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Abstract: Current technologies allow the sequencing of microbial

communities directly from the environment without prior culturing.

One of the major problems when analyzing a microbial sample is

to taxonomically annotate its reads to identify the species it con-

tains. The major difficulties of taxonomic analysis are the lack of

taxonomically related genomes in existing reference databases, the

uneven abundance ratio of species, and sequencing errors. Microbial

communities can be studied with reads clustering, a process referred

to as genome binning.
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In this paper we present MetaProb 2 an unsupervised genome bin-

ning method based on reads assembly and probabilistic k-mers statis-

tics. The novelties of MetaProb 2 are the use of minimizers to ef-

ficiently assemble reads into unitigs and a community detection al-

gorithm based on graph modularity to cluster unitigs and to detect

representative unitigs. The effectiveness of MetaProb 2 is demon-

strated in both simulated and real datasets in comparison with state-

of-art binning tools such as MetaProb, AbundanceBin, Bimeta and

MetaCluster. On real datasets, it is the only one capable of produc-

ing promising results while being parsimonious with computational

resources.

Code: https://github.com/frankandreace/metaprob2 1

1 Introduction

Metagenomics is the study of the heterogeneous microbes samples (e.g. soil, wa-

ter, human microbiome) directly extracted from the natural environment with

the primary goal of determining the taxonomical identity of the microorganisms

residing in the samples (Staley and Konopka, 1985). Shifting the focus from the

individual microbe study to a complex microbial community is a revolution-

ary milestone. The classical genomic-based approaches require the prior clone

and culturing for further investigation (Felczykowska et al., 2012; Mande et al.,

2012). However, not all bacteria can be cultured. The advent of metagenomics

allowed researchers to overcome this difficulty. Microbial communities can be

analyzed and compared through the detection and quantification of the species

they contain (Kang et al., 2015; Qian and Comin, 2019; Pellegrina et al., 2020).

1A preliminary version of this work appeared in the proceedings of ICCABS 2020 (Andreace
et al., 2021)
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In this paper, we will focus on the unsupervised detection of species in a sam-

ple without the use of reference genomes. Despite extensive studies, accurate

binning of reads remains challenging (Sczyrba et al., 2017; Comin et al., 2020).

Supervised methods require to index a database of reference genomes, e.g. the

NCBI/RefSeq databases of bacterial genomes, that is used to classify (Wood

and Salzberg, 2014; Ounit et al., 2015; Qian et al., 2018; Marchiori and Comin,

2017; Segata et al., 2012). Although the reads classification is very efficient, the

construction of k-mers DB usually is very demanding, requiring computing ca-

pabilities with large amounts of RAM and disk space. Another drawback is the

fact that most bacteria found in environmental samples are unknown and cannot

be cultured and separated in the laboratory (Eisen, 2007). As a consequence,

the genomes of most microbes in an environmental sample lack a taxonomically

related sequences in existing reference databases. For these reasons, when using

supervised methods the number of unassigned reads can be very high (Lindgreen

et al., 2015; Girotto et al., 2017a; Storato and Comin, 2020).

Unsupervised methods do not require to know all the genomes in the sample,

instead they try to divide the reads into groups so that reads from the same

species are clustered together. Unsupervised classification tools, also known as

genome binning, are based on the observation that the k-mer distributions of the

DNA fragments from the same genome are more similar than those from different

genomes. Thus, without using any reference genome, one can determine if two

fragments are from genomes of similar species based on their k-mer distributions.

The major problem when processing metagenomic data is the fact that the

proportion of species in a sample, a.k.a. abundance rate, can vary greatly.

