartwatches show

an accuracy comprised between 80% and 88%, chest bands exhibit a precision
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of 99.6%. Therefore, the best approach for collecting data about the operators’

cardiovascular and respiratory features is to use both simultaneously.

Additional monitoring technologies include Inertial Measurement Unit (IMU)

sensors, which can capture detailed motion data across various body segments.

Considering that any human motion can be divided into a series of displacements

of the torso or the limbs, an IMU sensor is a device able to measure the moving

object’s acceleration, velocity, and orientation using a combination of accelerome-

ters, gyroscopes, and magnetometers [96]. Consequently, the body-mounted IMU

can measure body parts’ movements, detecting accelerations, falls, abnormal pos-

tures, and changes in joints and articulations.

IMU sensors can also recognize hand and finger gestures and, if used as head-

mounted displays, also measure head motions such as head nod, head shake,

yawning, looking up, looking down, and some activities such as walking, turning,

and crouching [145, 146, 147, 148].

Electroencephalography (EEG) sensors also play a pivotal role in collecting

data about operators. They are sensors used for monitoring the power levels of

brainwaves, enabling them to obtain information regarding mental states such

as vigilance, sleep, and stress, and mental intentions, including feeling confident,

confused, or stressed, in performing a task [105, 149]. In practice, monitoring the

change of alpha (between 12 Hz to 30 Hz) and beta brainwaves (ranging between

8 Hz to 12 Hz) could determine if the mental state is changing from alert to

non-alert, increasing the risk of accident [96].

Furthermore, it is possible to use pressure sensing mats to capture the stand-

ing states, and smart eye-wear containing cameras to perceive the surroundings

from the first-person view of the operator as well as his facial features and eye

movements, and Electromyography (EMG) sensors can be used to obtain the

muscle activities [115].

Regarding the capturing of the operators’ positions, the first approach is using

smartphones since their built-in GPS, along with triangulations with Wi-Fi and

accelerometers, enable the tracking of movements and locations [46]. Another

possibility is to use RFID sensors or Bluetooth Low Energy (BLE) sensors, which,

with properly disseminated actuators, can enable the detection of humans in

certain areas of the factory. These technologies can also be applied as smart

labels, allowing the tracking of parts, components, and equipment [85].

Finally, by integrating these sensors into bodysuits, we can collect data about

joints, muscles, and other body metrics, along with heart and breathing rates,
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Figure 4.2: The basic architecture of smart labels [85].

to obtain even more details about musculoskeletal stress and posture in a less

disturbing and all-in-one option. Bodysuits enable gathering all the sensors men-

tioned in that paragraph in a single comprehensive solution [111]. Another pos-

sibility for gathering all these sensors is to merge them in a safety helmet, which

also enables the monitoring of operators wearing Personal Protective Equipments

[96].

Imaging Systems

Imaging systems enhance operator assessment by providing real-time visual moni-

toring capabilities. The system can detect movements, count personnel, and mon-

itor safety compliance across various zones within the industrial setting, thereby

enforcing safety in I5.0 environments that may include CoBots and humans in

the loop [150].

Depending on the needs and industrial environmental conditions, standard,

thermal, infrared, or depth-sensing cameras can be employed to better capture the

aspects of interest. In particular, the adoption of infrared and thermal cameras

increases the probability of detecting humans in low-visibility conditions com-

pared to conventional RGB cameras. Moreover, thermal cameras improve the

system’s sensitivity to non-medical-grade human-related activities since they fo-

cus on heat source detection. However, we should consider that thermal cameras
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are sensitive to temperature changes caused by their intrinsic variation during

the day and other external factors. That must be taken into account by applying

compensation mechanisms [151].

By deploying an imaging system in an industrial environment, it is feasible

to implement a map that corresponds to the worksite. That map can be mod-

ified dynamically in response to detected alterations in the worksite, show each

worker’s location, and detect when an accident occurs [83].

Imaging systems can also be used to promptly trigger alarms in hazardous

work areas, detect falling objects, and automatically register real-time job logs

and operators’ movement paths to reduce non-productive repetitive tasks and

eliminate the errors caused by handwriting.

Cameras can also be positioned on the workstation. A top-camera view placed

on the workbench can capture data to identify the actions carried out by oper-

ators during their work. A camera positioned at the side can serve for posture

recognition, enabling the assessment and monitoring of posture changes through-

out the workday. Moreover, by placing a camera in front of the operator on the

worktable or mounted on the operator’s helmet, we can recognize the face of the

individual engaged in the activity, enabling the capturing of facial features asso-

ciated with eyes and mouth to compute metrics such as Eye-opening Frequency

(PERCLOS), Eye-aspect Ratio (EAR), and Mouth-aspect Ratio (MAR) [87].

4.1.2 Environment Monitoring

Environmental conditions within industrial settings critically influence both hu-

man performance and workplace safety. To effectively monitor these factors, fixed

sensors within the workplace are the technology of choice since they can provide

continuous and unobtrusive data collection.

The primary environmental risks in industrial environments include dust,

chemicals, toxic gases, and potential fire hazards. To appropriately assess these,

a comprehensive family of sensors is required, each designed to detect specific

environmental pollutants and conditions:

� Dust Sensors: These sensors measure particulate matter levels such as

PM-1.0, PM-2.5, and PM-10, providing data critical for assessing air quality

and the presence of hazardous airborne particles.

� Gas Sensors: Various gases pose significant health risks in industrial set-

tings. Sensors for Oxygen (O2), Carbon Monoxide (CO), Hydrogen Sulfide
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(H2S), Methane (CH4), and Hydrogen (H2) can be deployed to monitor air

quality and detect leakages or hazardous accumulations.

These sensors help maintain regulatory compliance and play a crucial role

in ensuring workplace health and safety. Continuous monitoring allows for the

timely detection of environmental anomalies, enabling immediate corrective ac-

tions to mitigate potential risks.

The types of environmental risks typically encountered in most industrial

processes are outlined in Table 4.1, which provides a quick reference for identifying

common hazards associated with specific manufacturing stages.

Table 4.1: Environmental risk factors [84].

Process Factors
Machinery Receiving Dust
Preprocessing Dust
Part Fabrication Dust
On-block Outfitting Dust, fire, explosion
Part Assembly Dust, fire, explosion, oxygen deficiency
Block Assembly Dust, fire, explosion, gas choking
Painting Dust, fire, explosion, gas choking
Pre-Election Dust
Election Dust, suffocation, fire, explosion
On-block Outfitting Dust, fire, explosion

4.1.3 Machinery Monitoring

To advance workplace safety and operational efficiency, the developed I5.0 frame-

work also demands accurate monitoring of both fixed and moving machinery.

This monitoring is crucial not only for maintaining machinery performance but

also for ensuring operator safety by preemptively identifying potential hazards.

Both share the need to monitor potential threats, abnormal vibrations or sounds,

and deviations from normal operating conditions.

Fixed Machinery Monitoring

In various manufacturing processes, stationary machinery requires constant vigi-

lance to detect deviations from standard operating conditions that might indicate

failures. The integration of the following sensors facilitates a comprehensive mon-

itoring [112]:
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� Vibration Sensors: These sensors detect unusual vibrations that could

denote mechanical issues or misalignments within machinery.

� Acoustic Sensors: By capturing sound data, these sensors can identify

abnormal noises or changes in operational sounds indicative of mechanical

wear or failures.

� Temperature Sensors: Monitoring temperature variations can help de-

tect overheating issues before they lead to machinery breakdowns.

� Visual Inspection Cameras: Cameras positioned around machinery pro-

vide real-time visual monitoring, enabling early detection of issues like leaks,

breaks, or other visible signs of tears.

Machinery in Movement Monitoring

Machinery in motion presents additional challenges, particularly regarding oper-

ator safety and mechanical integrity. To address these obstacles, it is possible to

employ [46, 112]:

� Proximity Sensors: These sensors are crucial for maintaining safe dis-

tances between mobile machinery and operators, helping to prevent acci-

dents and collisions.

� Speed Sensors: Monitoring the machinery’s speed helps ensure that all

operations are performed within safe limits.

� Current Sensors: These sensors provide data on the electrical aspects of

machinery, helping to predict potential electrical failures.

� Load Monitoring: For equipment that transports or handles heavy loads,

it’s vital to monitor the weight and stability to prevent overloads that could

lead to equipment failure and pose risks to nearby operators.

4.1.4 Operation Monitoring

The last component of the Data Collection Module concerns operation monitor-

ing, fundamental in the context of I5.0 to capture data related to potentially haz-

ardous or stressful operations performed by operators. These operations might

include dynamic activities such as hammering, welding, and lifting, as well as
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Figure 4.3: A possible setup for monitoring stationary and mobile machinery [152].

tasks requiring high precision or mental stress, such as assembly information re-

call or verification of task outcomes.

To effectively monitor these operations, the framework integrates a variety of

technologies [66, 115]:

� Close-look Imaging Systems: Technologies such as smart glasses and

workstation-mounted cameras play a crucial role in monitoring detailed task

execution and ensuring adherence to safety protocols.

� Disseminated Imaging Systems: Cameras strategically placed around

the work environment provide a comprehensive view, enabling the supervi-

sion of compliance with operational procedures and safety measures.

� Wearable Devices: Devices like smart gloves and wristbands are essential

for tracking hand movements and muscle activity during tasks, providing

insights into operators’ ergonomic and physical demands.

The monitoring should also extend to operations involving potentially haz-

ardous components, leveraging:

� Sensor Deployment: Existing sensor technologies can detect the pres-

ence of hazardous materials or conditions, such as toxic gases or extreme

temperatures.

� RFID and Camera Integration: RFID tags and cameras facilitate the

real-time identification and tracking of hazardous equipment, ensuring that

any risks are immediately recognized and managed [85, 153].
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Figure 4.4: An example of an integrated setup illustrating the deployment of sensors, cameras, and
wearable devices for operator monitoring [115].

4.2 Data Analytics and Predictive Modelling

Module

The Data Analysis and Predictive Modelling Module serves as the analytical core

of the framework, carefully analyzing the vast volume of collected data to iden-

tify patterns, trends, and imminent risks to human operators’ safety, health, and

well-being. This module processes the data using sophisticated algorithms and

statistical techniques to extract actionable insights. These insights are funda-

mental to developing predictive models capable of anticipating and forecasting

potential hazards for human operators.

This module is structured into four key components:

1. Location-based Worker Safety Assessment: Utilizing positional and

motion data, this component focuses on monitoring and forecasting the

movements, behaviors, and activities of operators within the workspace to

enhance situational safety.
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2. Physiological and Psychological Operators Assessment: This ele-

ment deals with the analysis of data related to operators’ physical and

mental health, aiming to optimize their overall welfare and job satisfaction.

3. Environmental Data Analysis: Dedicated to examining environmen-

tal parameters, this component ensures that the conditions of the working

ambient remain safe and facilitate productivity and comfort.

