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Abstract—Until the approval of vaccines at the end of 2020,
societies relied on non-pharmaceutical interventions (NPIs) in
order to control the COVID-19 pandemic. Spontaneous changes
in individual behavior might have contributed to or counteracted
epidemic control due to NPIs. For example, the population
compliance to NPIs may have varied over time as people
developed “epidemic fatigue” or altered their perception of the
risk and severity of COVID-19. Whereas official measures are
well documented, the behavioral response of the citizens is harder
to capture. We propose a mathematical model of the societal
response, taking into account three main effects: the citizen
response dynamics, the authorities’ NPIs, and the occurrence of
unpreventable events that significantly alter the virus transmis-
sion rate. A key assumption is that a society has a waning memory
of the epidemic effects, which reflects on both the severity of
the authorities’ NPIs and on the citizens’ compliance to the
prescribed rules. This, in turn, feeds back onto the transmission
rate of the disease, such that a higher number of hospitalizations
decreases the probability of transmission. We show that the
model is able to reproduce the COVID-19 dynamics in terms of
hospital admissions for several European countries during 2020
over surprisingly long time scales. Also, it is capable of capturing
the effects of disturbances (for example the emergence of new
virus variants) and can be exploited for implementing control
actions to limit such effects. A possible application, illustrated in
the paper, consists of exploiting the estimations based on the data
of one country, to predict and control the evolution in another
country, where the virus spreading is still in an earlier phase.

Index Terms—Nonlinear model, optimal control, COVID-19.

I. INTRODUCTION

For most of the first year of the COVID-19 pandemic non-
pharmaceutical interventions (NPIs) were the only means to
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tame the spread of the disease. Societies imposed various con-
trol measures ranging from soft recommendations regarding
hygiene and face mask use to curfews and hard lockdowns.
In the mean time researchers and the pharmaceutical industry
worked with incredible efficiency to develop vaccines that
became available in late 2020.

NPIs are introduced to change the behavior of the popu-
lation of a society with the aim to change the course of the
epidemic. On the other hand, the dynamics of the epidemic
is what motivates institutions to change their response and to
decide to impose restrictions. Further, the degree of compli-
ance in the population may change over time as the number of
infected cases varies, which could influence the perceived risk
of getting infected or modify the perceived severity of the
epidemic. Reduced compliance may also be because people
begin to show ‘pandemic fatigue’ for example for economic or
psychological reasons [1]. It is thus clear that the dynamics of
the epidemic and the behavioral response, both at institutional
and personal levels, are intertwined in a feedback loop, which
itself may change over time.

Mathematical modeling of COVID-19 has had a tremendous
impact on public health measures [2], [3]. For example, to help
decision makers the impact of imposing NPIs has been pre-
dicted from mathematical modeling [4], [5]. Retrospectively,
the effect that NPIs had on disease dynamics has also been
studied with the help from models [6]– [9]. However, the
structure of these models is typically one-directional: the NPIs
are imposed by changing parameters in the models, but, from
the best of our knowledge, the feedback from disease dynamics
onto the decision process is lacking. In addition, spontaneous
behavioral changes in the population are typically not con-
sidered, although it is well established that to understand
how individuals interact with epidemic diseases mathematical
modeling is of great help [10], [11]. Modeling studies that
include feedback from the COVID-19 epidemic dynamics onto
the transmission rate, in this way modeling behavioral changes,
typically consider the feedback to be instantaneous [12],
[13]. Another common approach is to model changes in
behavioral response by introducing ‘switches’, where people
change their behavior discontinuously between two levels as
e.g. the number of infected individuals change [14], [15].
Such mathematical models have been proposed with ‘memory’
where the switch occurs depending on the incidence levels in a
certain time window [14], and further extended to have smooth
transitions between the two levels [16]. These latter works did
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not compare the model to COVID-19 data.
We argue that societies during 2020 kept a waning ‘mem-

ory’ of the COVID-19 epidemic. For example, institutions
calculate incidence rates, basic reproduction number R0 values
and hospital occupancies from historical and time-averaged
data, and decide to introduce or ease restrictions based on such
information. Indeed, many countries have semi-automatized
the link between epidemic indices and the level of containment
measures in effect, but with an inherent delay in the system.
It seems also reasonable that the population’s perception of
the severity of the disease changes with some delay as, for
example, the media reports on the epidemic situation.