Most of the tools can only handle species with even abundance ratios, and

their binning performances degrade significantly in real situations when the

abundance ratios of the species are different. For example, AbundanceBin (Wu
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and Ye, 2011) works well only with a limited number of species and with very

different abundance ratios, but problems arise when some species have similar

abundance ratios. Other tools like BiMeta (Vinh et al., 2015) and MetaCluster

(Wang et al., 2012) try to group the reads into many small clusters so that

reads from minority species (with low abundance ratios) could exist as isolated

clusters. Both these methods use as means of comparison the Euclidean distance

between the vectors of k-mers counts on the clusters groups. In MetaProb

(Girotto et al., 2016) reads are clustered based on a self-standardized statistic,

derived from alignment-free statistics, that is not dominated by the noise in

the individual sequences, and that can compare groups of reads with different

abundance ratios. The sensitivity can be improved by using spaced seeds instead

of k-mers (Girotto et al., 2017b), however at the expenses of the computing

resources.

In terms of precision Metaprob has shown to be one of the best perform-

ing methods, however the major bottleneck is the high memory consumption.

Another important observation is that all reads binning methods try to clus-

ter reads, based on overlaps and k-mers counts, but without assembling the

reads. A possible explanation is because metagenomics reads assembly is very

challenging (Sczyrba et al., 2017). However, efficient techniques based on min-

imizers have been recently devised for long reads mapping and assembly (Li,

2018, 2016). Recently, GraphBin (Mallawaarachchi et al., 2020) has shown that

assembly can be of help also for the problem of contig binning.

In this paper, we present MetaProb 2, a new approach to address the prob-

lem of unsupervised metagenomics reads binning. To this purpose, MetaProb 2

assembles reads into unitigs using efficient techniques based on minimizers, as

well as probabilistic sequence signatures based on k-mers. The use of unitigs

will also prevent the overestimation of k-mers frequency, and it does not re-
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quire complex counting procedures like finding sets of independent reads as in

MetaProb (Girotto et al., 2016). Another novelty of MetaProb 2 is a commu-

nity detection algorithm based on graph modularity (Blondel et al., 2008) to

cluster unitigs and to detect putative species. This novel paradigm exploited

by MetaProb 2 will further improve the classification accuracy while reducing

the computational resources. This is particularly important because not all the

tools are able to handle large real datasets (see Section 3).

2 Methods

The study of DNA based on its k-mers is a well-known technique to identify

the species in a metagenomic sample. One drawback of this approach is the

large amount of memory required to compute reads overlaps and to store all the

k-mers of the sequences. To solve these issues, we propose MetaProb 2, a new

metagenomic reads binning algorithm based on minimizers. This algorithm uses

short paired-end reads to infer the number of species and the abundance in the

sample: short reads provide high accuracy and the paired-end information will

be useful to improve the precision and overall performances of the algorithm.

An overview of MetaProb 2 can be found in Figure 1. The method consists

of three main steps. In the first phase, reads are grouped together based on their

overlap, using minimizers instead of k-mers. Since these reads share a common

subsequence, they are assumed to belong to the same species and assembled

together to generate an unitig, i.e. a precise contig in which the consensus is

unambiguous. These operations are performed using two long reads de-novo

assembly algorithms, Minimap2 (Li, 2018) and Miniasm (Li, 2016), with some

additional modifications to comply with the short reads input.

In the second phase a unitig graph is built considering the unitigs - and their

associated reads - as nodes. From this graph, it is possible to infer communities

5



of nodes that will likely represent unitigs of the same species. The third and

last step is the identification of putative species and the estimation of their

abundances. In this phase, the representative unitigs and the unassembled reads

are clustered together based on k-mers content using a probabilistic sequence

signature derived from MetaProb (Girotto et al., 2016). Next, a more detailed

description of each of these steps is given.

Figure 1: An overview of MetaProb 2 divided into the three main phases: Unitig
Construction, Community Detection and Species Identification.

2.1 Phase 1: Unitig Construction

In the first phase, reads are grouped together, based on their overlaps, and then

assembled. This operation is performed using Minimap2 (Li, 2018), a long-read

de novo mapping tool that uses minimizers instead of k-mers to find shared

subsequences between reads. The use of minimizers is crucial because it stores

only a fraction of all the k-mers to perform the all vs. all comparison between

the sequences, resulting in faster computation and lower memory usage. In fact,

Minimap2 has the best performances in long reads mapping and assembling.