4. Digital Twin Simulation: Integrating data from all collection points, this

part utilizes Digital Twins to simulate real-world scenarios, thus enhancing

the predictive capabilities of the framework.

4.2.1 Location-based Worker Safety Assessment

This component utilizes position and movement data captured through wearable

devices and imaging systems deployed on the shop floor to perform various anal-

yses. It is crucial to detect operators within different zones, monitor their move-

ments, ensure safe distances from machinery, and enforce virtual fences around

restricted or hazardous areas [153].

To maximize safety, a redundant mechanism should be established using both

imaging and position data to ensure accuracy and minimize false negatives. Two

methods can be concurrently employed when using imaging systems: one to detect

movements and the other to identify regions of interest within a frame. Both

methods need to work simultaneously to determine if humans are present in an

image. Indeed, a positive detection of human presence results from either method

indicating activity: only when both agree on the absence of human presence a

negative result is provided (i.e., no humans have been detected). Basically, it is

like putting a logic OR between the two detection approaches [150].

The process employs direct subtraction of image matrices:

1. The first frame serves as the background reference. Subsequent frames are

subtracted from this background, and if the resulting frame shows minimal

pixel variation, it indicates the absence of new movement, and this frame

becomes the new reference. The latter operation ensures the following com-

parison is performed with the most recent reference.

2. Significant changes, indicated by active pixel groups meeting a predefined

threshold (e.g., 5% of total pixels), indicate movement. To better clarify,

considering, for instance, an image having a resolution of 160 x 120 pixels,
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its size will be 19200 pixels. A movement will be detected only when at

least 5% of those pixels, i.e., 960 pixels, are considered active. Otherwise,

the algorithm finds no significant movement, and no detection is signalized.

The threshold can be adjusted for different conditions or to improve the

algorithm sensitivity.

This approach allows for a good trade-off between performance and comput-

ing power because it does not rely on a compute-intense algorithm to identify

humans in a frame, like most Machine Learning (ML) and Artificial Intelligence

(AI) approaches available, enabling the reduction of the latency time, something

crucial when dealing with location and movements data since a prompt response

can stop machinery or alert operators before a dramatic incident happens. Ad-

ditionally, no previous model training is required. Therefore, this approach can

be easily implemented in an edge-like device with low energy consumption, com-

putational power, and cost.

Building upon historical data on movements and positions, a predictive mod-

ule can employ ML techniques, particularly those based on time-series analysis

such as LSTM (Long Short-Term Memory), to forecast potential future operator

locations and movements based on the current and past ones [154, 155].

These predictions enable proactive safety measures and operational efficiency

by [156]:

� Analyzing and optimizing operators’ movement paths relative to the work-

place layout, suggesting more efficient routes and workflow improvements.

� Identifying patterns in operators’ activities that may lead to physical strain

or fatigue, proposing adjustments to mitigate health risks and enhance com-

fort.

4.2.2 Physiological and Psychological Operators Assessment

Analyzing physiological and psychological data collected from human operators

is crucial for ensuring their overall welfare in industrial environments. Through

the integration of multi-modal sensing techniques, such as EEG for brain activ-

ity, ECG for heart activity, and various sensors for musculoskeletal activity, this

assessment helps ensure the well-being of operators by identifying potential issues

in their physical and mental states.

Data from wearable and imaging technologies provide valuable information

on operators’ physical and mental health. By combining these data, we can
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Figure 4.5: Workflow of the movement detection algorithm using image subtraction technique [150].

extract meaningful features that inform about the operators’ current state. For

example, head and torso movements recorded through sensors help identify and

classify operator actions and motions. In that scope, it is possible to outline a

dictionary of gestures, as the one illustrated in Figure 4.6, defining acceptable

and non-acceptable motions in a workflow [96]. The head motions are sorted

into two groups of basic actions corresponding to torso stillness and moving. The

two bold axes in the images constitute the moving plane of corresponding head

motion.
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Figure 4.6: The dictionary of head motions at torso stillness (a-f) and at torso moving (g-l) [96].

We can supplement this gesture dictionary with the mental states extracted

from EEG, which can be sorted into three groups, defined as:

1. High-risk states: fatigue or stress;

2. Middle-risk states: beginning of fatigue or stress;

3. Low-risk states: vigilant.

This categorization is based on the energy in specific frequency bands (Alpha and

Beta) calculated using Fast Fourier Transform [96].

Furthermore, utilizing a matrix that combines physical actions with mental

states, namely merging IMU and EEG data, it is possible to compute the accident

severity level of potential risks. Each physical action, linked with corresponding

mental stats, is scored and classified into risk levels ranging from 1 (low) to

3 (high), according to its underlying relationship with the accident or injury

severity. Formally, the score multiplication of head motion and mental state

determines the severity level. Table 4.2 shows some samples about how to evaluate

the severity level. The results are categorized into three class levels: ”Low”,

”Middle”, and ”High”.
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Table 4.2: Severity level determination sample [96].

Vigilant (1) Beginning of Fatigue or Stress (2) Fatigue or Stress (3)
Torso Moving (1) Low (1) Low (2) Middle (3)
Torso Stillness (2) Low (2) Middle (4) High (6)
Nodding off (3) Middle (3) High (6) High (9)

Subsequently, the accident risk level is determined by:

Risk = P ·O · S (4.1)

where O is the occurrence, S is the severity, and P the probability of accident.

When a certain non-acceptable motion is repeated, the O value is increased in

proportion. The severity S is determined from the data fusion of head gesture

and mental states defined in Table 4.2. P is the probability of the accident,

computed from the Energy weight of alpha and beta brainwaves using Fast Fourier

Transform (FFT), as:

Weightα =

∑12
8 Efreq

Etotal

(4.2)

Weightβ =

∑30
12Efreq

Etotal

(4.3)

Where Efreq is the energy inside the sub band frequency for each brainwave pa-

rameters and Etotal is the total energy of all frequency spectrum.

According to Equations (4.1), (4.2), and (4.3), we can determine a severity

score from 1 to 9, representing low, middle, and high-risk levels. As a result, a

risk level determination and related actions can be defined as in Table 4.3

Table 4.3: Risk level determination and action.

Values Risk Levels Action
0 - 5 Low Continue monitoring the status
6 - 10 Middle Convey an alert to operator
> 10 High Stop the machine tool or process

To complement this assessment, we can consider the data related to cardio-

vascular activity. Heart Rate is analyzed starting from RR interval time series,

which is the series of time of occurrence of heartbeats [157]. It collects time

intervals occurring between consecutive heartbeats, where the occurrence of a

heartbeat is detected from R peaks [158]. Thus, the RR series is defined as:

RR = {RRk ; k = 1, . . . , N} = {Rk+1 −Rk ; k = 1, . . . , N} (4.4)
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where Rk is the instant of occurrence of the k -th beat and N is the number of

beats occurring during a measurement session.

While Heart Rate undergoes normal physiological oscillations, the way it

varies provides relevant information on the autonomic neural regulation of the

heart and circulatory system, which, ultimately, is influenced by fatigue states

[102]. To this end, assessment of Hearth Rate Variability (HRV) turns out to be

helpful. HRV is typically analyzed considering a set of established metrics in the

time and frequency domain [157, 158].

Time-domain metrics include statistical indices such as :

� the mean value of the RR series (mean RR):

Mean RR =
1

N

N∑
k=1

RRk (4.5)

� the standard deviation of the RR series (SDNN ):

SDNN =

√√√√ 1

N − 1

N∑
k=1

(RRk −Mean RR)2 (4.6)

� the root mean square of successive differences (RMSSD):

RMSSD =

√√√√ 1

N − 1

N−1∑
k=1

(RRk+1 −RRk)
2 (4.7)

� the percentage number of consecutive (normal) intervals differing by more

than 50 ms in the entire recording (pNN50 ):

pNN50 =
# of intervals with|RRk+1 −RRk| > 50ms

N
× 100 (4.8)

On the other hand, frequency-domain metrics account for:

� RR series power in the low frequency band (LF, 0.04-0.15 Hz):

LF =
0.15∑

f=0.04

P (f) (4.9)
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� RR series power in the high frequency band (HF, 0.15-0.40 Hz)

HF =
0.40∑

f=0.15

P (f) (4.10)

� The ratio of low-frequency power to high-frequency power (LF/HF ratio):

LF/HF ratio =
LF

HF
(4.11)

According to [102], there are significant statistical differences between rest and

physical fatigue (R-P) and rest and mental-physical combined fatigue (R-M&P)

for all of these performance measures. Interestingly, no significant differences

were observed between the physical fatigue conditions and the joint physical and

mental fatigue conditions. This suggests that physical fatigue causes a greater

degree of variability in Heart Rate than mental fatigue, which hides this last when

both sources of fatigue are present at the same time. Consequently, it is possible

to conclude that it is challenging to identify mental exhaustion when other factors

contribute to physical exhaustion.

Once these features are extracted, Machine Learning models such as Convo-

lutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) can

be employed to understand worker behavior and predict potential risks. The first

comprises both spatial and temporal perspectives (e.g., walking towards a work-

station, turning a screwdriver, etc.). At the same time, the latter includes mental

activities related to specific tasks, such as having confidence in or feeling confused

about a specific operation [115]. This helps in assessing worker performance and

identifying the need for guidance or intervention. The operator’s performance can

be evaluated in comparison to the one exhibited by experienced workers, and a

”Demanding Score” can be defined to represent the level of demand for support.

Specifically, considering the time taken for each operational step, the Demanding

Score is increased proportionally if a particular action takes more time than av-

erage. Then, if the Demanding Score is higher than a threshold, there should be

the automatic triggering of assistance actions enabling the provision of guidance

at the right time, which has to be timely enough but not disturb the ongoing

operation.

By integrating the data on actions performed, blinking frequency, and posture

changes, it is also possible to derive insights into the operator’s fatigue level. By

considering these key factors, the global level of fatigue experienced by operators
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during their work activities is defined using the following equation [87]:

fs = off · α + pff · β +

∑nTask
1 (tts)

nTask
· γ + b (4.12)

where

� fs = fatigue scoring

� α = fatigue scoring adjustment factor

� off = ocular fatigue factor

� β = ocular fatigue adjustment factor

� pff = positional fatigue factor

� nTask = number of tasks

� tts = time task scoring

� γ = positional fatigue factor adjustment factor

� b = bias for personal adjustment of the operator

The equation consists of the following parts:

� Ocular fatigue component: Performed via imaging systems, either inte-

grated on smart eye-wears or on the workstations. Although the face has

many more features than eyes that can be used for fatigue assessment, such

as Mouth-aspect Ratio (MAR), Frequency of Mouth (FOM), and yawning,

the processing of all of these slows down the system performance, disrupting

the ability to perform timely interventions [97, 159]. Therefore, reducing

the focus on eyes detection is more convenient and appropriate. The com-

puter vision workflow enabling that detection is illustrated in Figure 4.7,

and it consists of the following steps [160]:

1. Eyes detection on a new frame or after significant movement;

2. Eyes tracking and Eye-aspect Ratio (EAR) evaluation;

3. Eye closure detection and evaluation of the blinking rate.
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Figure 4.7: Workflow of the blink detection algorithm [150].

