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Abstract

Alignment-free classification of sequences has enabled high-throughput pro-
cessing of sequencing data in many bioinformatics pipelines. Much work has
been done to speed-up the indexing of k-mers through hash-table and other
data structures. These efforts have led to very fast indexes, but because
they are k-mer based, they often lack sensitivity due to sequencing errors or
polymorphisms. Spaced seeds are a special type of pattern that accounts for
errors or mutations. They allow to improve the sensitivity and they are now
routinely used instead of k-mers in many applications. The major drawback
of spaced seeds is that they cannot be efficiently hashed and thus their usage
increases substantially the computational time.

In this article we address the problem of efficient spaced seed hashing.
We propose an iterative algorithm that combines multiple spaced seed hashes
by exploiting the similarity of adjacent hash values in order to efficiently
compute the next hash. We report a series of experiments on HTS reads
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hashing, with several spaced seeds. Our algorithm can compute the hashing
values of spaced seeds with a speedup in range of [3.5x- 7x], outperforming
previous methods. Software and Datasets are available at Iterative Spaced
Seed Hashing.
Keywords: efficient hashing k-mers spaced seeds

1 Introduction

In computational biology, sequence classification is a common task with
many applications such as phylogeny reconstruction (Leimeister et al., 2014),
protein classification (Onodera and Shibuya, 2013), metagenomic (Girotto
et al., 2016; Marchiori and Comin, 2017; Ounit and Lonardi, 2016). Even
if sequence classification is addressable via alignment, the scale of modern
datasets has stimulated the development of faster alignment-free similarity
methods (Apostolico et al., 2016; Comin and Verzotto, 2014; Comin et al.,
2015; Leimeister et al., 2014; Wood and Salzberg, 2014).

The most common alignment-free indexing methods are k-mer based.
Large-scale sequence analysis often relies on cataloguing or counting consecu-
tive k-mers (substring of length k) in DNA sequences for indexing, querying
and similarity searching. A common step is to break a reference sequence into
k-mers and indexing them. An efficient way of implementing this operation
is through the use of hash based data structures, e.g. hash tables. Then, to
classify sequences are also broken into k-mers and queried against the hash
table to check for shared k-mers.

In (Ma et al., 2002) it has been shown that requiring the matches to be non-
consecutive increases the chance of finding similarities and they introduced
spaced seeds. They are a modification to the standard k-mer where some
positions on the k-mer are set to be don’t care, or wildcards, to catch
the spaced matches between sequences. In spaced seeds, the matches are
distributed so as to maximize the sensitivity, that is the probability to find a
local similarity.

Spaced seeds are widely used for approximate sequence matching in bioin-
formatics and they have been increasingly applied to improve the sensitivity
and specificity of homology search algorithms (Kucherov et al., 2006; Noé
and Martin, 2014). Spaced seeds are now routinely used, instead of k-mers,
in many problems involving sequence comparison like: multiple sequence
alignment (Darling et al., 2006), protein classification (Onodera and Shibuya,
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2013), read mapping (Rumble et al., 2009), phylogeny reconstruction (Leimeis-
ter et al., 2014), metagenome reads clustering and classification (Brinda et al.,
2015; Girotto et al., 2017c; Ounit and Lonardi, 2016).

In all these applications, the use of spaced seeds, as opposed to k-mers,
has been reported to improve the performance in terms of sensitivity and
specificity. However, the major drawback is that the computational cost
increases. For example, when k-mers are replaced by spaced seeds, the
metagenomic classification of reads of Clark-S (Ounit and Lonardi, 2016)
increases the quality of classification, but it also produces a slowdown of 17x
with respect to the non-seed version. A similar reduction in time performance
when using spaced seeds is reported also in other applications (Brinda et al.,
2015; Onodera and Shibuya, 2013; Rumble et al., 2009).