Unlike MetaProb, the k-mer length is set to 15 and not 32, which is a good

trade-off between resource usage, precision and the number of reads grouped:
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higher k-mer length means worst performances in computation time, memory

usage and grouped reads but it guarantees higher precision. Regarding the

window size in which minimizers are chosen we used 10, as the recommended

value was 2/3 of the k-mer length (Li, 2018).

Instead of working on the groups of overlapping reads, we assemble the

sequences in each group and we consider the resulting unitig. Unitigs are precise

assemblies generated from overlapping sequences: we decided to not combine

them together into contigs to preserve the high quality of the assembled reads,

since our purpose is to have the more precise information as possible. Moreover,

the fact of considering unitigs instead of groups of reads will naturally resolve

the problem of k-mers overcounting, and also it will avoid the complex phase

of finding sets of independent reads of MetaProb (Girotto et al., 2016). The

benefit of using minimizers for short reads assembly has been recently shown

in (Bayat et al., 2020). Miniasm (Li, 2016) is a tool often used together with

Minimap2 that performs assembly on long reads, it provides as output the unitig

sequences along with other information. As suggested by (Bayat et al., 2020),

we change the default parameters of minimap2 and miniasm to accommodate

for short reads assembly.

Note that not all the reads in the input sample will contribute to the assembly

of some unitigs, however, they will be considered in the final phase. The portion

of these left-out reads is mostly due to the assembly step, that takes out reads

not useful to the unitig generation.

We consider the reads used to create an unitig as components of a cluster

represented by the unitig sequence. Their precision is assessed around 99,77%

for the most complex synthetic dataset. Although being really precise, the

assembly step is not enough to condensate together the reads into significant

chunks of DNA sequences. To compensate for that, before moving to the species
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identification using k-mer frequencies, an intermediate step is needed.

2.2 Phase 2: Community Detection

In this phase, we use the information provided by the overlap detection together

with the paired-end structure of the reads to group unitigs that are likely to be

from the same species. To do so every unitig is assigned to a node in a graph

and if two unitigs share part of a paired-end read, their respective nodes are

linked together. Every edge is weighted with the number of shared paired-end

reads between the unitigs. The resulting network is really precise: let’s consider

an edge correct if it links unitigs that are made of (almost entirely) reads from a

certain species. For example, on the most complex synthetic dataset 99,74% of

edges are correct. Then we use a graph clustering algorithm on this network to

detect communities of unitigs. Since the dimension of this graph can be large,

i.e. millions of nodes, this operation is performed using a heuristic method based

on modularity optimization. Modularity is a measure that describes how well

a network is divided into meaningful communities: networks with high modu-

larity can be divided into clusters of densely connected nodes, with the nodes

of different clusters being sparsely connected. In practice, it describes how well

communities are connected in the network compared to what would be expected

if edges were placed at random. The optimization problem of community de-

tection requires the network to be split up into the communities that give the

highest value of modularity. This problem is known to be computationally in-

tractable (Brandes et al., 2006), however suboptimal algorithms exist. We used

the library scikit-network (Bonald et al., 2020) that is based on the Louvain al-

gorithm (Blondel et al., 2008). This method is extremely efficient both in time

and memory and it can handle very large graphs. Moreover, this operation relies

on the assumption that unitigs that share many paired-end reads are likely to
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be originated from the same species. It is important to notice that the commu-

nities we obtain are very precise, as the reads they contain are almost all from

the same species: on the most complex synthetic dataset, the communities have

precision of 99,3%. However, a given community does not necessarily contain

all the reads from a species. It may well be that two or more communities are

composed of reads of the same species. This calls for an additional step based

on the sequence statistics, that will have the specific purpose to detect the real

number of species and their abundance in the sample.