Eye detection can be done employing the Viola-Jones algorithm [161], com-

monly used for fast appearance-based detection of different kinds of objects.

The Haar-like features are the input to the classifier and are specified by

their shapes, positions within the region of interest, and scale, as shown in

Figure 4.8 [162].

A classifier trained to detect both eyes can be used to improve the accuracy

of blink detection. As a matter of fact, only involuntary blinks, in which

both eyes close simultaneously, correlate with an individual’s emotional-

physical state [159]. As a result, if the system only records the closure of

one eye while the other is open, it indicates that the blink is voluntary and

should be ignored.

Given that the camera is fixed to a table, integrated into a laptop or
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Figure 4.8: Example of Haar-like features for cascade training [162].

mounted on smart glasses, and that the average acquisition speed is ap-

proximately 30 frames per second, the difference between each subsequent

frame is negligible, provided that the subject of the work does not move

quickly or frequently and that the background is mainly static [160]. As

a result, eye tracking can improve system performance by limiting the eye

region’s detection to moments when a notable frame change occurs.

Concerning blink detection, the first step is to compute the difference be-

tween each eye’s current and previous frames separately. Then, the current

frame is considered to contain a blink only if the number of different pix-

els exceeds the established threshold. Equation (4.13) defines the Boolean

value F(t), defining the detection of a blink in the frame t. Here, maskr(t)

and maskl(t) are the difference masks between current and previous frames

for right and left eyes, respectively. CARD() gives the cardinality of the

input mask, and T is the predefined threshold, computed as a minimal

number of pixels that should differ from classifying a blink.

F (t) =



1,
( ∑

maskr(t)
CARD(maskr(t))

> T and
∑

maskl(t)
CARD(maskl(t))

> 1
2
T
)

or ( ∑
maskr(t)

CARD(maskr(t))
> 1

2
T and

∑
maskl(t)

CARD(maskl(t))
> T

)
0, otherwise

(4.13)

That equation enables us to take into account the following corrections to

filter out the voluntary blinks [163]:

1. Detection of the closed eye for more than 1s means not spontaneous
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closure. Thus, the alarm should be given, and the blinking rate de-

tection should be stopped and restarted as soon as the opened eye is

detected again.

2. Detection of two blinks with a short reopening time within 1s should

be considered a single blink since it is similar to the voluntary blink.

The body’s features cause it, and it happens without human control.

3. Detection of more than two consequent closing and reopening eyes

means abnormal behavior caused by voluntary blinks or other diseases.

Therefore, it should be eliminated from the blink rate detection, and

the alarm should be given. Once the expected behavior is detected

again, the count restarts.

Having the information about involuntary blinks and their duration, the

fatigue level can be measured by calculation of the blink rate or using a

PERCLOS method, i.e., by calculating the percentage of frames where the

eyes are detected closed in a given time period [164].

In other words, PERCLOS can be defined as a fatigue analysis method that

shows the ratio of closed eyes depending on the number of opened and closed

eyes [165]. This value can be calculated as in (4.14), where NCloseAndOpen

represents the total number of open and nclose represents closed eye frames

at a given time [97].

fPERCLOS =
nclose

NCloseAndOpen

× 100% (4.14)

According to [166, 167], a fatigue status is determined when the PERCLOS

threshold fPERCLOS > 0.24. Furthermore, fatigue status can be divided

into three levels:

1. Very Tired Level: It happens when the eye closure time exceeds 5

seconds, i.e., nCLOSE > 150 frames.

2. Tired Level: Here fPERCLOS is in the range (0.15, 0.24).

3. Not Tired Level: Where fPERCLOS < 0.15 and no signs of fatigue

are expressed.

� Positional fatigue component: Leverages the operators’ data, collected

by the imaging systems deployed on the workstation and by the biometric

sensors worn by operators, to analyze their posture and determine if they
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assume incorrect postures or wrong ergonomics while performing their job

[87]. Specifically, with the imaging systems it is possible to perform hand

detection and skeleton identification, as shown in Figure 4.9. [87] proved

Figure 4.9: Example of hand detection and skeleton identification via imaging systems [87].

that operators engaging in repetitive or straining actions or remaining in

one position for extended periods may adopt a non-upright posture, indi-

cating signs of fatigue due to work accumulation. Analyzing the hands can

determine the time needed to perform a specific task, and the computerized

skeleton can estimate operators’ body inclination variations [168]. By incor-

porating these two metrics, fatigue can be detected and its onset assessed

to implement proactive actions.

� Component of the contribution of task time score weights: By

measuring the operation time, it is possible to determine if an operator is
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taking longer to perform the same assembly information, which can indicate

fatigue. The duration taken by an expert individual to accomplish the task

is used as a reference. The time scoring task (tts) component is calculated

as the ratio of time taken by the operator to the reference time taken by

the expert:

tts =
Time taken by the operator

Reference time taken by the expert
(4.15)

This component is then aggregated over all tasks the operator performs

to get an average time task score, which is included in the overall fatigue

scoring equation. That aggregation is done by summing up the individual

task scores and dividing by the number of tasks (nTask) to normalize the

score: ∑nTask
i=1

ttsi
nTask (4.16)

� Operator adjustment bias: this component accounts for individual dif-

ferences among operators that may influence their fatigue levels. These dif-

ferences can arise from various factors, including personal health conditions,

age, experience, and susceptibility to fatigue. The bias helps personalize the

fatigue scoring model, reflecting each operator’s unique characteristics.

To determine the operator adjustment bias, the following factors are con-

sidered:

1. Personal health conditions: Operators with certain health condi-

tions, such as chronic fatigue syndrome or cardiovascular issues, may

exhibit higher fatigue levels. Medical assessments and health records

can be used to adjust the bias accordingly.

2. Age: Age-related factors can significantly influence an operator’s en-

durance and recovery rate. Older operators may require a higher

adjustment bias due to declines in natural physical stamina and re-

silience.

3. Experience: Operators with more experience might perform tasks

more efficiently and with less fatigue due to their familiarity and pro-

ficiency with the job. On the other hand, less experienced operators

may tire more quickly and thus have a different bias adjustment.

4. Individual susceptibility to fatigue: This factor considers how

different operators react to the same workload. Some individuals may
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have a higher tolerance for repetitive tasks and stressful conditions,

while others may exhibit signs of fatigue more rapidly. Surveys, self-

reports, and historical performance data can be used to quantify this

susceptibility.

The bias (b) is integrated into the fatigue scoring equation as a constant that

modifies the final score, providing a personalized adjustment that ensures

the fatigue assessment is fair and accurate for each operator.

Therefore, this component enables the continuous monitoring, evaluation,

and proactive assessment of operators’ physiological and psychological states,

recognizing stress, fatigue, uncertainty, musculoskeletal disorders, and incorrect

postures.

4.2.3 Environmental Data Analysis

The Environmental Data Analysis focuses on evaluating real-time environmental

data to identify and predict potential hazards in industrial settings. By applying

advanced ML techniques, particularly Recurrent Neural Networks (RNNs), this

component aims to model environmental conditions to signal normal, warning,

or alarm states in both a reactive and proactive way [84, 169, 170].

The key metric utilized here is the Comprehensive Environmental Risk Index

(CERI), designed to forecast potential dangers based on sensor data. This index

builds upon the concept of the Comprehensive Air-quality Index (CAI) and serves

as an additional feature of the RNNs to improve prediction accuracy [171].

The specific environmental sensors employed, as detailed in Section 4.1.2,

measure critical factors such as dust, oxygen levels, and toxic substances and

gases. The standards representing normal conditions for each of these sensors

are defined in Table 4.4, which constitute the benchmark for triggering different

environmental alerts.

Since each sensor has different degrees of risk depending on its value, a dif-

ferent environment risk index divided into six levels is assigned for each sensor:

1. Good;

2. Normal;

3. Caution;

4. Warning;
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Table 4.4: Measured substances and normal criteria [84].

Process Factors
Oxygen (O2) 19.5 ∼ 23.5%
Carbon Monoxide (CO) Under 20 ppm
Hydrogen sulfide (H2S) Under 0.1 ppm (0.3 ppm - smell)
Methane (CH4) Under 1%
Hydrogen (H2) Under 1%

Dust (Particulate Matter)
PM 10: 0 ∼ 15
PM 2.5: 0 ∼ 15
PM 1.0: 0 ∼ 10

5. Alarm;

6. Critical.

The score of environment risk index (Ip) is obtained by the following equation

[84]:

Ip =

 50
PH−PL

× (Cp − PL) + 50× Level if Level ̸= 0

0 if Level = 0
(4.17)

Where PH and PL are the highest and lowest values for a particular sensor

level, Cp is the current sensor reading, and Level represents the six-step risk

classification from ”good” to ”critical”. When Level is normal, namely when it

is 0, the risk level becomes 0. The minimum and maximum range values for each

step are, respectively, 0 and 50.

The risk level and the risk range of sensor data for calculating the above

values are shown in Table 4.5.

Table 4.5: Risk levels and ranges for environment collected data [84].

(Risk Level) good(0) normal(1) caution(2) warning(3) alarm(4) critical(5)
Risk range PL PH PL PH PL PH PL PH PL PH PL PH

O2 (%) 19.5 23.5 17 19.5 24.5 25.5 25.5 26 0 17 26 47
CO (ppm) 0 20 20 25 25 30 30 40 40 45 45 60
H2S (ppm) 0 0.1 0.1 0.2 0.2 0.3 0.3 10 10 10.3 10.3 20

CH4 (%VOL) 0 1 1 2 2 3 3 4 4 5 5 100
H2 (%) 0 1 1 1.2 1.2 1.4 1.4 1.6 1.6 1.8 1.8 2

PM-1.0(µg/m3) 0 10 10 20 25 25 30 50 50 70 70 150
PM-2.5(µg/m3) 0 15 15 25 25 35 35 55 55 75 75 150
PM-10(µg/m3) 0 15 15 25 25 35 35 55 55 75 75 150

CERI is calculated as a maximum value among summed weighted environ-

ment category as in Equation (4.18), whereW*env*,#p is a weighted value according
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to the environment category and the presence or absence of workers, as shown in

Table 4.6. FE consists of O2, CH4, and H2 sensor data, which means the work

area is vulnerable to fire, explosion, or oxygen deficiency. GE consists of CO,

H2S, and CH4 sensor data, indicating a work area vulnerable to gas choking

or suffocation. DE is measured by PM 1.0, PM 2.0, and PM 10 sensor data.

However, since these weights are assigned according to the degree of risk of the

environment, when deployed in an actual environment they need to be adjusted

to reflect the application scenario.