The main reason is that k-mers can be efficiently hashed. In fact, the
hashing of a k-mer can be easily computed from the hashing of its predecessor,
since they share k − 1 symbols. For this reason, indexing all consecutive
k-mers in a string can be a very efficient process. However, when using
spaced seeds these observations do not longer hold. Therefore, improving the
performance of spaced seed hashing algorithms would have a great impact on
a wide range of bioinformatics applications. The first attempt to address this
question was in the Thesis of R. Harris (Harris, 2007), but hard coding was
used to speed-up a non linear packing. Recently, we develop an algorithm
based on the indexing of small blocks of runs of matching positions that can
be combined to obtain the hashing of spaced-seeds (Girotto et al., 2018a). In
(Girotto et al., 2017a, 2018b) we proposed a more promising direction, based
on spaced seed self-correlation, in order to reuse part of the hashes already
computed. We showed how the hash at position i can be computed based on
one best previous hash. Despite the improvement in terms of speedup, the
number of symbols that need to be encoded in order to complete the hash
could still be high. In this article1 we solved this problem through: 1) a better
way to use previous hashes, maximizing re-use ; 2) an iterative algorithm that
combines multiple previous hashes. In fact, our algorithm arranges multiple
previous hashes in order to recover all k− 1 symbols of a spaced seed, so that
we only need to encode the new symbol, like with k-mer hashing.

1A preliminary version of this work was presented at ISBRA 2019(Petrucci et al., 2019)
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2 Methods: Iterative Spaced Seed Hashing

2.1 Spaced Seed Hashing: Background

A spaced-seed Q (or just a seed) is a string over the alphabet {1, 0} where
the 1s correspond to matching positions and 0 to non-matching positions or
wildcards, e.g. 1011001. A spaced seed Q can be represented as a set of non
negative integers corresponding to the matching positions (1s) in the seed,
e.g. Q = {0, 2, 3, 6}, a notation introduced in (Keich et al., 2004). The weight
of a seed, denoted as |Q|, corresponds to the number of 1s, while the length,
or span s(Q), is equal to max(Q) + 1.

Given a string x, the positioned spaced seed x[i+Q] identifies a string of
length |Q|, where 0 ≤ i ≤ n−s(Q). The positioned spaced seed x[i+Q], also
called Q-gram, is defined as the string x[i+Q] = {xi+k, k ∈ Q}.
Example 2.1. Given the seed 1011001, defined asQ = {0, 2, 3, 6}, with weight
|Q| = 4 and span s(Q) = 7. Let us consider the string x = AATCACTTG.

x A A T C A C T T G
Q 1 0 1 1 0 0 1

x[0 +Q] A T C T
The Q-gram at position 0 of x is defined as x[0 +Q] = ATCT . Similarly

the other Q-grams are x[1 +Q] = ACAT , and x[2 +Q] = TACG.

In this article, for ease of discussion, we will consider as hashing function
the simple encoding of a string, that is a special case of the Rabin-Karp
rolling hash. Later, we will shown how more advanced hashing function can be
implemented at no extra cost. Let’s consider a coding function from the DNA
alphabet A = {A,C,G, T} to a binary codeword, encode : A → {0, 1}log2|A|,
where encode(A) = 00, encode(C) = 01, encode(G) = 10, and encode(T ) = 11.
Following the above example, we can compute the encodings of all symbols
of the Q-gram x[0 +Q] as follows:

x[0 +Q] A T C T
encodings 00 11 01 11

Finally, the hashing value of the Q-gram ATCT is 11011100, that is the
merge of the encodings of all symbols using little-endian notation. More
formally, a standard approach to compute the hashing value of a Q-gram at
position i of the string x is the following function h(x[i+Q]):

h(x[i+Q]) =
∨
k∈Q

(encode(xi+k) ≪ m(k) ∗ log2|A|) (1)
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Where m(k) is the number of matching positions that appears to the left
of k. The function m is defined as m(k) = |{i ∈ Q, such that i < k}|. In
other words, given a position k in the seed, m stores the number of shifts
that we need to apply to the encoding of the k-th symbols in order to place
it into the hashing. The vector m is important for the computation of the
hashing value of a Q-gram.