Consequently, we analyze COVID-19 data until early 2021
(to reproduce a scenario without assuming the effects of
vaccine) from several of the most populous western European
countries using a modified feedback SIR model with waning
memory, where the labels S, I and R represent the different
compartments assigned to a population (Susceptible, Infec-
tious, or Recovered). The model incorporates feedback from
this social memory onto the transmission rate. Other models,
different from the one proposed here, although based on sim-
ilar principles, have appeared in literature; e.g., Buonomo and
Della Marca have developed a model based on information-
induced behavioural changes [17] and, more recently, have
also studied the effects of vaccine-hesitancy [18] and vaccine-
induced relaxation of social-distancing [19]. While in the
above papers the authors present a thorough mathematical
analysis of the proposed models, the present work is more
focused on the model-based analysis of the epidemiological
dynamics in different countries, over an extended time inter-
val, and on the optimization of the control strategies in the
face of unpreventable disturbances, possibly exploiting similar
disturbance-induced effects in the various countries.

Indeed, the model allows us to quantify the effects of the
spread in UK of B.1.1.7/Alpha variant, that became dominant
at the end of 2020. Then, we exploit this information to predict
the trend of the hospital admissions due to the proliferation
of this variant in the other investigated European countries,
where it became dominant at the end of February/early March
2021. Finally, we show how to employ the model in order to
implement control actions that reduce these disturbance effects
and maintain the peak value of the new epidemic wave due to
the emergence of Alpha variant below a desired threshold.

II. METHODS

A. A SIHM model

We consider a SIHM model for characterizing COVID-19
dynamics, where S represents the susceptible individuals, I the
infectious, H the cumulative hospital admissions and M the
time-weighted average number of hospital admissions (i.e. a
memory variable), which feeds back onto the transmission rate
of the disease, β f . The model is described by the equations

Ṡ = −β f SI/N, (1)
İ = β f SI/N − (η +α) I (2)

Ḣ = ηI (3)
Ṁ = (ηI −M)/τ (4)

with

β f = u(1+w)(1−∆u) ,withu =
β

1+
(

M
Kp

)nh
. (5)

Here, N is the total number (assumed constant) of individuals
in the population; the rate α represents recovery or death of
COVID patients that were not hospitalized, while η is the rate
of hospital admissions. The transmission rate β f is determined
by i) the feedback function u, which includes both the nominal
authorities’ NPIs and the citizens’ compliance to the pre-
scribed rules (depending on the waning memory variable M);
ii) the term w modeling the effects of unpreventable exogenous
inputs (i.e. environmental effects/disturbances) significantly
altering the disease transmission rate (e.g. the spreading of
novel virus variants); iii) the factor ∆u representing additional
control actions that could be implemented in order to further
limit the spread of the epidemic in addition to u. Note that
β f is equal to u when w and ∆u are zero; in this case (i.e.
β f = u) the model describes the “nominal” response of a
country to COVID-19: the transmission rate is described by the
feedback function u, which is a decreasing function of M with
maximal transmission rate β , threshold for the feedback Kp
(the value of M needed for 50% transmission rate reduction,
i.e. u = β/2) and exponent nh determining the steepness of
u (when nh > 1, u has a sigmoidal shape whose steepness
increases with nh). The feedback function u allows mimicking
the society response to the recent COVID-19 spreading in the
country: indeed, a high number of hospital admissions over
a time window (determined by the time constant τ of the
memory system (see (4)) leads to a rise of M, which decreases
the probability of transmission.
Through w the model is capable of taking into account, for
example, an increase of mobility with reopening of activities
and schools after summer 2020, a lower compliance of the
population to the suggested behaviors during the Christmas
period or the emergence of new virus variants; therefore, we
model w as a piece-wise constant signal denoted by w{k},
which is composed of k constant subintervals; wi denotes
the constant value in the i-th subinterval, for i = 1, . . . ,k,
with w1 = 0; the step-wise changes from wi to wi+1, with
i = 1, . . . ,k − 1, occurs at Tci , denoting the time of the i-th
change of w{k}; for example, w{2} is a piece-wise constant
signal composed of 2 subintervals with constant values w1 and
w2, respectively, characterized by 1 time change at Tc1 from
w1 to w2. Finally, by introducing ∆u in (5), we can simulate
the results of control strategies aimed at mitigating and an-
ticipating the effects of these environmental disturbances; for
example, the model allows us to quantify the consequences
on the transmission rate of the emergence of B.1.1.7/Alpha
variant in UK, which became dominant at the end of 2020
(see Section III-B); notably, we have exploited this information
for predicting the Alpha variant effects in other European
countries, where the Alpha variant became dominant a few
months later, and for implementing an optimal control action
that could be employed in order to reduce these effects, e.g.
by maintaining the peak value of the new epidemic wave due
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to the emergence of Alpha variant below a desired threshold
(see Section III-C).