CERI = max

 WFE,#p ×
∑

p∈FE Ip

WGE,#p ×
∑

p∈GE Ip

WDE,#p ×
∑

p∈DE Ip

 (4.18)

Table 4.6: Weights of work area type and presence of workers on CERI.

#p
Environment 1 0

Fire Environment (FE ) 1.5 1.2
Gas Environment (GE ) 1.2 1.1
Dust Environment (DE ) 1.05 1.0

4.2.4 Digital Twin Simulation

Digital Twin (DT) technologies in I5.0 enable the creation of detailed virtual

replicas of human operators and their interactions within the workplace. These

simulations integrate data from various sources, including wearable sensors, envi-

ronmental and machinery monitoring systems, and operational metrics (e.g., task

completion times and error rates) to provide a comprehensive view of operator

conditions and interactions [172].

It is possible to have different DTs simulating operators with varying levels

of expertise, physical conditions, and even psychological factors, enabling the

simulation of different operative scenarios in the working environment to assess

the impact of various factors on the operators’ performance and well-being and

predict potential challenges or improvements that can be made to enhance their

overall experience [111].

Specifically, DTs in this context can model a wide range of factors, including:

1. Operator variability:
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� Expertise levels: DTs can simulate operators with varying levels of

expertise, exhibiting differences in performance and error rates, to pre-

dict how experience impacts performance and error rates. ML models,

such as Convolutional Neural Networks and Recurrent Neural Net-

works, can analyze patterns in the data to differentiate between novice

and expert behaviors, helping in the identification of the need for ad-

ditional training or support for less experienced workers [173].

� Physical conditions: By simulating operators with different physical

characteristics (e.g., age, height, weight) and health conditions, DTs

can predict how these factors affect fatigue and injury risk. Ergonomic

analysis tools assess the physical strain on operators, allowing for ad-

justments in workstation design and personalized work schedules to

reduce the risk of musculoskeletal disorders [172].

� Psychological factors: Incorporating psychological data, such as

stress and cognitive load, enables the simulation of how mental states

impact performance. Advanced AI techniques, including Emotion

Recognition and Natural Language Processing (NLP), analyze data

from EEG sensors and wearable devices to monitor stress levels and

cognitive load. This is crucial for developing interventions that miti-

gate stress and prevent burnouts [174].

2. Operational scenarios:

� Task complexity: Simulating various task complexities helps under-

stand the impact on operator performance and identify potential bot-

tlenecks or error-prone activities. Discrete Event Simulation (DES)

and Agent-based Modelling (ABM) can be used to create detailed

simulations of task workflows, providing insights into efficiency and

identifying areas for improvement [173].

� Environmental changes: DTs can simulate different environmental

conditions, such as lightning, temperature, or noise levels, to assess

their impact on operator performance and safety. Environmental sim-

ulation tools and Virtual Reality (VR) environments can be employed

to recreate various conditions and evaluate their effects on operators,

enabling proactive adjustments in the workplace environment to main-

tain optimal conditions [172, 173].
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The insights derived from DT simulations enable several proactive measures,

among which:

� Training programs: By analyzing performance data, DTs help in optimiz-

ing training programs customized to individual needs. Simulated training

environments using VR and AR can provide immersive, hands-on training

experiences that improve skill acquisition and retention [172].

� Task allocation: Simulations can identify which tasks are best suited for

specific operators based on their physical and mental conditions. AI-driven

task allocation systems optimize workforce management by assigning tasks

that align with each operator’s strengths and limitations, enhancing overall

productivity and well-being [174].

� Health and safety interventions: Predictive insights from DTs help in

identifying potential health and safety risks before they occur. For instance,

if an operator’s DT shows signs of increasing fatigue, interventions such as

task rotation or scheduled breaks can be implemented to prevent accidents

and injuries [173].

  Real-time Feedback  
  

Motion capture,
Biometrics,
Body kinematics,
Equipment data,
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Data
Storage

Data analysis,
Optimization,
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Material handling operator
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Figure 4.10: A possible framework for the application of DTs on the shop floor [111].

4.3 Intervention Techniques Module

The Intervention Techniques Module is the framework’s component in charge of

effectively utilizing the insights informed by the Data Analysis Module to proac-
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tively manage and mitigate potential risks to human operators’ health and safety.

It aims to respond to existing challenges and, more importantly, anticipate and

prevent potential issues before they escalate, crucial for sustaining high levels of

productivity and operator welfare in the advanced industrial landscape of Indus-

try 5.0.

This module includes three main components, each one playing a fundamental

role in ensuring that potential risks are mitigated, operators are well-informed and

supported, and continuous improvements in operator training and assistance are

achieved:

1. Emergency Action Triggering: Implements immediate responses to im-

minent threats, ensuring rapid and effective measures are adopted to safe-

guard operators.

2. Personal Notifications, Suggestions, and Recommendations: De-

livers personalized advice and warning to operators based on real-time data

analysis, promoting awareness and proactive physical and psychological be-

havior adjustments.

3. Training and On-site Assistance: Enhances operator skills and knowl-

edge through dynamic training programs and real-time support, adapting

to evolving workplace demands and individual needs.

4.3.1 Emergency Action Triggering

This component is designed to ensure the immediate safety of operators by re-

sponding to potential risks identified through real-time data analysis. When a

potential risk or hazard is detected, the system triggers an immediate response

to mitigate or eliminate the danger, safeguarding the operators from harm.

The system can monitor proximity to hazardous zones or machinery by uti-

lizing data on operator positions and movements. In case an operator enters

a high-risk area, automated protocols are put in action to stop machinery op-

erations or activate warning alarms, preventing accidents and harm to workers

[46].

Similarly, by continuously monitoring environmental parameters, it is possi-

ble to establish when the critical thresholds defined in Table 4.5 are exceeded

and consequently activate immediate evacuation alarms or adjust the ventilation

systems, depending on the risk level detected [84].
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Furthermore, by leveraging the insights associated with vital signs like heart

rate, body temperature, brain activity, and stress and fatigue levels, the system

can identify biometric anomalies indicating potential health issues, such as sudden

spikes in heart rate, abnormal body temperature, or severe fatigue, and alert

medical personnel to provide immediate assistance [96].

Figure 4.11: Example of emergency action triggering system setup [175].

4.3.2 Personal Notifications, Suggestions, and

Recommendations

This part is developed to enhance the well-being and productivity of human

operators by providing real-time, personalized feedback based on data collected

from wearable and imaging devices, ensuring that operators receive timely and

relevant information to maintain their health, optimize performance, and reduce

the risk of injuries.
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The techniques employed include:

� Real-time Notifications: By leveraging continuous data monitoring and

predictive analytics, it is possible to send personalized notifications to op-

erators, including:

– Break reminders: When the system detects signs of fatigue, such

as increase HRV or prolonged periods of inactivity, it sends reminders

to operators to take breaks, helping in preventing burnouts and main-

taining high levels of productivity [87].

– Posture alerts: The system monitors operators’ postures in real time

using data from wearable sensors and imaging devices. If sub-optimal

postures that could lead to musculoskeletal disorders are detected, the

system provides immediate alerts, suggesting adjustments to reduce

strain and improve ergonomics [176].

– Hydration and nutrition reminders: Based on environmental con-

ditions and biometric data, the system can remind operators to stay

hydrated or consume snacks to maintain energy levels, especially in

physically demanding environments [177].

� Suggestions for Improved Ergonomics: By analyzing posture and op-

eration data, it is possible to provide suggestions that enhance ergonomic

practices and reduce the risk of injury:

– Ergonomic adjustments: Recommendations for adjusting worksta-

tion setups, such as the height of desks and chairs, positioning of mon-

itors, and placement of tools, to ensure that operators maintain proper

posture and avoid repetitive strain injuries [176].

– Stretching exercises: Based on activity levels and detected muscle

tensions, the system can suggest specific stretching exercises to alle-

viate stress and improve flexibility. These suggestions help prevent

long-term injuries and enhance overall physical health.

� Mental and Cognitive Health Recommendations: To support mental

well-being and cognitive performance, the system can provide personalized

recommendations, including:

– Stress-reduction techniques: When high-stress levels are detected

through biometric and behavioral data, the system can suggest mind-
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fulness exercises, deep-breathing techniques, or short breaks to engage

in relaxing activities. This helps maintain mental clarity and reduce

the risk of stress-related health issues [178].

– Task prioritization: By analyzing workload and task completion

rates, the system can provide recommendations on prioritizing tasks

to manage time effectively and reduce cognitive overload, ensuring that

operators remain focused and productive without feeling overwhelmed

[178].

4.3.3 Training and On-Site Assistance

This component focuses on enhancing operators’ skills and providing immedi-

ate support when needed. Ensuring operators receive punctual and appropriate

training and assistance can significantly improve their performance and reduce

the likelihood of errors or accidents.

In that scope, EEG sensors monitor brain activity to detect signs of cognitive

overload, fatigue, or stress. At the same time, cameras and imaging systems

analyze facial expressions to detect, for instance, feelings of confusion, anxiety,

or uncertainty.

Three main methods of assistance can be employed:

1. Remote Expert Support: Experts can provide real-time assistance through

video calls or audio guidance, offering immediate advice and troubleshoot-

ing. This method ensures operators can resolve issues quickly without wait-

ing for on-site personnel [115].

2. On-site Personnel: In those situations requiring a physical presence,

trained personnel can assist operators directly. This hands-on support

helps resolve complex issues and provides immediate relief in high-stress

situations [115, 179].

3. Augmented Reality (AR) and Mixed Reality (MR): AR and MR

technologies offer immersive and step-by-step guidance. Operators can use

AR glasses or MR headsets to receive visual instructions over their physical

environment. This method enhances understanding and execution of tasks,

reducing errors and improving efficiency [66, 176].

4. Virtual Reality (VR) training and ergonomic optimization: VR

provides a safe and cost-effective platform for training operators, allowing
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them to practice and improve their skills in a controlled environment, mak-

ing them face various scenarios without the associated risks. This method

is beneficial for training on complex machinery or hazardous tasks [66]. Ad-

ditionally, VR can be used to prototype workstations, allowing for the op-

timization of ergonomic factors before their implementation in the physical

workspace. Doing that reduces waste and improves sustainability, ensuring

that workstations are designed to minimize physical strain and maximize

comfort and efficiency [176].

Figure 4.12: The basic workflow to provide on-site assistance to operators [115].

Figure 4.13 illustrates the final version of the conceptual framework devel-

oped.

4.4 Discussion

This Chapter presented a novel conceptual framework for the predictive assess-

ment of human operators’ condition within the paradigm of Industry 5.0, em-

phasizing a shift towards more human-centric approaches in industrial environ-
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ments. The integration of data collection, analytics, and intervention techniques

established a road map toward enhancing human operators’ safety, health, and

well-being, tackling the current undercoverage of human elements in industrial

practices. By prioritizing preventive strategies while maintaining a focus on re-

active ones, the framework anticipates potential risks before they occur while

being able to respond to critical situations already occurring. That allows for

timely interventions that prevent accidents and health issues, promoting a more

engaging and satisfying work environment [5].