Example 2.2. In this example, we report an example of hashing value
computation for the Q-gram x[1 +Q].

x A A T C A C T T G
Q 1 0 1 1 0 0 1
m 0 1 1 2 3 3 3

shifted encodings
00≪0 01≪2 00≪4 11≪6
00

0100

000100

hashing value
11000100

The previous example shows how the hashing value of x(1 +Q) can be
computed through the function h(x[1 +Q]) = h(ACAT ) = 11000100. The
hashing value of the other Q-gram can be determined with a similar procedure,
i.e. h(x[2 + Q]) = h(TACG) = 10010011. The hashing function h(·) is a
special case of the Rabin-Karp rolling hash. However, more advanced hashing
functions can be defined in a similar way. For example, the cyclic polynomial
rolling hash can be computed by replacing: shifts with rotations, OR with
XOR, and the function encode() with a table, where DNA characters are
mapped to random integers.

In this article we want to address the following problem.

Problem 2.1. Let us consider a string x = x0x1 . . . xi . . . xn−1, of length n, a
spaced seed Q and a hash function h that maps strings into a binary codeword.
We want to compute all hashing values H(x,Q) for all the Q-grams of x,
starting from the first position 0 of x to the last n− s(Q).

H(x,Q) = ⟨h(x[0 +Q]), h(x[1 +Q]), . . . h(x[n− s(Q)])⟩
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To compute the hash of a contiguous k-mer it is possible to use the hash of
its predecessor. In fact, given the hashing value at position i, the hashing for
position i+ 1 can be obtained with two operations, a shift and the insertion
of the encoding of the new symbol, since the two hashes share k − 1 symbols.
However, if we consider the case of a spaced seed Q, we can clearly see that
this observation does not hold. In fact, in the above example, two consecutive
Q-grams, like x[0 +Q] = ATCT and x[1 +Q] = ACAT , do not necessarily
have much in common. Since the hashing values are computed in order, the
idea is to speed up the computation of the hash at a position i by reusing
part of the hashes already computed at previous positions. In this paper
we present a solution for Problem 2.1 that maximizes the re-use of previous
hashes so that only one symbol needs to be encoded in the new hash, as with
k-mers hashing.

2.2 Iterative Spaced Seed Hashing

In the case of spaced seeds, one can reuse part of previous hashes to compute
the next one, however we need to explore not only the hash at the previous
position, as with k-mers, but the s(Q)− 1 previous hashes. A first attempt
to solve this problem was recently proposed in (Girotto et al., 2018b), where
the hash at position i is computed based on one best previous hash. Despite
the improvement in terms of speedup with respect to the standard hashing
method, the number of symbols that need to be read in order to complete
the hash could still be high. In this article we reduced this value to just one
symbol by working in two directions: 1) we devise a better way to use a
previous hash, maximizing re-use 2) we propose an iterative algorithm that
combines multiple previous hashes.

Let us assume that we want to compute the hashing value at position i and
that we already know the hashing value at position i− j, with j < s(Q). We
can introduce the following definition of Cg,j = {k ∈ Q : k + j ∈ Q ∧m(k) =
m(k + j)−m(j) +m(g)} as the positions in Q that after j shifts are still in
Q with the propriety that k and k + j positions are both in Q and they are
separated by j − g − 1 (not necessarily consecutive) ones. In other words if
we are processing the position i of x and we want to reuse the hashing value
already computed at position i− j, Cg,j represents the symbols, starting at
position g of h(x[i− j +Q]), that we can keep while computing h(x[i+Q]).

Example 2.3. Let’s consider Q = {0, 1, 2, 4, 6, 8, 10}. If we know the first
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hashing value h(x[0+Q]) and we want to compute the second hash h(x[1+Q]),
the following example show how to construct C0,1.

k 0 1 2 3 4 5 6 7 8 9 10
Q 1 1 1 0 1 0 1 0 1 0 1

Q≪1 1 1 1 0 1 0 1 0 1 0 1
m(k) 0 1 2 3 3 4 4 5 5 6 6

m(k+1)-m(1)+m(0) -1 0 1 2 2 3 3 4 4 5 5
C0,1 0 1

The symbols at positions C0,1 = {0, 1} of the hash h(x[1+Q]) have already
been encoded in the hash h(x[0 + Q]) and we can keep them. In order to
complete h(x[1 +Q]), the number of remaining symbols are |Q| − |C0,1| = 5.