Once the communities of unitigs have been created, we selected from every

community the nodes with the highest degrees, and these unitigs will be con-

sidered as representatives for that community in the last phase. Because only a

small number of unitigs are selected, this operation has the advantage to require

fewer calculations in the next phase, speeding it up and lowering its memory

usage. In particular, we chose the nodes with the highest degrees because they

will somehow better represent the community while avoiding the possibility of

choosing an outlier.on the most complex synthetic dataset, more than 99,91%

of the representatives chosen were from the same species of the majority of the

reads they were representing. In order to limit the number of representative

unitigs we set a threshold on the sum of the representative’s sequence length.

The representative unitigs of each community are used in the last phase in place

of all the reads belonging to that community, making the species identification

step faster while keeping the sequence information useful to estimate the number

of species.

2.3 Phase 3: Species Identification

In the last phase, we infer the number of species and their abundance in the

sample from the sequence information, using sequence signatures (Girotto et al.,
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2016) based on k-mer statistics. Several alignment-free statistics have been

proposed over the years (Zielezinski et al., 2017, 2019; Apostolico et al., 2016).

In the context of metagenomic binning, the probabilistic sequence signatures

proposed by MetaProb (Girotto et al., 2016) have shown very good performance

and we decided to use the sequence signature for the final phase. To keep

the paper self-contained here below we summarize the probabilistic sequence

signature procedure.

Let I be the set of input sequences for the species identification step, where

I is composed of the representative unitigs detected in Phase 2, which account

for all the reads in the communities, and by the remaining unassembled reads.

Let S be a sequence (either an unitig or an unassembled read) from the set I,

we call Sw the the number of occurrences of the k-mer w in S. To account

for the different probability of appearance of k-mers, the k-mers counts are

standardized based on the probability of k-mers in each sequence. If k << |S|,

we can consider the variables Sw, with S ∈ I, as Bernoulli. We used k = 4,

so that such assumption holds, as in other binning methods (Vinh et al., 2015;

Wang et al., 2012). The probability Pw of the k-mer w to occur in the sequence

S was computed as in Metaprob (Girotto et al., 2016) for short reads. We can

now define the mean and variance of Sw:

E[Sw] = µw
i = Pw × (|S| − k + 1)

V ar[Sw] = (σw)
2 = Pw × (1− Pw)× (|S| − k + 1)

that are used to standardize the variable Sw:

S̃w =
Sw − µw

σw

Finally, in order to compare sequences of different length, the probabilistic
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sequence signatures are computed for each input sequence S. The sequence

signature is a vector in Σk, with k = 4, containing the normalized frequency

count of each word w in S:

fS
w =

S̃w√∑
v∈Σk (S̃v)2

In order to detect sequences that are likely to belong to the same species we

evaluate the distance between the sequence signatures, and we apply k-means

to group together sequences with a similar distribution as in MetaProb (Girotto

et al., 2016).

3 Discussion

In this section, we describe several experiments we performed to assess the

performances of MetaProb 2. In particular, we measured both the quality of

the results and the computational resource usage in terms of time and space

required for the processing. All the experiments were performed on a machine

with Intel(R) Xeon(R) Gold 5220 CPUs @ 2.20/3.90GHz and 2TB of RAM.

3.1 Datasets description

We used four different kinds of datasets: ten simulated bacterial metagenomes

generated using MetaSim (Richter et al., 2008), called S1-10, two containing

synthetic metagenomes based on real reads, called MIX1-2, two datasets that

closely mimic the complexity, size and characteristics of real data, called SetA2

and SetB2, and a real dataset, SRR1804065.
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3.1.1 Simulated Datasets

The S1-10 datasets were used in previous studies to assess the performances of

BiMeta (Vinh et al., 2015) and MetaProb (Girotto et al., 2016). Mix1-2 were

also used to validate MetaProb and Kraken.