The first module composing the framework is “Data Collection”. It comprises

the collection of data about operators leveraging wearable devices and imaging

systems, about environmental conditions using fixed IoT sensors disseminated

over the workplace, about machinery utilizing a combination of various sensors

and imaging devices, and about operational status employing cameras and smart

wearables.

This wide range of collected information enables a comprehensive assessment

of the shop floor, the production lines, and, most importantly, the operators. By

continuously collecting all these data, it’s possible to automatize almost all of the

assessment methodologies presented in Section 3.2, covering the majority of the

factors presented in Section 3.1, among which the psychological and physiologi-

cal status, various criticalities in the heart and breathing rate, possible situations

of cognitive and mental overload, stress levels, and so on, emphasizing a solid

focus on the human-centricity pillar of I5.0. Furthermore, data collection about

environmental and machinery conditions enhances the safety of human workers,

fostering a safer, more comfortable, and more satisfying work environment. At

the same time, this enables companies to understand what can be improved in

their production processes, both in terms of stimulating the operators while re-

lieving them from physically demanding and repetitive tasks, but also in reducing

emissions and waste, aligning with the sustainability principle of I5.0.

However, all of that would not be possible without the second module, which

is in charge of analyzing the collected data. It concentrates on determining

anomalies and potential risks, as well as opportunities and potential enhance-

ments, in both a reactive and proactive way.

Using disseminated and wearable IoT devices and the deployed imaging sys-

tems provide much knowledge about positions, occupations, and movements

within the shop floor. Regarding the reactive measures, leveraging that knowl-

edge allows for the determination of potential risks to health and safety. For
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instance, we can detect operators entering certain areas without the proper PPE

or proper training or authorization. Moreover, we can enhance the safety of op-

erators working with potentially risky equipment or in more hazardous locations

and, more generally, guarantee a safer interaction between humans, machinery,

and the overall working environment. All of that culminates in improving the

collaboration and cooperation between humans and machines, promoting a work-

ing environment having a strong synergy between these two, thus aligning with

the goals of I5.0 [10, 31]. For proactive strategies, analyzing the positions and

frequent patterns in movements and operations performed makes predicting op-

erators’ movements and activities feasible. This strengthens and improves the

reactive measures seen above by reducing the time for intervention and allowing

the detection of potential optimization in the production processes. By identify-

ing repetitive actions performed by workers, it is possible to spot opportunities

for automatizing repetitive or physically demanding tasks, improving the overall

welfare of workers in terms of psychological and physiological load and broader

well-being and stimulation.

Complementing the breakdown of location data, we have the analysis of the

data about operators’ body parameters. First of all, that enables an increase in

safety and health since, under a reactive point of view, we can identify abnormali-

ties in the heart and breathing rate, but also in the body posture and acceleration,

thereby being able to detect a wide range of critical situations: hearth strokes,

suffocation, falls, and so on. Additionally, it is possible to assess the variations

in stress and fatigue levels, thus promoting an industrial culture in which the

interest toward operators is not merely in their physical safety but also in their

psychological well-being. Nevertheless, the insights about muscle and joint activ-

ity, along with the ones about posture and musculoskeletal load, provide details

about the workload perceived by operators and potential incorrect postures being

adopted. Again, this allows the identification of possible areas for improvement in

the working conditions and production processes and prevents long-term damage

to workers.

Further enhancing the welfare of humans in industrial environments, the en-

vironmental data analysis provides valuable information about the current and

upcoming risk levels of the various areas of the shop floor, monitoring various

types of chemicals and gases harmful to humans.

To conclude with this module, all the data collected can be used to perform

simulations and feed Digital Twins, to replicate various working conditions and
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operators with different skills and characteristics, improve training programs and

task allocations, but also detect occasions for health and safety interventions.

It is worth noting that the overall analysis of the data strongly focuses on the

various aspects of human workers, seeking to improve their overall working ex-

perience and enhance their working conditions, fostering a positive, comfortable,

sustainable, and satisfying working environment.

Anyway, collecting and analyzing data would mean nothing without estab-

lishing appropriate and specific intervention techniques. This is the stage in

which prevention comes into play, anticipating potential threats ahead of time

and responding to current risks. In that scope, the module defines the trigger-

ing of emergency action to respond to upcoming or already-happening dangers,

which can be of various natures: unexpected behaviors of machinery and robots,

falls and collisions, environmental hazards, etc. The system is also designed to

provide real-time notifications about bad habits and wrong postures, break re-

minders, and hydration and nutrition reminders. At the same time, it delivers

suggestions for improved ergonomics and mental health recommendations. Here,

the focus is on all the macro-domains defined in Section 3.1, with the formula-

tion of a comprehensive intervention strategy tailored explicitly to the needs of

industrial operators.

That last module of the framework also comprises the delivering of training

and on-site assistance, being able to detect and offer these timely when the op-

erators need, via remote support, on-site personnel, or employing AR and VR

technologies. Doing that can reduce the cognitive overload, fatigue, and stress

operators feel when performing their tasks.

However, various challenges need to be faced when validating this framework.

First, data interoperability cannot be assumed as granted. The wide range of

devices employed for collecting data exposes the system to the risk of incompat-

ibility in the data sources. Therefore, the system designer should consider that

and use strategies that can guarantee the uniformity of the data.

Along with that, there is the challenge of transmitting and storing data. Since

the system relies entirely on the collected and analyzed information to respond to

risks and threats, it must be assured that the data are correctly transferred (i.e.,

sent and received) within a certain acceptable interval of time to ensure timely

interventions. This is absolutely crucial, especially in critical use cases related

to health and safety. Then, the collected data should also be stored securely

and efficiently to safeguard the workers’ privacy and avoid excessive and useless
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memory consumption to respect the sustainability principle of I5.0.

Basically, for having a successful collection of data and ensuring the collected

data are leveraged appropriately, efficiently, and safely, the framework requires

the establishment of a comprehensive architecture that assures the processing,

transmission, and storage of the data, defining counter-measures to potential

issues that may arise from internal problems (e.g., latency, dispersion of signals,

packet losses) and external sources (i.e., IT attacks).

Remaining on the challenges related to data collection, it is mandatory to

ensure that the adopted wearable devices don’t cause discomfort or any stress

to operators and to establish a well-defined internal regulation detailing how

the images and videos are used and stored. That regulation must be explained

to operators to ensure they don’t feel pressure or stress from being constantly

monitored. In general, when establishing a system like the one proposed by the

framework, the operators should be informed about its overall working logic to

make them understand that such a model is thought to improve their working

conditions and should not be seen as a menace in any way.

Nevertheless, despite all the efforts system designers can put in, technolo-

gies may always have some failure points, making them less reliable. For that

reason, redundant safety mechanisms should be established, and these should be

technology-independent, meaning that they should be able to provide at least the

basic safety measures in case of system failures.

Switching about the data analysis, it cannot be totally unsupervised, espe-

cially in the context of I5.0. Suppose we leave machines to determine whether

an operator is in imminent or upcoming danger. In that case, it’s fundamen-

tal to have humans guarantee the accuracy and trustworthiness of the outputs.

Moreover, when using ML and AI models for processing vast amounts of data

and making decisions, it is fundamental to establish practices assuring these ma-

chines respect the ethical and privacy-oriented EU principles. Additionally, the

energy consumption of these algorithms should also be considered to fulfill the

environmental requirements of I5.0.

Lastly, personalization in the design of intervention techniques cannot be

overlooked. In a system that aims to respond in reactive and proactive ways,

customization tailored to individuals’ needs and specifics is fundamental to en-

suring the best possible outcomes. If the model is able to collect, transmit, store,

and analyze all the data successfully and effectively but doesn’t implement ap-

propriate interventions, then it is not unleashing its full potential. Basic safety
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measures, such as evacuation alarms or emergency stops on the production line,

can be common to most workers, while personal notifications with suggestions

and recommendations and on-site assistance cannot be. Every operator needs to

receive support specific to his exigencies, characteristics, and physical and mental

conditions. Therefore, personalization is something that should be customized for

the specific person and also on the particular current situation of that person.



Chapter 5

Conclusions and Future Works

The European economy relies mainly on Industry, which generates wealth and

jobs across the continent. Between 2009 and 2019, the Industry continuously

contributed about 20% of the EU Gross Domestic Product (GDP), with manu-

facturing contributing more than 14% of that total [31]. Although the European

Industry is strong, it faces ongoing challenges due to the rapidly changing geopo-

litical environment in which it operates [10]. If this sector wants to continue

bringing prosperity to Europe, it must constantly adapt to these ever-changing

problems.

This thesis started by investigating the industrial landscape, starting from the

three Industrial Revolutions to understand how these originate Industry 4.0 and

Industry 5.0. Then, the key characteristics of Industry 4.0 have been detailed,

along with the challenges and issues this paradigm originated. Following that,

Industry 5.0 has been explained in detail, starting from the Japanese concept of

Society 5.0, passing then to the definition and outline of Industry 5.0 formulated

by the European Commission, and concluding with the enabling technologies,

opportunities, and applications of this new industrial framework.

After explaining the context of Industry 5.0 and outlining the needs for sys-

tems enabling the proactive assessment of industrial operators, this work studied

the human factors that should be considered to enhance industrial working con-

ditions. These efforts led to the formulation of a taxonomy divided into four

primary domains: safety, health, well-being, and human errors. Each domain is

extensively detailed and divided into more specific sub-domains.

Following that, another round of literature review was performed to under-

stand the qualitative methodologies currently employed to assess these elements.

This enabled the understanding of the metrics and parameters of interest that will
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be needed to switch to a quantitative assessment leveraging modern technologies.

The core of that thesis is the conceptual framework exposed in Chapter 4,

proposing a closed-loop system divided into three modules, enabling the collection

and analysis of data used for triggering appropriate responses to enhance the

factors defined in the previously mentioned taxonomy.

Future research directions will investigate technologies for aggregating, pro-

cessing, and transmitting the data collected on the shop floor, something left out

of the scope of this thesis but still crucial in realizing the framework’s full poten-

tial. Following that, various validations of the framework need to be performed.

Since it is not feasible to implement a comprehensive system like the proposed

one from scratch, the validations should progressively add components, test their

effectiveness, and eventually proceed by adding new functionalities and features

until the desired complete system is in place. The ideal workflow should first

implement some data collections and collect these data locally to build datasets

while simultaneously working on the telecommunication infrastructure. At this

point, it’s possible to start training models if needed and finally test the triggering

of the defined interventions.

Efforts should also be made to guarantee the ethical and privacy-oriented

collection, processing, and storage of the collected data, establishing security

features to protect these from being leaked, obfuscating sensitive data, and de-

veloping internal regulations detailing how the data will be collected, leveraged,

and stored. It is fundamental that the focus is on adopting approaches that can

alleviate the feelings of oppression and over-control that operators may sense by

a system, such as the proposed one that, by its definition, is invasive and perva-

sive. Consequently, training programs explaining how the system works, how the

data are used, what is being examined and what is not, and the advantages and

benefits should be implemented as complementary to the more standard training

programs.