In the article (Girotto et al., 2018b) we use only the symbols in C0,j , that
is g was always 0. As we will see in the next examples, if we are allowed to
remove the first g symbols from the hash of h(x[i− j +Q]), we can recover
more symbols in order to compute h(x[i+Q]).

Example 2.4. Let us consider the hash at position 2 h(x[2 +Q]), and the
hash at position 0 h(x[0 +Q]). In this case we are interested in C0,2.

k 0 1 2 3 4 5 6 7 8 9 10
Q 1 1 1 0 1 0 1 0 1 0 1

Q≪2 1 1 1 0 1 0 1 0 1 0 1
m(k) 0 1 2 3 3 4 4 5 5 6 6

m(k+2)-m(2)+m(0) -2 -1 0 1 1 2 2 3 3 4 4
C0,2 0
Thus, the only position that we can recover is C0,2 = {0}. On the other

hand, if we are allowed to skip the first position of the hash h(x[0 +Q]) and
consider C1,2, instead of C0,2, we have:
k 0 1 2 3 4 5 6 7 8 9 10
Q 1 1 1 0 1 0 1 0 1 0 1

Q≪2 1 1 1 0 1 0 1 0 1 0 1
m(k) 0 1 2 3 3 4 4 5 5 6 6

m(k+2)-m(2)+m(1) -1 0 1 2 2 3 3 4 4 5 5
C1,2 2 4 6 8

Where, we can re-use the symbols C1,2 = {2, 4, 6, 8} of h(x[0+Q]) in order
to compute h(x[2+Q]). This example shows how the original definition of Cj

in (Girotto et al., 2018b), that in this work corresponds to C0,2 = {0}, was
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not optimal and more symbols could be recovered from the same hash with
C1,2 = {2, 4, 6, 8}.

In (Girotto et al., 2018b), the hash value at a given position was re-
constructed starting from the best previous hash. However, the number of
symbols to be inserted to complete the hash could still be high. In this
article we propose a new method that not only consider the best previous
hash, but all previous hashes at once. For a given hash to be computed hi,
we devised an iterative algorithm that is able to find a combination of the
previous hashes that covers all symbols of hi, apart from the last one. That
is, we can combine multiple hashes in order to recover |Q| − 1 symbols of hi,
so that we only need to read the new symbol, like with k-mer hashing.

Let us assume that we have already computed a portion of the hash hi,
and that the remaining symbols are Q′ ⊂ Q. We can search the best previous
hash that covers the largest number of positions of Q′. To this end, we define
the function BestPrev(s,Q′) that searches for this best previous hash:

BestPrev(s,Q′) = argmaxz∈[0,s−1],k∈[1,s]|Cz,k ∩Q′|

This function will return a pair (g, j) that identifies the best previous hash
at position hi−j from which, after removing the first g symbols, we can recover
|Cg,j ∩Q′| symbols. In order to extract these symbols from hi−j we define a
mask, Maskg,j , that filters these positions. The algorithm iteratively searches
the best previous hashes, until all |Q| − 1 symbols have been recovered. An
overview of the method is shown below:

Our iterative algorithm scans the input string x and computes all hashing
values according to the spaced seed Q. In order to better understand the
amount of savings we evaluate the algorithm by counting the number of
symbols that are read and encoded. First, we can consider the input string to
be long enough so that we can discard the transient of the first s(Q)−1 hashes.
Let us continue to analyze the spaced seed 11101010101, that corresponds
to Q = {0, 1, 2, 4, 6, 8, 10}. If we use the standard function h(x[i + Q]) to
compute all hashes, each symbol of x is read |Q| = 7 times.
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Algorithm 1 Iterative Spaced Seed Hashing

1: Compute Cg,k and Mask(g, k) ∀g, k;
2: h0 := compute h(x[0 +Q]) ;
3: for i := 1 to s(Q)− 1 do
4: Q′ = Q;
5: while |Q′| ≠ 1 do
6: (g, k) = BestPrev(i, Q′);
7: if (Q′ ∩ Cg,k) == ∅ then
8: Exit while;
9: else