B. Parameter estimation
We assume that α and η have the same values for all

countries; in particular we consider an average time of duration
from infection to recovery or death of non-hospitalized cases
of 10 days [20]– [23], corresponding to a rate of 0.1/day. Then,
if δ represents the percentage of infectious individuals needing
hospital admission, we obtain α = (1−δ )× 0.1/day, and
η = δ ×0.1/day. We estimate δ from Italian data: about 90k
individuals needed hospital admission by the end of July 2020,
while an estimation of all infectious individual was about
1.5M by that date [24], which yields δ ≈ 90k/1.5M= 0.06,
α = 0.094/day and η = 0.006/day. We use global optimiza-
tion to estimate the free model parameters providing the best
fit to the log-transformed hospital admission data (denoted
by dH) from Germany, France, UK and Italy. For France
and Germany, we use weekly hospital admissions: for France,
data are available from the week ending March 15th, 2020,
while for the Germany from the week ending March 8th,
2020. For Italy and UK, we use daily hospital admissions:
for Italy, data are available from February 20th, 2020; for
UK, the daily hospital admissions are from March 23rd, 2020
(see Section II-C for link to data sources). For the different
countries, we consider data (daily or weekly admissions) until
early 2021, in order to reproduce a scenario without assuming
the effects of vaccines.

By exploiting the data-set and the devised model, we can
estimate the initial value of the unknown number of infectious
individuals I0 at time T0, which represents the day or week be-
fore the first sample (at time T1) is available for each country,
by identifying dH0, thereby I0 = dH0

η
, being η constant and

identical for all countries as previously explained.
In the fitting procedure, we assume a piece-wise constant

disturbance w{k}, as defined in the previous section. Note
that, at this stage, we do not assume any additional control
strategy, thus we set ∆u = 0 in (5). First, we fit the model
without any disturbance in (5), i.e. k = 1 and w = w{1} = 0;
subsequently, larger values of k are tested according to the
procedure illustrated below.
Let us denote by Θk the set of optimization parame-
ters, whose cardinality depends on k: for instance, Θ1 =
{I0,β ,τ,Kp,nh} for w = w{1}(i.e. no disturbance), Θ2 =
{I0,β ,τ,Kp,nh,Tc1 ,w2} for w = w{2}, and more in general is
Θk = {I0,β ,τ,Kp,nh,Tc1 ,w2, . . . ,Tck−1 ,wk} for w = w{k}.
The optimization problem is then defined by

min
Θk

J, J =
1

ND
∑

j

(
logdH j − logdH j)

)2
, (6)

where logdH j are the log-transformed simulated daily
or weekly hospital admissions (obtained by simulating
model (1)–(5)) and logdH j the log-transformed daily or
weekly hospital admissions data, at time j (day or week
according to available country data), ND is the time-series
length. In order to minimize the problem defined by (6), i.e. the
sum of the squared errors between the log-transformed simu-
lated responses produced by the model and the corresponding

TABLE I
Scores obtained by fitting the dataset for SIHM model for different

w = w{k} with k = 1, . . . ,4 . The score highlighted in bold with * means
< 5% improvement obtained by w = w{k} with respect to w = w{k−1}.