The S datasets contain short paired-end reads, which length is approximately

80 bp, generated according to the Illumina error profile with an error rate of 1%

using MetaSim. These have been used to verify the consistency of this method

in different scenarios: from datasets like S1-4 that have only 2 different species

and hundreds of thousands of reads with similar abundances to S9-10 that have

15 and 30 species, between 2.3 and 5 million reads and different abundance

ratios and different phylogenetic distance. The synthetic datasets, constructed

from real metagenomic data are composed of short reads Illumina MiSeq from

Kraken (Wood and Salzberg, 2014) with 10 different species and two abundance

profiles: spanning between 3.5 to 5 million reads. Table 1 shows the number of

reads, species and phylogenetic distance for each dataset.

Dataset No. of reads No. of species Phylogenetic distance

S1 96367 2 Species
S2 195339 2 Species
S3 338725 2 Order
S4 375302 2 Phylum
S5 325400 3 Species and Family
S6 713388 3 Phylum and Kingdom
S7 1653550 5 Genus and Order
S8 456224 5 Genus and Order
S9 2234168 15 various distances
S10 4990632 30 various distances
MIX1 4814943 10 various distances
MIX2 3574950 10 various distances

Table 1: Number of reads, species and phylogenetic distance of each simulated
dataset.
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3.1.2 Real Datasets

The real datasets are more complex than the synthetic and simulated ones.

Datasets SetA2 and SetB2 are based on real sequencing results of pooling 6 soil

samples on a single HiSeq2000 lane. The original datasets were generated by

(Lindgreen et al., 2016), and used by (Guerrini et al., 2020) for metagenomic

classification. Since in (Lindgreen et al., 2016) these datasets were used to

evaluate tools at the genus and phylum level, we decided to validate them at

the genus level. These two datasets have almost 20 million reads each and 444

genera with different abundances at various phylogenetic distances. The genera

in these samples are uneven: for example, in SetA2 there is one with more than

1.3 million reads, there are 34 with between 100000 and 1 million reads each and

there are some that have few thousands or fewer reads. Although containing the

same genera, SetA2 and SetB2 have different abundance ratios. SRR1804065

is a real stool sample from the Human Microbiome Project, generated using

Illumina that originally contains 21873781 reads. Since this is a real dataset,

the ground truth is not available: all the 22 million reads were mapped using

BLAST and the ones not mapping to a bacterial genome were filtered out. The

resulting dataset has more than 5.5 million reads. The abundance ratios of this

dataset are very skewed: 2.7 million reads, i.e. more than 49% of the sample,

are from the Bacteroides genus, known for being the most substantial portion

of the mammalian gastrointestinal microbiota; the second one is Phocaeicola,

another relevant bacterial genus present in the gut and colon. Almost 75% of

the dataset is composed of these two genera. All the other genera in the sample

have at least an order of magnitude less reads and only 69 genera have more

than 1000 reads. In Table 2 is presented a summary of the real datasets.
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Dataset No. of reads No. of genera Phylogenetic distance

SetA2 19724719 444 various distances
SetB2 18523723 444 various distances

SRR1804065 5500983 69 various distances

Table 2: Number of reads, genera and phylogenetic distance of the real datasets.

3.2 Performance evaluation metrics

In order to evaluate the results, we used three performance evaluation metrics:

precision, recall and f-measure. As the provenance of the synthetic and simu-

lated reads is known, given n as the number of species in a dataset and C the

number of clusters returned by the algorithm, Aij is the number of reads from

species j assigned to cluster i. We used the same definitions of precision, recall

and f-measure as in MetaProb (Girotto et al., 2016) and BiMeta (Vinh et al.,

2015):

Precision =

∑C
i=1 maxj Aij∑C
i=1

∑n
j=1 Aij

(1)

Recall =

∑n
j=1 maxi Aij∑C

i=1

∑n
j=1 Aij +#unassigned reads

(2)

F-measure =
2 ∗ Precision ∗ Recall
Precision + Recall

(3)

The F-measure is the harmonic mean of precision and recall. We evaluated also

the total computation time and the peak memory used by the algorithms as

well.
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3.3 Results

In this section we discuss the results of the comparison between MetaProb 2

and MetaProb, alongside with other algorithms like MetaCluster 5.0.1 (Wang

et al., 2012), AbundanceBin (Wu and Ye, 2011) and BiMeta (Vinh et al., 2015)

on simulated and real datasets.