Lastly, to improve the framework’s potential, its implementation necessitates

interdisciplinary cooperation between engineers, psychologists, ethics experts,

and specialists in industrial and manufacturing processes, among other disci-

plines. Such collaboration will be vital in addressing various issues associated

with the predictive assessment itself. It will also help understand the impact of

these systems in the industrial environment, namely, how they affect production

processes, the shop floor, and operators.

To conclude, the I5.0 paradigm presents a new industrial landscape in which
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humans and the environment are central. It proposes an industrial future in which

operators are satisfied and able to apply their human capabilities, such as critical

thinking, reasoning, and creativity, supported by machines in performing those

repetitive and physically demanding tasks. In this way, Operator 5.0 should feel

satisfied and accomplished, acknowledging his safety and health are guaranteed

while his skills and personal talents are fully leveraged. The proposed framework

aims to foster a sustainable, effective, and satisfying workplace by promoting

an effective integration of people and technology in manufacturing. The final

objective is that this work can be used as a starting point for all the following

works related to the predictive assessment of industrial operators in the context

of Industry 5.0.
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tigue locations on upper body kinematics and inter-joint coordination in a

repetitive pointing task”. en. In: PLOS ONE 14.12 (Dec. 2019), e0227247.

issn: 1932-6203. doi: 10.1371/journal.pone.0227247.

[102] Valeria Villani, Marta Gabbi, and Lorenzo Sabattini. “Promoting oper-

ator’s wellbeing in Industry 5.0: detecting mental and physical fatigue”.

In: 2022 IEEE International Conference on Systems, Man, and Cyber-

netics (SMC). Prague, Czech Republic: IEEE, Oct. 2022, pp. 2030–2036.

isbn: 978-1-66545-258-8. doi: 10.1109/SMC53654.2022.9945324. url:

https://ieeexplore.ieee.org/document/9945324/.

[103] World Health Organization et al. Promoting mental health: Concepts, emerg-

ing evidence, practice: Summary report. World Health Organization, 2004.

[104] Guendalina Graffigna et al. “Patient Engagement: The Key to Redesign

the Exchange Between the Demand and Supply for Healthcare in the Era

of Active Ageing”. eng. In: Studies in Health Technology and Informatics

203 (2014), pp. 85–95. issn: 1879-8365.

[105] A Belyavin and Nicola A Wright. “Changes in electrical activity of the

brain with vigilance”. In: Electroencephalography and clinical Neurophys-

iology 66.2 (1987), pp. 137–144.

[106] Israel Campero-Jurado et al. “Smart Helmet 5.0 for Industrial Internet

of Things Using Artificial Intelligence”. In: Sensors (Basel, Switzerland)

20.21 (Nov. 2020), p. 6241. issn: 1424-8220. doi: 10.3390/s20216241.

[107] J. A. Stern, D. Boyer, and D. Schroeder. “Blink rate: a possible measure

of fatigue”. eng. In: Human Factors 36.2 (June 1994), pp. 285–297. issn:

0018-7208. doi: 10.1177/001872089403600209.

https://doi.org/10.1002/hfm.20170
https://doi.org/10.1371/journal.pone.0227247
https://doi.org/10.1109/SMC53654.2022.9945324
https://ieeexplore.ieee.org/document/9945324/
https://doi.org/10.3390/s20216241
https://doi.org/10.1177/001872089403600209


BIBLIOGRAPHY 131

[108] Aleksandra Krolak and Pawel Strumillo. “Vision-based eye blink moni-

toring system for human-computer interfacing”. In: 2008 Conference on

Human System Interactions. May 2008, pp. 994–998. doi: 10 . 1109 /

HSI.2008.4581580. url: https://ieeexplore.ieee.org/document/

4581580.

[109] RB Levin. “EEG based consciousness-alert monitoring system”. In:WO1999034865

A1 (1999).

[110] Yantao Yu et al. “An automatic and non-invasive physical fatigue assess-

ment method for construction workers”. en. In: Automation in Construc-

tion 103 (July 2019), pp. 1–12. issn: 09265805. doi: 10.1016/j.autcon.

2019.02.020.

[111] Abhimanyu Sharotry et al. “Manufacturing Operator Ergonomics: A Con-

ceptual Digital Twin Approach to Detect Biomechanical Fatigue”. In:

IEEE Access 10 (2022), pp. 12774–12791. issn: 2169-3536. doi: 10.1109/

ACCESS.2022.3145984.

[112] Mauricio-Andrés Zamora-Hernández et al. “Deep learning-based visual

control assistant for assembly in Industry 4.0”. en. In: Computers in Indus-

try 131 (Oct. 2021), p. 103485. issn: 01663615. doi: 10.1016/j.compind.

2021.103485.

[113] Laura Kassner et al. “The Social Factory: Connecting People, Machines

and Data in Manufacturing for Context-Aware Exception Escalation”. In:

Jan. 2017. doi: 10.24251/HICSS.2017.202.

[114] Mehmet Baygin et al. “An effect analysis of industry 4.0 to higher educa-

tion”. In: 2016 15th International Conference on Information Technology

Based Higher Education and Training (ITHET). Sept. 2016, pp. 1–4. doi:

10.1109/ITHET.2016.7760744. url: https://ieeexplore.ieee.org/

document/7760744.

[115] Wenjin Tao et al. “A self-aware and active-guiding training & assistant

system for worker-centered intelligent manufacturing”. en. In: Manufac-

turing Letters 21 (Aug. 2019), pp. 45–49. issn: 22138463. doi: 10.1016/

j.mfglet.2019.08.003.

[116] S. Ren et al. “Faster R-CNN: Towards real-time object detection with

region proposal networks”. English. In: vol. 2015-January. 2015, pp. 91–

99.

https://doi.org/10.1109/HSI.2008.4581580
https://doi.org/10.1109/HSI.2008.4581580
https://ieeexplore.ieee.org/document/4581580
https://ieeexplore.ieee.org/document/4581580
https://doi.org/10.1016/j.autcon.2019.02.020
https://doi.org/10.1016/j.autcon.2019.02.020
https://doi.org/10.1109/ACCESS.2022.3145984
https://doi.org/10.1109/ACCESS.2022.3145984
https://doi.org/10.1016/j.compind.2021.103485
https://doi.org/10.1016/j.compind.2021.103485
https://doi.org/10.24251/HICSS.2017.202
https://doi.org/10.1109/ITHET.2016.7760744
https://ieeexplore.ieee.org/document/7760744
https://ieeexplore.ieee.org/document/7760744
https://doi.org/10.1016/j.mfglet.2019.08.003
https://doi.org/10.1016/j.mfglet.2019.08.003


132 BIBLIOGRAPHY

[117] Larissa K. Barber, Amanda L. Conlin, and Alecia M. Santuzzi. “Workplace

telepressure and work–life balance outcomes: The role of work recovery

experiences”. en. In: Stress and Health 35.3 (Aug. 2019), pp. 350–362.

issn: 1532-3005, 1532-2998. doi: 10.1002/smi.2864.

[118] A Belyavin and Nicola A Wright. “Changes in electrical activity of the

brain with vigilance”. In: Electroencephalography and Clinical Neurophys-

iology 66.2 (Feb. 1987), pp. 137–144. issn: 0013-4694. doi: 10.1016/0013-

4694(87)90183-0.

[119] Mehmet Akin et al. “Estimating vigilance level by using EEG and EMG

signals”. en. In: Neural Computing and Applications 17.3 (June 2008),

pp. 227–236. issn: 1433-3058. doi: 10.1007/s00521-007-0117-7.

[120] en-US. Mar. 2015. url: https://www.vdi.de/en/home/vdi-standards/

details/vdi-4006-blatt-1-human-reliability-ergonomic-requirements-

and-methods-of-assessment.

[121] Takeshi Nakajo and Hitoshi Kume. “The principles of foolproofing and

their application in manufacturing”. In: Reports of Statistical Application

Research 32.2 (1985), pp. 10–29.

[122] Alan D. Swain and Koeln. “Comparative evaluation of methods for human

reliability analysis”. In: 1989. url: https://api.semanticscholar.org/

CorpusID:222240760.

[123] Jae Whan Kim. “Human Reliability Analysis in Large-scale Digital Con-

trol Systems”. In: Reliability and Risk Issues in Large Scale Safety-critical

Digital Control Systems. Ed. by Poong Hyun Seong. London: Springer

London, 2009, pp. 139–161. isbn: 978-1-84800-384-2. doi: 10.1007/978-

1-84800-384-2_7. url: https://doi.org/10.1007/978-1-84800-

384-2_7.

[124] X.-H He, J. Gao, and X.-R Huang. “Comparison of human reliability anal-

ysis methods”. In: 26 (Dec. 2005), pp. 627–630.

[125] ErgoPlus. RULA Worksheet: A Survey Tool for Ergonomic Investigations.

Accessed: 2024-06-27. 2017. url: https://ergo-plus.com/wp-content/

uploads/RULA.pdf.

[126] ErgoPlus. REBA: Rapid Entire Body Assessment. Accessed: 2024-06-27.

2017. url: https://ergo-plus.com/wp-content/uploads/REBA.pdf.

https://doi.org/10.1002/smi.2864
https://doi.org/10.1016/0013-4694(87)90183-0
https://doi.org/10.1016/0013-4694(87)90183-0
https://doi.org/10.1007/s00521-007-0117-7
https://www.vdi.de/en/home/vdi-standards/details/vdi-4006-blatt-1-human-reliability-ergonomic-requirements-and-methods-of-assessment
https://www.vdi.de/en/home/vdi-standards/details/vdi-4006-blatt-1-human-reliability-ergonomic-requirements-and-methods-of-assessment
https://www.vdi.de/en/home/vdi-standards/details/vdi-4006-blatt-1-human-reliability-ergonomic-requirements-and-methods-of-assessment
https://api.semanticscholar.org/CorpusID:222240760
https://api.semanticscholar.org/CorpusID:222240760
https://doi.org/10.1007/978-1-84800-384-2_7
https://doi.org/10.1007/978-1-84800-384-2_7
https://doi.org/10.1007/978-1-84800-384-2_7
https://doi.org/10.1007/978-1-84800-384-2_7
https://ergo-plus.com/wp-content/uploads/RULA.pdf
https://ergo-plus.com/wp-content/uploads/RULA.pdf
https://ergo-plus.com/wp-content/uploads/REBA.pdf


BIBLIOGRAPHY 133

[127] en. Sept. 2021. doi: 10.26616/NIOSHPUB94110revised092021. url: https:

//www.cdc.gov/niosh/docs/94-110/.

[128] TuMeke Ergonomics. Revised NIOSH Lifting Equation: Comprehensive

Overview. Accessed: 2024-06-27. url: https://www.tumeke.io/updates/

revised-niosh-lifting-equation-comprehensive-overview.