Country Case Scores
J by (6) AIC BIC FPE

Germany
w = w{1} 0.75 -3.5 5.7 0.930
w = w{2} 0.22 -56.5 -43.7 0.290
w = w{3} 0.05 -120 -104 0.074
w = w{4} 0.04 -126 -106* 0.065

France
w = w{1} 0.250 -53 -43.9 0.310
w = w{2} 0.055 -116 -104 0.076
w = w{3} 0.007 -203 -187 0.011
w = w{4} 0.006 -209* -189* 0.010

UK
w = w{1} 0.270 -383 -364 0.280
w = w{2} 0.051 -882 -856 0.053
w = w{3} 0.023 -1113 -1080 0.025
w = w{4} 0.022* -1123* -1082* 0.024*

Italy
w = w{1} 0.310 -383 -364 0.320
w = w{2} 0.110 -727 -700 0.110
w = w{3} 0.038 -1074 -1040 0.040
w = w{4} 0.035 -1098* -1056* 0.037

log-transformed data, we use a hybrid Genetic Algorithm
(GA) that combines the GA with a local gradient-based
algorithm [25]. We use the function ga from MATLABTM

(Mathworks, Natick, MA, USA) Global Optimization Toolbox
and fmincon from MATLABTM Optimization Toolbox as
the local algorithm. For each value of k, we repeat the
GA algorithm six times and select the parameter set that
gives the best fitting (i.e. the lowest value of J) as initial
condition for the local algorithm. To cope with overfitting,
we also compute the Akaike information criterion (AIC) [26],
Bayesian information criterion (BIC) [27] and Akaike’s final
prediction-error criterion (FPE) [28]. Indeed, the cost function
J does not take into account the number of optimization
parameters (which is equal to 5+ 2(k− 1)). In general BIC
tends to penalize complex models more heavily, on the other
hand AIC and FPE tend to choose models which are too
complex as the number of data goes to infinity. We exploit
the following iterative procedure:
P1) First, compute the scores (J, AIC, BIC, FPE) obtained by

SIHM with w = w{1} = 0.
P2) Then, for each value of k, evaluate the scores obtained

using w = w{k}.
P3) Compare the scores of w = w{k} with those obtained by

w = w{k−1} :
if there is an improvement (at least 5%) for each score,
then repeat P2)-P3) with w = w{k+1},
else return w=w{k−1} as the optimal signal for explaining
data.
end

Table I reports the scores by varying k. For each country,
the case with w = w{3} presents the best trade-off between
minimization of J and number of optimization variables:
indeed, increasing the number of constant subintervals of
w, i.e w = w{4}, implies at least one score that does not
improve > 5%. Tables II and III report the optimal model
parameters that provide the best fitting to weekly and daily
hospital admissions, respectively, for w = w{3}. Fig. 1 shows
the optimal data interpolation for different w = w{k} with
k = 1,2,3.
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TABLE II
Model parameters for weekly hospital admissions for Germany and

France. For the optimized parameters, SE represents standard error.

Fixed parameters
Country N T0 [date] α [week -1] η [week -1]
Germany 83 M Mar 1 0.094 × 7 0.006 × 7France 67.1 M Mar 8

Optimized parameters
Country dH0 (SE) β (SE) Kp (SE) nh (SE) τ (SE)

[I. week-1] [week-1] [I. week-1] [week]
Germany 23.9 (0.63) 2.5 (0.1) 302 (11.9) 0.98 (0.05) 8.8 (0.12)
France 140 (55.9) 2.89 (0.6) 999 (391) 1.13 (0.24) 9.4 (1.5)

Piece-wise constant disturbance w = w{3}

Country w2 (SE) Tc1 [date]
(SE) [week]

w3 (SE) Tc2 [date]
(SE) [week]

Germany 1.28 (0.09) Oct 14 (1.95) 4.25 (0.32) Nov 26 (2.3)
France 0.95 (0.09) Oct 14 (1.57) 2.12 (0.22) Dec 9 (1.97)

TABLE III
Model parameters for daily hospital admissions for UK and Italy. For

the optimized parameters, SE represents standard error.