3.3.1 Quality of Binning: Simulated Datasets

The experiments on synthetic and simulated datasets had the purpose of mea-

suring the ability of MetaProb 2 to perform metagenomic binning compared

against the performances of its predecessor, MetaProb, along with MetaClus-

ter, AbundanceBin and BiMeta. Table 3 shows the overall F-measure values of

all the algorithms for each dataset (S1-10, MIX1-2).

Dataset Abundance Bin MetaCluster BiMeta MetaProb MetaProb 2

S1 0.683 0.672 0.978 0.992 0.994
S2 0.713 0.631 0.588 0.879 0.83
S3 0.824 0.415 0.847 0.920 0.957
S4 0.883 0.460 0.992 0.916 0.997
S5 0.552 0.643 0.781 0.828 0.880
S6 0.692 0.492 0.993 0.953 0.997
S7 0.606 0.652 0.705 0.774 0.85
S8 0.528 0.529 0.732 0.769 0.874
S9 Error 0.639 0.761 0.718 0.842
S10 Error 0.052 0.636 0.713 0.736
MIX1 Error 0.555 0.713 0.868 0.835
MIX2 0.645 0.630 0.707 0.775 0.824

AVERAGE 0.68 0.531 0.786 0.842 0.879

Table 3: The comparison of F-measure for all algorithms on all simulated and
synthetic datasets.

We observed that increasing the dataset complexity (number of species, dif-

ferent abundances) results in a decrease in performances for every algorithm.

While AbundanceBin and MetaCluster have significantly lower performances
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than the others, BiMeta and MetaProb have overall good performances and

perform really well on specific datasets. AbundanceBin reported results with

no read clustered or failed its execution on datasets S9, S10 and MIX1.

MetaProb 2 resulted as the best tool on 10 out of 12 datasets, in particular,

it outperforms all the other algorithms on the most difficult datasets, except

for MIX1, where the result is similar to MetaProb, the best on that sample. It

is important to notice that the best improvements in terms of overall binning

quality (F-measure) have been made for the most complex datasets. MetaProb

2 F-measure values are between 5% and 15% better than the next best BiMeta

and MetaProb.
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Figure 2: Precision and recall comparison between MetaProb and MetaProb 2.

Precision and Recall values for MetaProb and MetaProb 2 are shown in

details in Figure 2, as they were the two best performing methods. Both algo-

rithms have balanced levels of precision and recall in all datasets. MetaProb 2

obtains in most cases better performance than MetaProb in terms of both pre-

cision and recall. Results show very high values even for the synthetic datasets

(MIX1 and MIX2), and consistent with the most complex among the simulated

datasets. These results show that the probabilistic sequence signature intro-

duced in MetaProb is a powerful tool and that the two new phases of assembly
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and unitig clustering that have been introduced in MetaProb 2 strengthen it

even further.

3.3.2 Quality of Binning: Real Datasets

Real datasets are more difficult to analyze and evaluate, mainly because of the

dimension, the complexity of the sample, and the number of genera present. All

other tools failed to run or they could not run in a reasonable time, even after

4 days of computation, compared to few hours of MetaProb and MetaProb 2,

therefore they are not considered suitable to analyze these large real datasets.

Moreover, since in real experiments it is more important to have a broad pic-

ture of the sample composition rather than to classify every read, during the

MetaProb 2 tests, we decided to not consider the reads not assembled in the

first phase. To evaluate the output of MetaProb and MetaProb 2, we assessed

the number of different genera present in the clusters, the number of different

genera present in the top 30 clusters by dimension, i.e. number of reads, and

the number of clusters in the top 30 with precision higher or equal than 70%.