[129] en. url: https://libertymmhtables.libertymutual.com/.

[130] JR Potvin and LR Bent. “NIOSH equation horizontal distances associated

with the Liberty Mutual (Snook) lifting table box widths”. In: Ergonomics

40.6 (1997), pp. 650–655.

[131] Ergonomics Plus Inc. SNOOK Tables: A Step-by-Step Guide. Accessed:

2024-08-08. 2023. url: http://ergo-plus.com/wp-content/uploads/

SNOOK-Tables-A-Step-by-Step-Guide.pdf.

[132] Carl Lind et al. “RAMP: Risk Management Assessment Tool for Manual

Handling Proactively”. In: Jan. 2014.

[133] American Chemical Society. RAMP Worksheet for Chemical Safety. Amer-

ican Chemical Society. Accessed: 2024-06-27. url: https://www.acs.

org/content/dam/acsorg/education/outreach/safety/ramp-worksheet.

pdf.

[134] it-IT. url: https://www.eaws.it/.

[135] Ergonomie Site. EAWS v1.3.6: European Assembly Worksheet. Accessed:

2024-06-27. url: https://www.ergonomiesite.be/documenten/risicoanalyse/

EAWS-v1.3.6.pdf.

[136] Daniel Jenkins et al. Human Factors Methods A Practical Guide for Engi-

neering and Design (second edition). Oct. 2013. isbn: 978-1-4724-0815-0.

[137] url: https://humansystems.arc.nasa.gov/groups/tlx/.

[138] A Sartang et al. “Evaluation of Rating Scale Mental Effort (RSME) ef-

fectiveness for mental workload assessment in nurses”. In: Journal of Oc-

cupational Health and Epidemiology 5 (Oct. 2016), pp. 211–217. doi: 10.

18869/acadpub.johe.5.4.211.

https://doi.org/10.26616/NIOSHPUB94110revised092021
https://www.cdc.gov/niosh/docs/94-110/
https://www.cdc.gov/niosh/docs/94-110/
https://www.tumeke.io/updates/revised-niosh-lifting-equation-comprehensive-overview
https://www.tumeke.io/updates/revised-niosh-lifting-equation-comprehensive-overview
https://libertymmhtables.libertymutual.com/
http://ergo-plus.com/wp-content/uploads/SNOOK-Tables-A-Step-by-Step-Guide.pdf
http://ergo-plus.com/wp-content/uploads/SNOOK-Tables-A-Step-by-Step-Guide.pdf
https://www.acs.org/content/dam/acsorg/education/outreach/safety/ramp-worksheet.pdf
https://www.acs.org/content/dam/acsorg/education/outreach/safety/ramp-worksheet.pdf
https://www.acs.org/content/dam/acsorg/education/outreach/safety/ramp-worksheet.pdf
https://www.eaws.it/
https://www.ergonomiesite.be/documenten/risicoanalyse/EAWS-v1.3.6.pdf
https://www.ergonomiesite.be/documenten/risicoanalyse/EAWS-v1.3.6.pdf
https://humansystems.arc.nasa.gov/groups/tlx/
https://doi.org/10.18869/acadpub.johe.5.4.211
https://doi.org/10.18869/acadpub.johe.5.4.211


134 BIBLIOGRAPHY

[139] Gary B. Reid and Thomas E. Nygren. “The Subjective Workload As-

sessment Technique: A Scaling Procedure for Measuring Mental Work-

load”. In: Advances in Psychology. Ed. by Peter A. Hancock and Najmedin

Meshkati. Vol. 52. Human Mental Workload. North-Holland, Jan. 1988,

pp. 185–218. doi: 10.1016/S0166-4115(08)62387-0. url: https://

www.sciencedirect.com/science/article/pii/S0166411508623870.

[140] Sarah Miller. “Workload measures”. In: National Advanced Driving Sim-

ulator. Iowa City, United States (2001).

[141] John O’Donoghue18 January 2021. The science of smartwatches. en. url:

https://edu.rsc.org/feature/the- science- of- smartwatches/

4013008.article.

[142] Marco V. Perez et al. “Large-Scale Assessment of a Smartwatch to Iden-

tify Atrial Fibrillation”. en. In: New England Journal of Medicine 381.20

(Nov. 2019), pp. 1909–1917. issn: 0028-4793, 1533-4406. doi: 10.1056/

NEJMoa1901183.

[143] C. Pätz et al. “Accuracy of the Apple Watch Oxygen Saturation Mea-

surement in Adults and Children with Congenital Heart Disease”. en. In:

Pediatric Cardiology 44.2 (Feb. 2023), pp. 333–343. issn: 1432-1971. doi:

10.1007/s00246-022-02987-w.

[144] James W. Navalta et al. “Heart rate processing algorithms and exercise

duration on reliability and validity decisions in biceps-worn Polar Verity

Sense and OH1 wearables”. en. In: Scientific Reports 13.1 (July 2023),

p. 11736. issn: 2045-2322. doi: 10.1038/s41598-023-38329-w.

[145] Jiayang Liu et al. “uWave: Accelerometer-based personalized gesture recog-

nition and its applications”. In: Pervasive and Mobile Computing. PerCom

2009 5.6 (Dec. 2009), pp. 657–675. issn: 1574-1192. doi: 10.1016/j.pmcj.

2009.07.007.

[146] Yinghui Zhou et al. “Analysis and Selection of Features for Gesture Recog-

nition Based on a Micro Wearable Device”. en. In: International Journal of

Advanced Computer Science and Applications (IJACSA) 3.11 (Jan. 2012).

issn: 2156-5570. doi: 10.14569/IJACSA.2012.030101. url: https:

//thesai.org/Publications/ViewPaper?Volume=3&Issue=1&Code=

IJACSA&SerialNo=1.

https://doi.org/10.1016/S0166-4115(08)62387-0
https://www.sciencedirect.com/science/article/pii/S0166411508623870
https://www.sciencedirect.com/science/article/pii/S0166411508623870
https://edu.rsc.org/feature/the-science-of-smartwatches/4013008.article
https://edu.rsc.org/feature/the-science-of-smartwatches/4013008.article
https://doi.org/10.1056/NEJMoa1901183
https://doi.org/10.1056/NEJMoa1901183
https://doi.org/10.1007/s00246-022-02987-w
https://doi.org/10.1038/s41598-023-38329-w
https://doi.org/10.1016/j.pmcj.2009.07.007
https://doi.org/10.1016/j.pmcj.2009.07.007
https://doi.org/10.14569/IJACSA.2012.030101
https://thesai.org/Publications/ViewPaper?Volume=3&Issue=1&Code=IJACSA&SerialNo=1
https://thesai.org/Publications/ViewPaper?Volume=3&Issue=1&Code=IJACSA&SerialNo=1
https://thesai.org/Publications/ViewPaper?Volume=3&Issue=1&Code=IJACSA&SerialNo=1


BIBLIOGRAPHY 135

[147] Eric M. Foxlin. “Head tracking relative to a moving vehicle or simulator

platform using differential inertial sensors”. In: Helmet- and Head-Mounted

Displays V. Vol. 4021. SPIE, June 2000, pp. 133–144. doi: 10.1117/12.

389141. url: https://www.spiedigitallibrary.org/conference-

proceedings-of-spie/4021/0000/Head-tracking-relative-to-a-

moving-vehicle-or-simulator-platform/10.1117/12.389141.full.

[148] Chun Zhu and Weihua Sheng. “Human daily activity recognition in robot-

assisted living using multi-sensor fusion”. In: 2009 IEEE International

Conference on Robotics and Automation. Kobe: IEEE, May 2009, pp. 2154–

2159. isbn: 978-1-4244-2788-8. doi: 10.1109/ROBOT.2009.5152756. url:

http://ieeexplore.ieee.org/document/6256075/.

[149] Zhenzhong Zhan and Zhendong Mu. “Vigilance Degree Computing Based

on EEG”. en. In: Indonesian Journal of Electrical Engineering and Com-

puter Science 11.99 (Sept. 2013), pp. 5409–5414. issn: 2502-4760. doi:

http://dx.doi.org/10.11591/telkomnika.v11i9.3298.

[150] Daniel Barros et al. “A Cost-Effective Thermal Imaging Safety Sensor

for Industry 5.0 and Collaborative Robotics”. en. In: Smart Technologies

for Sustainable and Resilient Ecosystems. Ed. by Sérgio Ivan Lopes et

al. Vol. 510. Lecture Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering. Cham: Springer Nature

Switzerland, 2023, pp. 3–15. isbn: 978-3-031-35981-1. doi: 10.1007/978-

3-031-35982-8_1. url: https://link.springer.com/10.1007/978-3-

031-35982-8_1.

[151] Diogo Rocha et al. “Identification and Classification of Human Body Parts

for Contactless Screening Systems: An Edge-AI Approach”. en. In: Science

and Technologies for Smart Cities. Ed. by Sara Paiva et al. Vol. 442. Lec-

ture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering. Cham: Springer International Publish-

ing, 2022, pp. 92–103. isbn: 978-3-031-06370-1. doi: 10.1007/978-3-

031-06371-8_7. url: https://link.springer.com/10.1007/978-3-

031-06371-8_7.

[152] Robert Vollmer and Christian Palm. “Process Monitoring And Real Time

Algorithmic For Hot Stamping Lines”. In: Procedia Manufacturing 29

(Jan. 2019), pp. 256–263. doi: 10.1016/j.promfg.2019.02.135.

https://doi.org/10.1117/12.389141
https://doi.org/10.1117/12.389141
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4021/0000/Head-tracking-relative-to-a-moving-vehicle-or-simulator-platform/10.1117/12.389141.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4021/0000/Head-tracking-relative-to-a-moving-vehicle-or-simulator-platform/10.1117/12.389141.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4021/0000/Head-tracking-relative-to-a-moving-vehicle-or-simulator-platform/10.1117/12.389141.full
https://doi.org/10.1109/ROBOT.2009.5152756
http://ieeexplore.ieee.org/document/6256075/
https://doi.org/http://dx.doi.org/10.11591/telkomnika.v11i9.3298
https://doi.org/10.1007/978-3-031-35982-8_1
https://doi.org/10.1007/978-3-031-35982-8_1
https://link.springer.com/10.1007/978-3-031-35982-8_1
https://link.springer.com/10.1007/978-3-031-35982-8_1
https://doi.org/10.1007/978-3-031-06371-8_7
https://doi.org/10.1007/978-3-031-06371-8_7
https://link.springer.com/10.1007/978-3-031-06371-8_7
https://link.springer.com/10.1007/978-3-031-06371-8_7
https://doi.org/10.1016/j.promfg.2019.02.135


136 BIBLIOGRAPHY

[153] Martin Zlatanski et al. “Radar Sensor for Fenceless Machine Guarding

and Collaborative Robotics”. In: 2018 IEEE International Conference on

Intelligence and Safety for Robotics (ISR). Shenyang: IEEE, Aug. 2018,

pp. 19–25. isbn: 978-1-5386-5547-4. doi: 10.1109/IISR.2018.8535983.

url: https://ieeexplore.ieee.org/document/8535983/.