10: hi := hi OR ((hi−k AND Mask(g, k)) >> k ∗ log2|A|) ;
11: Q′ = Q′ − Cg,k ;
12: end if
13: end while
14: for all k ∈ Q′ do
15: insert encode(xi+k) at position m(k) ∗ log2|A| of hi;
16: end for
17: end for
18: for i := s(Q) to |x| − s(Q) do
19: Q′ = Q;
20: while |Q′| ≠ 1 do
21: (g, k) = BestPrev(s(Q)− 1, Q′);
22: hi := hi OR ((hi−k AND Mask(g, k)) >> k ∗ log2|A|) ;
23: Q′ = Q′ − Cg,k ;
24: end while
25: insert encode(xi+s(Q)−1) at last position of hi ;
26: end for

In the first iteration of our algorithm (lines=19-25) Q′ = Q and the best
previous hash BestPrev(s(Q) − 1, Q′) = (1, 2) is C1,2 = {2, 4, 6, 8}. Thus,
while computing hi we can recover these 4 symbols from hi−2. At the end
of the first iteration Q′ is updated to {0, 1, 10}. During the second iteration
the best previous hash BestPrev(s(Q)− 1, Q′) = (0, 1) is C0,1 = {0, 1}. As
above, we can append these two symbols from hi−1 to the hash hi. Now,
we have that Q′ = {10}, that is only one symbol is left. The last symbol is
read and encoded into hi, and the hash is complete. In summary, after two
iterations all |Q| − 1 symbols of hi have been encoded into the hash, and we
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only need to read one new symbol from the sequence. Moreover, if one needs
to scan a string with a spaced seed and to compute all hashing values, the
above algorithm guarantees to minimize the number of symbols to read. In
fact, with our algorithm, we can compute all hashing values while reading
each symbol of the input string only once, as with k-mers.

3 Results and discussion

In this section we will present the results of some experiments in which ISSH is
compared against two other approaches available in literature: FISH (Girotto
et al., 2018a) (block-based) and FSH (Girotto et al., 2018b) (overlap-based).

3.1 Experimental settings

We use the same settings as in previous studies (Girotto et al., 2018a,b). The
spaced seeds belong to three different types of spaced seeds, according to the
objective function used to generate them: maximizing the hit probability
(Ounit and Lonardi, 2016); minimizing the overlap complexity (Hahn et al.,
2016); and maximizing the sensitivity (Hahn et al., 2016). We tested three
spaced seeds for each type, all with weight W = 22 and length L = 31.
This list of spaced seeds is presented in Table of 1 with labels from Q1 to
Q9. Furthermore, we used other sets of spaced seeds, built with rashbari
(Hahn et al., 2016), which have weights from 11 to 32 and the same length.
The complete list of the spaced seeds used is reported in the Appendix (see
Tables 3-5). The datasets of metagenomic reads to be hashed were taken from
previous papers on binning and classification (Girotto et al., 2016, 2017b;
Wood and Salzberg, 2014). Details about the reads datasets are shown in
Table 2 in the Appendix. All the experiments have been performed on a
laptop equipped with an Intel i7-3537U CPU at 2 GHz and 8 GB of RAM.

3.2 Analysis of the Time Performances

The first comparison we present is between the performances of ISSH, FISH
and FSH in terms of speedup with respect to the standard hash computation
(i.e. applying Eq.1 to each position). Figure 1 shows the average speedup
among all datasets, for each of the spaced seeds Q1-Q9, obtained by the three
different methods.
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Table 1: The spaced seeds Q1-Q9 deployed in the experiments grouped by
their type.

Spaced seeds maximizing the hit probability Ounit and Lonardi (2016)
Q1 1111011101110010111001011011111
Q2 1111101011100101101110011011111
Q3 1111101001110101101100111011111
Spaced seeds minimizing the overlap complexity Hahn et al. (2016)

Q4 1111010111010011001110111110111
Q5 1110111011101111010010110011111
Q6 1111101001011100111110101101111

Spaced seeds maximizing the sensitivity Hahn et al. (2016)
Q7 1111011110011010111110101011011
Q8 1110101011101100110100111111111
Q9 1111110101101011100111011001111

Figure 1: The average speedup obtaind by ISSH, FISH and FSH with respect
to the standard computation.