Dataset Tool
Different
genera
detected

Different genera
detected in top 30

clusters

Clusters with
precision > 70%

in top 30

SetA2
MetaProb 2 85 28 22
MetaProb 70 19 7

SetB2
MetaProb 2 88 29 16
MetaProb 74 18 4

SRR1804065
MetaProb 2 15 9 6
MetaProb 1 1 1

Table 4: Real datasets results: different genera detected in the sample and in
the top 30 cluster, and the number of clusters with precision higher than 70%.

The results, shown in Table 4, clearly display the ability of MetaProb 2

to better understand the complexity of the samples. In the SetA2 and SetB2

datasets, MetaProb 2 detects more genera than MetaProb. Moreover, on the
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top 30 clusters, MetaProb 2 is able to report more clusters of reads belonging to

different genera. Also, the number of clusters with high precision in the top 30

is higher compared to MetaProb. In the real SRR1804065 dataset, MetaProb is

able to detect only the dominant genera in all the clusters it outputs, whereas

MetaProb 2 displays a clearer picture, detecting up to 15 different genera. In

the top 30 clusters, MetaProb 2 detects with high precision Bacteroides, i.e. a

bacteria genera that makes the most substantial part of mammals gastrointesti-

nal microbiota, Alistipes and Phocaeicola. Moreover, it detects in the top 30

clusters Parabacteroides with high precision 93%. All these genera are known

to be among the most abundant genera in stool samples (Qin et al., 2010).

3.3.3 Computational Resources

In this section we compared the running time and memory usage of MetaProb

2 with other binning tools.
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Figure 3: Runtime comparison for all tools on all datasets.

Processing time was not considered an issue: as shown in (Girotto et al.,

2016), MetaProb was already an order of magnitude faster than AbundanceBin

and BiMeta. Nevertheless, MetaProb 2 is faster than MetaProb on almost

every dataset (see Figure 3). This has been possible since reads assembly using

minimizer is a fast operation, and the graph clustering algorithm scales well

with the dimension of the dataset. Moreover, the other tools fail to run on the
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large real datasets.
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Figure 4: Maximum memory usage comparison for all tools on all datasets.

On the other hand, the heavy memory usage of MetaProb was the driving

factor for the development of a new approach. Even if the performances of

MetaProb are good, the amount of RAM used can be reduced.

As shown in Figure 4, MetaProb 2 consistently uses less memory than its

predecessor, requiring significantly less space as the size of the dataset grows.

Its results are comparable with Abundancebin, which has in the low memory

usage the best of its strengths. On real datasets, the advantage w.r.t. MetaProb

makes a huge difference in the usability of MetaProb 2 on these samples. Even

without a machine with hundreds of Gb of RAM it is possible to analyze complex

datasets and extract useful insights.

These results have been possible thanks to the use of minimizers that con-

siderably reduce the number of k-mers stored for the overlap detection. Finally,

the efficient unitig graph algorithms, and the resulting smaller number of se-

quences to compare, make then possible to keep the memory usage low during

the last phase: in fact, the highest amount of memory usage is always registered

in the first phase.
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4 Conclusions

Binning metagenomic reads remains a crucial step in the metagenomic analysis.

In this work, we presented MetaProb 2, an unsupervised approach for metage-

nomic reads binning based on reads assembly using minimizers and on proba-

bilistic k-mers statistics. We compared the binning performance over simulated

and real metagenomic datasets against other state-of-art binning algorithms.

MetaProb 2 achieves good performances in terms of precision and recall, out-

performing MetaProb and the other tools. Another advantage of MetaProb 2 are

the small requirements of computational resources, especially on large datasets.

On real datasets the memory reduction is up to 80% w.r.t. to MetaProb, the

only other tool capable of analyzing them. Moreover, on these big and complex

datasets, MetaProb 2 is able to detect more genera and cluster reads with more

precision and heterogeneity than its predecessor.
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