Fixed parameters
Country N T0 [date] α [day-1] η [day-1]
UK 66.6 M Mar 22 0.094 0.006Italy 60 M Feb 19

Optimized parameters
Country dH0 (SE) β (SE) Kp (SE) nh (SE) τ (SE)

[I. day-1] [day-1] [I. day-1] [day]
UK 1540 (342) 0.27 (0.07) 173 (47.6) 0.62 (0.15) 64 (13.9)
Italy 61.6 (24.7) 0.32 (0.09) 160 (63.9) 1.2 (0.35) 79.8 (32.6)

Piece-wise constant disturbance w = w{3}

Country w2 (SE) Tc1 [date]
(SE) [day]

w3 (SE) Tc2 [date]
(SE) [day]

UK 0.43 (0.04) Sep 5 (16.2) 1.41 (0.08) Dec 11 (15.8)
Italy 1.05 (0.08) Oct 14 (5.95) 2.62 (0.21) Dec 5 (7.25)

C. Code and data availability

The source code (implemented in Matlab) and data
are available at https://github.com/BioMecLabUnicz/
Interacting-with-COVID-19-matlab-code.

III. RESULTS AND DISCUSSION

A. Model fitting to weekly and daily hospital admissions

The number of identified SARS-CoV-2 positive individuals
depends strongly on the amount of testing, which in turn
has varied significantly during the COVID-19 epidemic and
with great inter-country variability. To avoid the dependence
on the testing rate, the results are obtained by fitting weekly
or daily hospital admission COVID-19 data. Noteworthy, the
number of hospitalizations is also the most critical factor to
be considered to assess the capability of the public health
systems to cope with the pandemic waves. Moreover, the
hospital admission rate represents a significant measure of the
severity level of disease and is more closely related to the
societal memory state M that affects the transmission rate as
defined by (5). The analysis is performed for Germany, France,
UK and Italy starting from late February/early March 2020
until January 17th, 2021. According to the iterative procedure
described in Section II-B, as reported in Table I, w = w{3}

is the most suitable signal for reproducing the COVID-19
dynamics for each country in terms of hospital admissions
during 2020: Fig. 1 shows how the fitting to data improves
significantly going from w = w{1} = 0 (see solid black curves)
to w = w{2} (see solid-dashed blue curves) and to w = w{3}
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Fig. 1. Best fitting to weekly (Germany and France) and daily (UK
and Italy) hospital admissions. The grey circles represent the data (dH), the
solid black lines the simulated hospital admissions reproduced by the model
for w = w{1} = 0, the solid-dashed blue lines for w = w{2} with one step-wise
change of w from w1 (=0) to w2 at Tc1 , the solid-dash-dotted red lines for
w = w{3} with two step-wise changes of w from w1 to w2 at Tc1 and from w2
to w3 at Tc2 ; see Table II reporting parameter values for Germany and France
and Table III for UK and Italy.