It can be seen that ISSH is much faster than both FISH and FSH for all
the spaced seeds. In terms of actual running time, the standard approach
(Eq.1) requires about 14 minutes to compute the hashes for a single spaced
seed on all datasets. ISSH takes just over 2 minutes with an average speedup
of 6.2. As for the other two approaches, FISH and FSH, they compute the
hashes in 6 and 9 minutes respectively, with an average speedup of 2 (FISH)
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and 1.5 (FSH).
We also notice that the variation among the speedups, relative to different

spaced seeds using the same method, are lower for ISSH, for which the
speedups are in the range [6.05-6.25] while for FISH and FSH the range is
[1.89-2.16] and [1.18-1.58], respectively. For all the tested methods there is a
correlation between the spaced seed structure and the time needed for the
computation. FISH depends on the number of blocks of 1s, while both ISSH
and FSH depend on the spaced seed self-correlation. ISSH performances are
also sensitive to the number of iterations. However, the experiments show
that, even if FSH performs a single iteration, the time required to naively
compute the hash for all the non-overlapping positions is more than the time
required by ISSH to perform more iterations. Moreover, for all the tested
spaced seeds the number of iterations needed by ISSH was on average 4.

Figure 2 gives an insight on the performance of ISSH with respect to each
spaced seed and each datasets considered.

Figure 2: Speedup of ISSH of all the single spaced seeds for each of the
considered datasets, ordered by reads length.

First of all, we notice that the performances are basically independent on
the spaced seed used. Next, for what concerns the datasets characteristics, it
can be observed that the speedup increases with the reads length, reaching
the highest values for the datasets R7, R8 and R9, which have the longest
reads. This behavior is expected: when considering longer reads the slowdown
caused by the initial transient – in which more than one symbol has to be
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encoded – is less relevant with respect to the total running time.
In Figure 3 we report the speedups on each datasets obtained by Q7, a

typical spaced seed (the other spaced seeds performances are similar) using
ISSH, FISH and FSH.

Figure 3: Details of the speedup on the spaced seed Q7 on each datasets,
ordered by reads length, using ISSH, FISH and FSH.

All the results are compatible with the above observations: ISSH, if
compared to FISH and FSH, allows to compute the hashing values faster for
all the datasets. Futhermore, by using ISSH, the improvement on long reads
datasets is larger than the improvement obtained with FISH or FSH.

3.3 Effect of Spaced Seeds Weight on Time Perfor-
mances

The experiments presented here point out the connection between the density
of a spaced seed and the speedup. We considered four sets of nine spaced
seeds, generated with rasbhari (Hahn et al., 2016), with weights 14, 18, 22
and 26 and a fixed length of 31, see Tables 3-5 in the Appendix.

In Figure 4 we compare the average speedup of ISSH, FISH and FSH for
these sets of spaced seeds as a function of the weight W . We notice that the
speedup grows as the weight increases. This phenomenon is consistent among
all the methods we analyzed. It is reasonable to think that such difference is
due to how the hashes are computed with the standard method using Eq.1
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Figure 4: The speedup of ISSH, FISH and FSH as a function of the spaced
seeds density (L=31 and W=14, 18, 22, and 26).

(against which all methods are compared), because denser spaced seeds imply
hashes with a larger number of symbols that need to be encoded and joined
together. Moreover, for ISSH we have that denser spaced seeds have more
chances of needing fewer previously calculated hashes to compute each of the
|Q| − 1 symbols, thus saving further iterations.

Both these effects are emphasized when looking at the actual running
times needed by the least dense group (W = 14) and by the most dense
group (W = 26) of spaced seeds. The standard method requires 9.73 and
15.11 minutes, respectively, while ISSH spends only 2.75 and 2.16 minutes to
perform the same task.

3.4 Effect of Number of Iterations on Time Perfor-
mances

The experiments described in this section have been essential to understand
how many of the previously calculated hashes we should use in order to further
speed up the computations. At the beginning we were not sure whether it was
better or not to increase the number of iterations, for each of the |x| − s(Q)
hashes that need to be computed, to recover only few symbols. To address
this problem we considered the speedup obtained with ISSH by progressively
limiting the number of iterations, that is the number of previous hashes used
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to compute a new one, from one to five (number needed to cover all the |Q|−1
symbols for all the spaced seeds considered). The results are shown in Figure
5 where the spaced seeds used have length L = 31 and weight W = 14.