[154] Manh Huynh and Gita Alaghband. “Trajectory Prediction by Coupling

Scene-LSTM with Human Movement LSTM”. en. In: Advances in Visual

Computing. Ed. by George Bebis et al. Vol. 11844. Lecture Notes in Com-

puter Science. Cham: Springer International Publishing, 2019, pp. 244–

259. isbn: 978-3-030-33719-3. doi: 10.1007/978-3-030-33720-9_19.

url: http://link.springer.com/10.1007/978-3-030-33720-9_19.

[155] Fabio Carrara et al. “LSTM-based real-time action detection and pre-

diction in human motion streams”. en. In: Multimedia Tools and Appli-

cations 78.19 (Oct. 2019), pp. 27309–27331. issn: 1380-7501, 1573-7721.

doi: 10.1007/s11042-019-07827-3.

[156] Aniekan Essien and Cinzia Giannetti. “A Deep Learning Model for Smart

Manufacturing Using Convolutional LSTMNeural Network Autoencoders”.

In: IEEE Transactions on Industrial Informatics 16.9 (Sept. 2020), pp. 6069–

6078. issn: 1551-3203, 1941-0050. doi: 10.1109/TII.2020.2967556.

[157] Marek Malik. “Heart rate variability: Standards of measurement, physi-

ological interpretation, and clinical use”. In: Circulation 93 (Mar. 1996),

pp. 1043–1065.

[158] Gari D Clifford, Francisco Azuaje, Patrick McSharry, et al. Advanced meth-

ods and tools for ECG data analysis. Vol. 10. Artech house Boston, 2006.

[159] Andrea Cristiani et al. “Driver Drowsiness Identification by Means of Pas-

sive Techniques for Eye Detection and Tracking”. In: 2010 Fourth IEEE

International Conference on Self-Adaptive and Self-Organizing Systems

Workshop. 2010, pp. 142–146. doi: 10.1109/SASOW.2010.30.

[160] Yuriy Kurylyak, Francesco Lamonaca, and Giovanni Mirabelli. “Detection

of the eye blinks for human’s fatigue monitoring”. In: 2012 IEEE Interna-

tional Symposium on Medical Measurements and Applications Proceedings.

Budapest, Hungary: IEEE, May 2012, pp. 1–4. isbn: 978-1-4673-0882-3.

doi: 10.1109/MeMeA.2012.6226666. url: http://ieeexplore.ieee.

org/document/6226666/.

https://doi.org/10.1109/IISR.2018.8535983
https://ieeexplore.ieee.org/document/8535983/
https://doi.org/10.1007/978-3-030-33720-9_19
http://link.springer.com/10.1007/978-3-030-33720-9_19
https://doi.org/10.1007/s11042-019-07827-3
https://doi.org/10.1109/TII.2020.2967556
https://doi.org/10.1109/SASOW.2010.30
https://doi.org/10.1109/MeMeA.2012.6226666
http://ieeexplore.ieee.org/document/6226666/
http://ieeexplore.ieee.org/document/6226666/


BIBLIOGRAPHY 137

[161] P. Viola and M. Jones. “Rapid object detection using a boosted cascade

of simple features”. In: Proceedings of the 2001 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. CVPR 2001.

Vol. 1. 2001, pp. I–I. doi: 10.1109/CVPR.2001.990517.

[162] R. Lienhart and J. Maydt. “An extended set of Haar-like features for

rapid object detection”. In: Proceedings. International Conference on Im-

age Processing. Vol. 1. 2002, pp. I–I. doi: 10.1109/ICIP.2002.1038171.

[163] K. Grauman et al. “Communication via eye blinks - detection and duration

analysis in real time”. In: Proceedings of the 2001 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. CVPR 2001.

Vol. 1. Dec. 2001, pp. I–I. doi: 10.1109/CVPR.2001.990641. url: https:

//ieeexplore.ieee.org/abstract/document/990641.

[164] Yuriy Kurylyak et al. “The infrared camera-based system to evaluate the

human sleepiness”. In: 2011 IEEE International Symposium on Medical

Measurements and Applications. 2011, pp. 253–256. doi: 10.1109/MeMeA.

2011.5966778.

[165] Paul Viola and Michael J Jones. “Robust real-time face detection”. In:

International journal of computer vision 57 (2004), pp. 137–154.

[166] Weiwei Zhang et al. “Driver yawning detection based on deep convolu-

tional neural learning and robust nose tracking”. In: 2015 International

Joint Conference on Neural Networks (IJCNN). IEEE. 2015, pp. 1–8.

[167] Fang Zhang et al. “Driver fatigue detection based on eye state recognition”.

In: 2017 International Conference on Machine Vision and Information

Technology (CMVIT). IEEE. 2017, pp. 105–110.

[168] M. A. Garcia-Vellisca et al. “Hand-movement Prediction from EMG with

LSTM-Recurrent Neural Networks”. In: 2021 Global Medical Engineer-

ing Physics Exchanges/Pan American Health Care Exchanges (GMEPE/-

PAHCE). Sevilla, Spain: IEEE, Mar. 2021, pp. 1–5. isbn: 978-1-72817-

054-1. doi: 10.1109/GMEPE/PAHCE50215.2021.9434840. url: https:

//ieeexplore.ieee.org/document/9434840/.

[169] Hiroaki Kanokogi and Go Takami. “Machine Learning Applied to Sensor

Data Analysis: Part 2”. In: Yokogawa Technical Report English Edition

60.1 (2017). Accessed: 2024-06-27. url: https://www.ergonomiesite.

be/documenten/risicoanalyse/EAWS-v1.3.6.pdf.

https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/ICIP.2002.1038171
https://doi.org/10.1109/CVPR.2001.990641
https://ieeexplore.ieee.org/abstract/document/990641
https://ieeexplore.ieee.org/abstract/document/990641
https://doi.org/10.1109/MeMeA.2011.5966778
https://doi.org/10.1109/MeMeA.2011.5966778
https://doi.org/10.1109/GMEPE/PAHCE50215.2021.9434840
https://ieeexplore.ieee.org/document/9434840/
https://ieeexplore.ieee.org/document/9434840/
https://www.ergonomiesite.be/documenten/risicoanalyse/EAWS-v1.3.6.pdf
https://www.ergonomiesite.be/documenten/risicoanalyse/EAWS-v1.3.6.pdf


138 BIBLIOGRAPHY

[170] Adriana Horelu et al. “Forecasting Techniques for Time Series from Sen-

sor Data”. In: 2015 17th International Symposium on Symbolic and Nu-

meric Algorithms for Scientific Computing (SYNASC). Timisoara, Roma-

nia: IEEE, Sept. 2015, pp. 261–264. isbn: 978-1-5090-0461-4. doi: 10.

1109/SYNASC.2015.49. url: http://ieeexplore.ieee.org/document/

7426093/.

[171] Xiaorui Tan et al. “A review of current air quality indexes and improve-

ments under the multi-contaminant air pollution exposure”. en. In: Journal

of Environmental Management 279 (Feb. 2021), p. 111681. issn: 03014797.

doi: 10.1016/j.jenvman.2020.111681.

[172] Gianfranco E. Modoni and Marco Sacco. “A Human Digital-Twin-Based

Framework Driving Human Centricity towards Industry 5.0”. en. In: Sen-

sors 23.13 (June 2023), p. 6054. issn: 1424-8220. doi: 10.3390/s23136054.

[173] Usman Asad et al. “Human-Centric Digital Twins in Industry: A Com-

prehensive Review of Enabling Technologies and Implementation Strate-

gies”. en. In: Sensors 23.8 (Apr. 2023), p. 3938. issn: 1424-8220. doi:

10.3390/s23083938.

[174] Saul Davila-Gonzalez and Sergio Martin. “Human Digital Twin in Indus-

try 5.0: A Holistic Approach to Worker Safety and Well-Being through

Advanced AI and Emotional Analytics”. en. In: Sensors 24.2 (Jan. 2024),

p. 655. issn: 1424-8220. doi: 10.3390/s24020655.

[175] Daniel G. Costa et al. “A Distributed Multi-Tier Emergency Alerting Sys-

tem Exploiting Sensors-Based Event Detection to Support Smart City

Applications”. In: Sensors 20.1 (2020). issn: 1424-8220. doi: 10.3390/

s20010170. url: https://www.mdpi.com/1424-8220/20/1/170.

[176] Damian Grajewski et al. “Application of Virtual Reality Techniques in

Design of Ergonomic Manufacturing Workplaces”. en. In: Procedia Com-

puter Science 25 (2013), pp. 289–301. issn: 18770509. doi: 10.1016/j.

procs.2013.11.035.

[177] Bhanu Chander et al. “Artificial Intelligence-based Internet of Things for

Industry 5.0”. en. In: Artificial Intelligence-based Internet of Things Sys-

tems. Ed. by Souvik Pal, Debashis De, and Rajkumar Buyya. Internet of

Things. Cham: Springer International Publishing, 2022, pp. 3–45. isbn:

978-3-030-87058-4. doi: 10.1007/978-3-030-87059-1_1. url: https:

//link.springer.com/10.1007/978-3-030-87059-1_1.

https://doi.org/10.1109/SYNASC.2015.49
https://doi.org/10.1109/SYNASC.2015.49
http://ieeexplore.ieee.org/document/7426093/
http://ieeexplore.ieee.org/document/7426093/
https://doi.org/10.1016/j.jenvman.2020.111681
https://doi.org/10.3390/s23136054
https://doi.org/10.3390/s23083938
https://doi.org/10.3390/s24020655
https://doi.org/10.3390/s20010170
https://doi.org/10.3390/s20010170
https://www.mdpi.com/1424-8220/20/1/170
https://doi.org/10.1016/j.procs.2013.11.035
https://doi.org/10.1016/j.procs.2013.11.035
https://doi.org/10.1007/978-3-030-87059-1_1
https://link.springer.com/10.1007/978-3-030-87059-1_1
https://link.springer.com/10.1007/978-3-030-87059-1_1


BIBLIOGRAPHY 139

[178] Francesco Longo, Antonio Padovano, and Steven Umbrello. “Value-Oriented

and Ethical Technology Engineering in Industry 5.0: A Human-Centric

Perspective for the Design of the Factory of the Future”. en. In: Applied

Sciences 10.12 (June 2020), p. 4182. issn: 2076-3417. doi: 10 . 3390 /

app10124182.

[179] Andrea Gaggioli, Antonio Cerasa, and Giacinto Barresi. “Phygital Men-

tal Health: Opportunities and Challenges”. en. In: mHealth and Human-

Centered Design Towards Enhanced Health, Care, and Well-being. Ed. by

Sofia Scataglini, Silvia Imbesi, and Gonçalo Marques. Vol. 120. Studies in
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