(see solid-dash-dotted red curves). Parameter estimates for
w = w{3} are given in Tables II-III. Interestingly, the estimated
memory time scale τ is similar for all countries and of the
order 61-80 days. The mechanism suggested by the model is
that the high number of hospitalizations during March-April
2020 led to severe containment measures, such as lockdowns,
and high compliance. The memory of these events likely meant
that during the Summer 2020 people only slowly became less
compliant and governments only gradually lifted containment
measures. However, when people eventually believed that the
epidemic was largely under control after 2-3 months with
relatively low numbers of hospitalizations and new cases,
and/or developed pandemic fatigue in combination with the
vacation typically occurring in August (as in Italy and France),
the number of cases resurged, which is seen in the number of
hospital admission a few weeks later. Thus, for the different
countries, the dynamics are well reproduced by assuming
two time-changes of the piece-wise constant disturbance w
(i.e. w = w{3}): in general, the first change likely reflects
the fact that mobility increased with reopening activities and
schools after summer; the second one may correspond to a
lower compliance of the population to the suggested behaviors,
possibly due to the approaching Christmas period. The first
time change Tc1 of w occurred on 14 October 2020 for
Germany, France and Italy, while for UK the change was early,
on 5 September 2021 (see red curves changing from solid to
dashed lines at Tc1 in Fig. 1): this can be explained by the fact
that the lockdown restrictions eased further in UK from 14
August 2020, while the level of the disease was slightly higher
than the other countries during the summer with daily hospital
admissions that did not drop below an average value of 100;
also, the epidemic wave for UK went down more slowly, as
modeled by the identified nh parameter, whose value is lower
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than the other countries (see Tables II-III). The second time
change Tc2 of w occurred between the end of November and
the beginning of December 2020: in particular on Nov 26 2020
for Germany and on Dec 5 for Italy, on Dec 9 for France, and
on Dec 11 for UK (see red curves changing from dashed to
dotted lines at Tc2 in Fig. 1).

B. Estimation of the piece-wise constant disturbance effects

We exploit the results obtained by the model fitting with w=
w{3} in order to quantify the effects of the step-wise increases
of w on the transmission rate β f (5). Therefore, we define the
factor ρi as

ρi = (1+wi+1)/(1+wi) (7)

with i = 1,2. Then, ρi represents the multiplying factor
modifying the transmission rate β f due to the step-wise
change from wi to wi+1. As previously explained, the step-
wise increases w2 and w3 reflect an increase of mobility, due
to the reopening of the activities after summer 2020 (w2) and
the closeness to Christmas with a lower compliance of the
population to the suggested behavior (w3). For Germany, see
Figs. 2(a) and (b), the effects of w2 and w3 are similar: both
the disturbances determine a rise of β f by a factor greater
than 2 (ρ1,ρ2 > 2), leading to, respectively, the second peak
in Nov 2020 (w2), and the following one (w3), after a plateau,
in Dec 2020, as shown in Fig. 1(a). For France and Italy,
ρ2 < ρ1: the latter doubles the transmission rate determining
the new peak for the second pandemic wave in Nov 2020,
while ρ2 corresponds to a 60-80% increase of β f , leading
to slow down the descending phase of the second wave, as
shown in Figs. 1(b) and (d). Note that w2 exhibits a similar
effect on β f in Germany, France and Italy, resulting in at least
doubling the hospitalization rate and a new pandemic wave
in autumn 2020. Regarding the third phase (i.e., from the
end of Nov 2020), France and Italy exhibit a more limited
increase in the transmission rate with respect to Germany,
which experienced another hospitalizations peak in Dec 2020:
this behavior can be explained by the less stringent lockdown
policies actuated in Germany from early Nov 2020 during the
second wave, which led to a higher increase of the mobility at
the end of Nov 2020 (only from Dec 15, 2020 a hard lockdown
was applied in Germany). For UK, we note that the effect of
w2 is lower with respect to the other countries and this can
be explained by the fact that mobility was already increased
(with rapid easing of lockdown restrictions imposed during the
first epidemic wave) resulting in a first wave that went down
slowly; consequently, the step-wise increase w2 identified by
the model was lower than in the other countries. Differently
from the other countries, for UK ρ2 > ρ1: the first step-wise
increase determines a 40% rise of β f , leading to the second
peak in Nov 2020, whereas w3 implies a rise of β f by about
70%, determining the further peak in early 2021, as shown in
Fig. 1(c). Taking into account these results, we can assume that
the UK transmission rate in the third phase is heavily affected
by the emergence of the B.1.1.7/Alpha variant (which became
dominant in UK in Dec 2020), determining an additional rise
of β f due to the ratio between ρ2 and ρ1, thereby defining
ρAl pha =