Figure 5: Speedup of ISSH, on the seeds of table 3 (see Appendix), with an
increasing limit to the number of iterations used to compute each hash.

To compute the remaining symbols it has been used a similar approach
to the one described in Girotto et al. (2018b) for FSH, which is also used by
ISSH to complete the hashes computed in the transient part. We can see that
gradually increasing the number of iterations the speedup becomes greater:
from speedups similar to the ones obtained with FSH, which only considers
one single previous hash (that correspond to a single ISSH iteration), to the
higher speedups of this new approach.

Here we can also observe again that the number of iterations has an impact
on the speedup. For the spaced seed Q18 only 4 iterations are required to
recover all the |Q| − 1 positions, one less than the other spaced seeds, and
this leads to a higher speedup for Q18 if compared to the other spaced seeds
with the same density.

In Figure 6 the same speedups shown in Figure 5 are plotted, but this
time against the number of symbols recovered.

Even in this case, it is clear that as ISSH recovers more symbols – which
means having to apply the encode function for fewer positions – the speedup
increases. Another interesting observation is that a small variation is present
between the speedup of computations in which the same number of symbols
are recovered, but the number of iterations used is different. For example, if
we consider the cases in which 10 symbols are recovered, the speedups are
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Figure 6: Speedup of ISSH obtained recovering a certain number of symbols
for the seeds of table 3 (see Appendix).

almost the same, but for Q14 and Q15 two iterations are needed while for
Q10 an additional one is required. In summary, the speedup depends more
on the number of symbols recovered rather than the number of iterations.

4 Conclusions

In this article we present ISSH (Iterative Spaced Seed Hashing), an iterative
algorithm that combines multiple previous hashes in order to maximize the
re-use of already computed hash values. The average speedup of ISSH with
respect to the standard computation of hash values is in range of [3.5x- 7x],
depending on spaced seed density and reads length. In all experiments ISSH
outperforms previously proposed algorithms. Possible directions of research
are the combination of multiple spaced seeds and the investigation of global
optimization schemes.
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5 Appendix

Table 2: Number of reads and average lengths for each of the dataset used in
our experiments.

Datasets Number of reads Avg. read length
S6 1426457 80
S7 3307100 80
S9 4468336 80
S10 9981172 80
L5 1016418 80
L6 1182178 80

HiSeq 9989713 91
simBA5 1631100 100
MixK1 9629886 101
MixK2 7149900 101
MiSeq 3990282 131
R7 290473 702
R8 374576 715
R9 588256 715

Table 3: Nine spaced seeds with W = 14 and length 31 computed with
rasbhari minimizing overlap complexity.

Q10 1110000100110100110110001010001
Q11 1011000001001011111101000100001
Q12 1010000001001101100110000110111
Q13 1110010001000010000111011100011
Q14 1010000111100111100011000000011
Q15 1000100000010000010101111111011
Q16 1011100000100101011100010110001
Q17 1000101011100101101010001100001
Q18 1011010110001010101000000010111
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Table 4: Nine spaced seeds with W = 18 and length 31 computed with
rasbhari minimizing overlap complexity.

Q19 1011010110010101111011010110001
Q20 1011001001011011111101010101001
Q21 1010101001011101100110000111111
Q22 1110110011000010001111011110011
Q23 1010011111101111101011000000011
Q24 1100100101010000110101111111011
Q25 1011100100110101111100010111001
Q26 1110101011100111101010011100001
Q27 1011011110001011101000100011111

Table 5: Nine spaced seeds with W = 26 and length 31 computed with
rasbhari minimizing overlap complexity.

Q28 1111101110111011111101101111111
Q29 1111111011111111111111010101101
Q30 1110111011011111111110011111111
Q31 1111111111100111101111111110011
Q32 1111011111111111101011011110111
Q33 1101101101111100111111111111111
Q34 1011110101111101111111111111101
Q35 1111101111110111111110111110011
Q36 1011111111101011111010111111111
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