ρ2
ρ1

≈ 1.2.
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Fig. 2. Effects of the step-wise increases on β f for the different countries.
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Fig. 3. Model prediction and control action to weekly (Germany and
France) and daily (Italy) hospital admissions for containing the effects
of Alpha variant. The grey circles represent the data (dH), the dotted red
curves the fitting results obtained by the devised model with w = w{3} as
shown in Fig. 1, the cyan curves the prediction of the model with a new
step-wise change at Tc3 simulating Alpha variant effects (ep, reported in the
legend, represents the prediction error obtained by computing the distance of
the simulated curve from data as performed by (6)). The magenta and black
curves simulate the implementation of two possible control actions with the
aim to maintain the peak of the following wave below a desired value.

C. Prediction of the effects of Alpha variant and relative
control action for France, Germany and Italy

We use the model parameters obtained by fitting the data
until Jan 17, 2021, and predict the following trend of hospital
admissions for France, Germany and Italy with the aim to
show how the model is able to reproduce the new epidemic
wave due to Alpha variant. In particular, we introduce a
new step-wise increase w4 at time Tc3 , where w4 is com-
puted by exploiting the factor ρAl pha obtained from UK data
(ρAl pha = (1+w4)/(1+w3), i.e. w4 = ρAl pha (1+w3)− 1).
For each country, Tc3 is obtained by looking at the time
where Alpha variant became dominant (available at https:
//www.gisaid.org/hcov19-variants/), in particular at the end of
Feb 2021 for Italy, and at the beginning of Mar 2021 for
France and Germany. Fig. 3 shows how the model is able
to predict well the hospital admissions data from Jan 17,
2021 to the new peak due to emergence of Alpha variant
for each country (see cyan curves). Then, we implement a
control strategy by minimizing the following cost function
with respect to ∆u:

f = ∑
j

ka (∆u)2 +
kb(

min
(
logdH j − kwd (pmax −100) ,0

))2 ,

(8)
where ka and kb are weight coefficients, (pmax −100) repre-
sents the maximum value of the peak and kwd is a constant
equal to 1 for daily data or 7 for weekly data. By solving (8),
we achieve the optimal control input ∆u, a step-wise signal
to be applied at Tc3 , that maintains the peak of the new
epidemic wave due to Alpha variant below a limit value (i.e.
kwd (pmax −100)). Fig. 3 shows two possible control actions
to be implemented for each country in order to keep the peak
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value below the desired threshold (see magenta and black
curves).

IV. CONCLUSIONS

Our work presents a simple model incorporating feedback
and memory into a SI(R) model capable of capturing COVID-
19 dynamics during 2020 over surprisingly long time scales.
The severity of the epidemic, which feed backs on the trans-
mission rate, is measured by a weighted average of hospital
admissions with waning memory. One could use e.g. daily
deaths due to COVID-19 or other measures of the state of
the epidemic as an alternative variable controlling the memory
variable. Our results suggest that the memory time scales of the
societies were approximately 60-80 days, i.e., the feedback is
mostly influenced by the number of hospitalizations, whether
high or low, in the previous ∼2 months.

Besides allowing us to quantify the effects of possible
disturbances altering the transmission rate as, for example,
changes in perceived disease severity or pandemic “fatigue”,
the model permits quantifying and controlling the emergence
of new virus variants. For example, we have shown how
the insights provided by the model on the effects of Alpha
variant in UK can be exploited by the other European countries
through the implementation of control actions able to limit the
next wave peak.

Note that the model does not treat regional differences
within each country, although such heterogeneity is well
known to be relevant. Further studies could apply our approach
to regional data, which however suffer from “noise” due to
isolated outbreaks. In addition, national health orders and
public compliance were often based on the national situation.
Thus, a hierarchical model that considers both regional and
national COVID-19 dynamics would be needed.
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